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Abstract

Classification of various image components (pixels, regions and objects) in meaningful
categories is a challenging task due to ambiguities inherent to visual data. Natural im-
ages exhibit strong contextual dependencies in the form of spatial interactions among
components. For example, neighboring pixels tend to have similar class labels, and
different parts of an object are related through geometric constraints. Going beyond
these, different regions e.g., sky and water, or objects e.g., monitor and keyboard
appear in restricted spatial configurations. Modeling these interactions is crucial to
achieve good classification accuracy.

In this thesis, we present discriminative field models that capture spatial interac-
tions in images in a discriminative framework based on the concept of Conditional
Random Fields proposed by Lafferty et al. The discriminative fields offer several ad-
vantages over the Markov Random Fields (MRFs) popularly used in computer vision.
First, they allow to capture arbitrary dependencies in the observed data by relax-
ing the restrictive assumption of conditional independence generally made in MRFs
for tractability. Second, the interaction in labels in discriminative fields is based on
the observed data, instead of being fixed a priori as in MRFs. This is critical to
incorporate different types of context in images within a single framework. Finally,
the discriminative fields derive their classification power by exploiting probabilistic
discriminative models instead of the generative models used in MRFs.

Since the graphs induced by the discriminative fields may have arbitrary topology,
exact maximum likelihood parameter learning may not be feasible. We present an
approach which approximates the gradients of the likelihood with simple piecewise
constant functions constructed using inference techniques. To exploit different lev-
els of contextual information in images, a two-layer hierarchical formulation is also
described. It encodes both short-range interactions (e.g., pixelwise label smoothing)
as well as long-range interactions (e.g., relative configurations of objects or regions)
in a tractable manner. The models proposed in this thesis are general enough to
be applied to several challenging computer vision tasks such as contextual object
detection, semantic scene segmentation, texture recognition, and image denoising
seamlessly within a single framework.
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Chapter 1

Introduction

1.1 Motivation

One of the fundamental problems in computer vision is that of image understanding

or semantic scene interpretation i.e., to interpret the scene contained in an image as

a collection of meaningful entities. This may involve parsing information in the scene

at different levels. For instance, one may be interested in recognizing various regions

or objects in an image e.g., whether the scene contains sky or a phone, and at what

location. At a relatively higher level, one may want to find the general class of a scene

e.g., the scene is an office or a beach, or the event summarizing the scene e.g., the

scene is from a birthday party. Scene understanding in computer vision presents the

paradox that, in order to recognize an object, its surroundings must be recognized

first, but to recognize the surroundings, the objects must be recognized first [132].

For instance, if we can recognize that the scene contains water and sand, there is a

high probability that the scene is a beach. Similarly, presence of a birthday cake is a

strong indication of the scene being from a birthday party.

In this thesis, we address the problem of classification or labeling of various com-

ponents in natural images, where a component may be an image pixel, a patch1

(rectangular or irregularly shaped), or an object. Following the conventional usage,

by natural images we mean non-contrived scenes that are encountered commonly in

our surroundings i.e., regular indoor and outdoor scenes. These images may contain

both man-made as well as natural objects such as sky, vegetation etc. occurring in

1In this thesis we will call a rectangular patch a block and an irregularly shaped patch a region.

1
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Figure 1.1: Classification of image components is difficult due to ambiguities in their
appearance. In the left image, sky and water regions look similar while in the right image,
tree and building regions look similar. Context can help resolve these ambiguities.

nature. In addition, we will deal with problems in which only a single static image

of the scene is given, and no 3D geometric or motion information is available. This

makes the classification task more difficult.

1.2 The Curse of Ambiguity

The problem of detecting and classifying regions and objects in images is a challenging

task due to ambiguities in the appearance of the visual data. These ambiguities may

arise either due to the physical conditions such as illumination and pose of the scene

components with respect to the camera, or due to the intrinsic nature of the data

itself. The use of context can help alleviate this problem significantly. For example,

as shown in Figure 1.1, just on the basis of the appearance, it may be difficult to

differentiate a sky patch from a water patch but their relative spatial configuration

with respect to other regions removes this ambiguity. Similarly, a patch from a tree

may appear locally very similar to another patch from a building (Figure 1.1, right

image). But if we look at larger neighborhoods of the patch, it is easy to classify

which patch is a building patch.

It is well known that natural images are not a random collection of independent

pixels. To illustrate this point, a natural image is shown in Figure 1.2 (a). Figure
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(a) (b) (c)

Figure 1.2: An illustration of the fact that natural images contain strong spatial
dependencies rather than being a bag of random independent pixels or blocks. (a) A
natural image. (b) Image obtained by randomly scrambling the pixel intensities of
the original image in (a). (c) Image obtained by randomly scrambling the original
image blocks.

1.2 (b) shows the image obtained by randomly scrambling the pixels of the previous

image. It is obvious that the original image gives us a perception of a coherent scene

because there are spatial dependencies in the image which are lost in the scrambled

image. The scrambled image seems like random noise even though all the intensi-

ties, present in the original image, are also present in this image. Similarly, if one

now scrambles bigger blocks instead of pixels (Figure 1.2 (c)), the coherency is still

broken. This demonstrates that it is important to use the contextual information

in the form of spatial dependencies for the analysis of natural images. In fact, one

would like to have total freedom in modeling long range complex data interactions

without restricting oneself to small local neighborhoods. This idea forms the core of

the research presented in this thesis. The spatial dependencies may vary from being

local to global and the challenge is how to maintain global spatial consistency using

models that only need to consider relatively local dependencies.
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1.3 The Nature of Contextual Interactions

There are several types of contextual interactions one would like to model to achieve

robust classification in images. The simplest type of interaction is based on the notion

of spatial smoothness of labels in natural images. According to this, neighboring

pixels tend to have similar labels (except at the discontinuities). For example, if

a pixel in left image in Figure 1.1 has label sky, there is a high probability that

the neighboring pixels also have the same label except at the boundaries. In fact,

the underlying smoothness of natural images forms the basis for recovering the true

image from its noisy version in image denoising applications (Figure 1.4 (c)). These

type of interactions are generally restricted to the pixel level. However, in addition

to these, there exist significant interactions among bigger regions in images. In the

previous example (Figure 1.1, left image), different semantic regions follow plausible

spatial configurations e.g., sky tends to occur above water or sand2.

In addition to the interaction in labels, there are also complex interactions in the

observed data that might be required for classification purposes. Consider the task

of detecting structured textures (e.g., man-made structures such as buildings) in a

given image. The data belonging to this type of textures is highly dependent on its

neighbors. This is because, in man-made structures, the lines or edges at spatially

adjoining regions follow some underlying organization rules rather than being random

(see Figure 1.1, right image).

Now, considering the case of parts-based object detection, one would like to de-

tect different parts of an object to form a hypothesis about the presence of the whole

object. For example, in Figure 1.3 (a), we are interested in detecting a phone. Dif-

ferent parts of the phone such as handle, keypad and front panel are related to each

other through geometric and, possibly, photometric constraints. The phone can be

detected in the scene if we can find the locations of these parts. However, to reliably

detect these parts, we need to encode not only the appearance of each individual part

but also the spatial relationships among various parts. Thus, in this case, context is

applied using the mutual relationships of different parts.

Finally, the contextual interactions for object detection are not limited to the parts

of a single object. These may include interactions among various objects or regions

2In this work we assume that the natural orientation of an image is given. This is not a very
restrictive assumption since even human vision is known to be very sensitive to incorrect image
orientation. One such example is shown in Appendix C (courtesy Bach [6]).
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(a) (b) (c)

Figure 1.3: Context is important for the detection of objects in their natural surroundings.
(a) Different parts of an object (phone) are related through geometric constraints that can
help in robust detection of individual parts. (b) Different objects (monitor, keyboard and
mouse) in a scene occur in restricted configurations which can help in detecting objects with
impoverished appearance e.g., mouse. (c) Context from other regions e.g., buildings and
roads can be helpful in detecting objects (cars).

in the scene. For example, as shown in Figure 1.3 (b), the presence of a monitor

screen increases the probability of having a keyboard or mouse nearby. Exploiting

such contextual information is crucial especially for detecting those objects that have

impoverished appearances such as the mouse in this case. Similarly, the presence of

regions such as buildings and roads in a scene restricts the possible locations a car

can take in the image (Figure 1.3 (c)).

To summarize, context in images can be broadly divided into two categories.

First, local context e.g., local smoothness of pixel labels in images or interactions

among different parts of an object, and second, global context such as interaction

among bigger objects and regions in images. In this thesis, we address the challenge

of how to model different types of context which may include complex dependencies

in the observed image data as well as the labels in a principled manner. Ideally,

one would like to find a computational model that can learn all relevant types of

context automatically in a single consistent framework using the training data. So
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far, computer vision researchers have mostly focused on modeling context at pixel or

part level [49][34][40][35][146]. Recently there has been some work in modeling context

at a higher level [136][56][131][77]. However, in addition to being restricted to only

one type of context, these techniques are generally restricted to specific applications.

In this thesis we present a principled framework that seamlessly combines apparently

diverse requirements imposed by different forms of contexts for different applications

in a single model.

1.4 Modeling Contextual Interactions

While modeling contextual interactions in images, it is important to take into consid-

eration within-class statistical variations in visual data and other uncertainties due to

image noise. This naturally leads to probabilistic modeling of classification problems.

In probabilistic models, the final classification task can be seen as inference over these

models with respect to some cost function.

As discussed before, natural images exhibit long range dependencies and manipu-

lating these global interactions is of fundamental interest in classification. However,

direct modeling of global interactions becomes computationally intractable even for a

small image. On the contrary, usually it is easy to encode the structure of local depen-

dencies in an image from which we would like to make globally consistent predictions.

This paradox can be resolved to a large extent by graphical models. Graphical models

combine two areas viz. graph theory and probability theory, and provide a powerful yet

flexible framework for representing and manipulating global probability distributions

defined by relatively local constraints. Graphical models are sometimes popularly

referred to as random fields3 in computer vision, statistical physics and several other

areas.

At this stage it will be pertinent to ask the following question: Do we really

need to use graphical models for modeling context? Will a simpler strategy e.g.,

sequential incorporation of context suffice? For example, in Figure 1.3 (b), if we can

identify the keyboard first, it will be easy to locate the mouse. This approach can

reduce the computational complexity significantly. However, the main problem with

this approach is that gross errors will be introduced in the mouse detection if the

3Usually the term ’random fields’ is used only for undirected graphs. However, some authors use
this term even for directed graphs [16].
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keyboard was not identified correctly. Ideally, both keyboard and mouse reinforce

the detection of each other simultaneously and this can be modeled in a principled

manner by doing inference in a graphical model. This reasoning also satisfies the

general principle of least early commitment by postponing the hard decisions towards

the end. Hence, in this thesis, we propose contextual models based on probabilistic

graphical models.

1.5 Experimental Evaluation

The task of labeling image regions encompasses a wide range of applications in com-

puter vision. In this thesis, we analyze the performance of the proposed models on

several datasets corresponding to different applications such as semantic segmenta-

tion, region classification, image denoising, texture recognition, and contextual object

detection (Figure 1.4 and Figure 1.5). The datasets are comprised of both synthetic

as well as real-world images. The synthetic images were primarily used to verify

the effects of different components of the model under controlled conditions. In this

thesis, experimental evaluations have been combined with the corresponding theoret-

ical formulation in the same chapter. The experimental analysis is based on both

quantitative as well as qualitative evaluation of the results.

Figure 1.4 and Figure 1.5 show some of the example results obtained using our

models on different applications. Figure 1.4 (a) shows the application of semantic

scene segmentation (or region classification) where we are interested in classifying

different regions of the image as sky, water, sand and so on. This is achieved by

taking into account label smoothing as well as spatial relationships of bigger regions.

In Figure 1.4 (b), an application of structured texture detection (man-made structure

detection) is given. For this, context in the form of spatial interactions among data

from neighborhood blocks and spatial smoothness of labels was used. Figure 1.4 (c)

shows an example of binary image denoising achieved using pixelwise label smoothing.

Figure 1.5 shows contextual object detection in three cases. In Figure 1.5 (a), a

phone is detected by detecting various parts of the phone (shown as white squares).

This is achieved using the geometric consistency between different parts as the con-

text. Figure 1.5 (b) shows the detection of a car using the object-region interactions,

i.e., relative spatial configuration of buildings, road and cars. Finally, Figure 1.5 (b)

shows the detection of a mouse using the object-object interactions i.e., spatial con-
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(a) Semantic Scene Segmentation

(b) Structured Texture Detection

(c) Binary Image Denoising

Figure 1.4: Various tasks in computer vision that require explicit consideration of
spatial dependencies for the purpose of region labeling. The left column shows the
input images and the right column shows the classification results. (a) Segmentation
and labeling of input image in meaningful regions. (b) Detection of structured tex-
tures such as buildings. (c) Image denoising to restore the binary images corrupted
by noise.

figurations of monitor, keyboard and mouse. Note that the detection of the mouse

just on the basis of appearance is very difficult due to poor resolution. The training

of all the models in the above examples was carried out in a supervised manner i.e.,

the models were trained using fully labeled training sets.
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(a) Parts based object detection using part-part interactions

(b) Contextual object detection using object-region interactions

(c) Contextual object detection using object-object interactions

Figure 1.5: Object detection based on three different types of context. The left
column shows the input images and the right column shows the detection results. (a)
Detection of a phone in a cluttered scenes using geometric consistency of different
parts. White squares represent different parts. (b) Car detection in an outdoor
scene using interactions between car, building and road. (c) Mouse detection in an
indoor scene using interactions between monitor, keyboard and mouse. Note the poor
appearance of the mouse in the input image

1.6 Background Work

The issue of incorporating spatial dependencies in various image analysis tasks has

been of on-going interest in vision community. In the vision literature, broadly two dif-
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ferent types of approaches have been used to address this issue: non-probabilistic and

probabilistic. We categorize a framework as non-probabilistic if the overall labeling

objective is not given by a consistent probabilistic formulation even if the framework

utilizes probabilistic methods to address parts of it. Among the non-probabilistic

approaches, other than using weak measures to capture spatial smoothness of natural

images using filters with local neighborhood supports [52][84][85], two main tech-

niques have been used: rules-based context (Section 1.6.1) and relaxation labeling

(Section 1.6.2). The probabilistic techniques have been mostly addressed under the

paradigm of probabilistic graphical models (Section 1.6.3). In this section we briefly

review these techniques in modeling context in computer vision.

1.6.1 Context and Early Vision

In early computer vision, extensive use of context was advocated by a large number

of researchers to achieve the goal of scene understanding [40][156][47][67][54][110][62]

[114][132]. The objective of most of the scene understanding systems consisted of

recognizing and localizing significant objects in the scene and identifying the relevant

object relationships [8]. The problem of getting semantics in the form of symbolic rea-

soning from the raw input images was dubbed pixels to predicate problem by Pentland

[114].

The bottom-up schemes to recognize various objects and the scene became popular

with the early work of Fischler [40]. Usually these schemes first partition a scene into

regions by using general-purpose segmentation techniques. These regions are then

characterized by a fixed set of attributes leading to object level labeling. The labeling

process requires an inference engine to match each region to the best object model.

Finally the scene itself is characterized by linking the objects together. Depending

on the consistency of various objects composing the scene, object labels are refined.

So, the contextual information is used in two forms: mutual relationships of objects

and overall consistency of the scene. The way these systems organize and store scene

knowledge is in the form of rules and graph-like structures (semantic nets, associative

nets, tree-structures etc.). More details on knowledge representation in these systems

are given in [25].

Along these lines, Ohta [110] used a rule-based approach to assign labels to regions

obtained from a single-pass segmentation. A stumbling block in the use of rules-based

approaches is their inability to deal with the statistical variations in the data. To
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avoid the absolute constraints imposed by the rule-based approaches, Singhal et al.

[131] suggested the use of conditional histograms to make a local decision regarding

assigning a label to a new region given the previous regions’ labels. However, such a

sequential implementation of context will suffer if an intermediate region is assigned

a wrong label.

In mid-1970s, the VISIONS schema system was proposed by Hanson and Rise-

man [54], which provides a framework for building a general interpretation system as

a distributed network of many small special-purpose interpretation systems. It intro-

duced the notion of schema which embeds its own memory and procedural control

strategies, acting as an expert at recognizing one type of object. The system’s initial

expectations about the world were represented by one or more seed schema instances.

These instances predict the existence of other objects by invoking associated schema

which in turn may invoke more schema. The contextual interactions and conflict

resolution among various schema was again based on rule-based strategies.

Strat [132] presented a system called CONDOR to recognize natural objects for

the visual navigation of an autonomous robot. The aim of this system was to utilize

the context in the form of auxiliary data such as camera position and orientation,

geometric horizon, date and time, weather, and digital terrain elevation data and

map. This information was integrated to generate a hypothesis about scene objects

which is most consistent with the global context. While analyzing generic 2D images,

such meta-data is generally not available. Instead, one needs to derive the context

directly from the input image itself. A comprehensive review of the use of context for

recognizing natural objects in color images of outdoor scenes is given in [8].

To summarize, the main problem faced by early computer vision systems that

used context for object or scene labeling was lack of principled methods to deal with

uncertainty embedded inherently in image analysis applications. Attempts at using

fuzzy logic [55][93] proved to be insufficient as image data usually has significant noise

and other within-class variations. Even though efforts were made to represent global

uncertainty using graph structures [153][121][40], the tools available for learning and

inference over these structures were limited. Thus, ad-hoc procedures for resolving

ambiguities using rules remained a popular strategy in early vision [25] making the

resulting systems unreliable or constrained to a narrow domain.
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1.6.2 Relaxation Labeling

Among the non-probabilistic approaches to modeling context, perhaps the most pop-

ular one is Relaxation Labeling (RL) proposed by Rosenfeld et al. [122]. This work

was inspired by the work of Waltz [144] concerned with discrete relaxation on how

to impose a global consistency on the labelings of idealized line drawings where the

object and object primitives were assumed to be given. Since the introduction of RL,

several probabilistic relaxation approaches have been suggested to provide a better

explanation of the original heuristic updates of the label responsibilities [72][70][22].

In spite of successes of probabilistic RL in several applications, there are many ad-

hoc assumptions in various RL frameworks [69]. For example, either the labels are

assumed to be independent given the relational measurements at two or more sites

[22] or conditionally independent in local neighborhood of a site given its label [70].

Probably the most important problem with RL is that the model parameters, i.e.,

the compatibility coefficients are chosen on a heuristic basis. In fact, it is not even

clear how to interpret these coefficients [71]. The probabilistic versions of RL do allow

viewing compatibilities as conditional probabilities. However, even these interpreta-

tions are valid only for the first iteration. The meaning of the probabilities yielded

by subsequent iterations is increasingly speculative [71].

1.6.3 Probabilistic Graphical Models

In the probabilistic schemes, two types of graphical models, causal and noncausal,

have been used extensively to incorporate spatial contextual constraints in vision

problems. The causal models are directed graphs which assume that the observed

image has been produced by a causal latent process. These models have been used

with some success in various segmentation and labeling problems [16][21][34][152].

Our early work also explored a particular form of causal graphs [80] and the details of

the model along with associated problems are discussed in Chapter 2. In this section

we will focus on the background work on noncausal or undirected graphical models,

which form the core of this thesis.

Markov Random Fields

Markov Random Fields (MRFs) are the most commonly used undirected graphical

models in vision, which allow one to incorporate local contextual constraints in label-
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ing problems in a principled manner. MRFs were made popular in vision by the early

work of Cross and Jain [26], Geman and Geman [49], and Besag [10][11]. In this work

we will focus on the use of MRFs for classification problems even though they have

also been used for image synthesis problems [159][123]. MRFs are generally used in a

probabilistic generative framework that models the joint probability of the observed

data and the corresponding labels [94]. In other words, let y be the observed data

from an input image, where y = {yi}i∈S, yi is the data from the ith site, and S is the

set of sites. Let the corresponding labels at the image sites be given by x = {xi}i∈S.

In the MRF framework, the posterior over the labels given the data is expressed using

the Bayes’ rule as,

P (x|y) ∝ p(x,y) = P (x)p(y|x), (1.1)

where the prior over labels, P (x) is modeled as a MRF. For computational tractability,

the observation or likelihood model, p(y|x) is assumed to have a factorized form

[11][34][94][155], i.e.,

p(y|x) =
∏

i∈S

p(yi|xi). (1.2)

An illustration of a typical MRF commonly used in computer vision is given in

Figure 1.6. In MRF formulations of binary classification problems, the label inter-

action field, P (x), is commonly assumed to be a homogeneous and isotropic Ising

model (or Potts model for multiclass labeling problems) with only pairwise nonzero

potentials. If the data likelihood p(y|x) is approximated by assuming that the ob-

served data is conditionally independent given the labels, the posterior distribution4

over labels can be written as,

P (x|y)=
1

Zm

exp

(
∑

i∈S

log p(yi|xi)+
∑

i∈S

∑

j∈Ni

βmxixj

)
, (1.3)

where Zm is the normalizing constant known as the partition function, βm is the

interaction parameter of the MRF and Ni is the set of neighbors of site i.

However, as noted by several researchers [16][80][116][152], the assumption of con-

4With a slight abuse of notation, we will use the term ’MRF model’ to indicate this posterior in
the rest of this thesis.
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Figure 1.6: An illustration of a typical Markov Random Field (MRF) used in com-
puter vision. The shaded circles denote the observations. At each node i, the observed
data is denoted by yi and the corresponding label by xi. Note that the observed data
is conditionally independent given the labels.

ditional independence of the data is too restrictive for several applications for the

analysis of natural images. For example, consider a class that contains man-made

structures (e.g. buildings). The data belonging to such a class is highly dependent on

its neighbors. This is because, in man-made structures, the lines or edges at spatially

adjoining sites follow some underlying organization rules rather than being random

(See Figure 1.4(b)). This is also true for a large number of texture classes that are

made of structured patterns, and other object detection applications where geomet-

ric (and possibly appearance) relationships between different parts of an object are

crucial for its detection in cluttered scenes [146][35][33].

Some attempts have been made in the past to model the dependencies in the

observed image data. In [72], a technique was presented that assumes the noise in

the data at neighboring sites to be correlated, which is modeled using an auto-normal

model. However, the authors do not specify a field over the labels, and classify a site

by maximizing the local posterior over labels given the data and the neighborhood

labels. In the context of hierarchical texture segmentation, Won and Derin [154]

model the local joint distribution of the data contained in the neighborhood of a

site assuming all the neighbors from the same class. They further approximate the

overall likelihood to be factored over the local joint distributions. Wilson and Li

[152] assume the difference between observations from the neighboring sites to be
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conditionally independent given the label field. In the context of multiscale random

field, Cheng and Bouman [16] make a more general assumption. They assume the

difference between the data at a given site and the linear combination of the data

from that site’s parents to be conditionally independent given the label at the current

scale. All the above techniques make simplifying assumptions to get some sort of

factored approximation of the likelihood for tractability. This precludes capturing

stronger relationships in the observations in the form of arbitrarily complex features

that might be desired to discriminate between different classes.

A novel pairwise MRF model is suggested in [116] to avoid the problem of explicit

modeling of the likelihood, p(y|x). They model the joint p(x,y) as a MRF in which

the label field P (x) is not necessarily a MRF. But this shifts the problem to the

modeling of pairs (x,y). The authors model the pair by assuming the observations

to be the true underlying binary field corrupted by correlated noise. However, for most

of the real-world applications, this assumption is too simplistic. In our previous work

[80], we modeled the data dependencies using a pseudolikelihood approximation of a

conditional MRF for computational tractability. In this thesis, we explore alternative

ways of modeling data dependencies which permit eliminating these approximations

in a principled manner. These models will be explained in detail in Chapter 3.

Another thing to note from Eq. (1.1) is that the interactions between labels are

modeled by the term P (x), which is seen as a prior in the Bayesian view. The main

drawback of this view is that the label interactions do not depend on the observed data

y. This prohibits one from modeling data-dependent interactions in labels that are

necessary for a variety of tasks. For example, while implementing local smoothness of

labels in image segmentation, it may be desirable to use observed data to modulate

the smoothness according to the image intensity gradients [17][13]. Further, in parts

based object detection, to model interactions among object parts, we need observed

data to enforce geometric (and possibly photometric) constraints. This is also the

case for modeling higher level interactions between objects or regions in an image.

In this thesis, we present models which allow interactions among labels based on

unrestricted use of observations as necessary. This step is crucial to develop models

that can incorporate contexts of different types within the same framework.

In related work, taking the non-probabilistic view of energy-based graphical model,

Boykov and Jolly [17] have proposed an energy form that uses observed data to model

pairwise interaction between labels. In this work, the smoothness parameter of the

Ising model was modulated by a Gaussian over the intensity difference between a
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pair of pixels. Using such contrast-sensitive interactions, they have shown interesting

results in the area of interactive image segmentation. However, their approach has

two main drawbacks. Firstly, there is no direct probabilistic interpretation of their

energy. As the authors themselves state, the choice of modulating the smoothing

parameter by using image observations is rather ’ad-hoc’. Being non-probabilistic,

parameter learning is hard in these models. The authors tune the smoothing and

the modulation parameters by hand. Secondly, the non-probabilistic energy-based

view eliminates the possibility of computing labels that are optimal for minimizing

sitewise errors (i.e., sitewise zero-one loss function). This is due to the fact that there

is no concept of marginals in energy-based view, which are required for minimizing

the sitewise errors.

Recently, Blake et al. [13] have given a probabilistic interpretation of the contrast-

sensitive image segmentation formulation suggested by Boykov and Jolly [17]. They

have proposed to learn the observation model parameters along with the modulation

parameters using pseudo-likelihood. This alleviates one of the main problems with

the original non-probabilistic formulation of [17]. However, the parameters of the

foreground and background models are learned separately. This forces one to use

’post-hoc’ averaging schemes to estimate the modulation and the interaction param-

eters. Another problem with this approach is that the interactions among observed

data are restricted to site pairs. On the contrary, the models proposed in this the-

sis allow arbitrary interactions among data from multiple sites, potentially from the

whole image, without any added computational complexity.

Generative vs. Discriminative

Going back to the original aim of this work, we are interested in the classification

of image sites. For classification purposes, we want to estimate the posterior over

labels given the observations, i.e., P (x|y). In a generative framework, one expends

efforts to model the joint distribution p(x,y), which involves implicit modeling of

the observations via p(y|x). Usually, it is hard to model observations accurately,

and one needs to make simplifying assumptions as discussed in the previous section.

On the contrary, in a discriminative framework, one models the distribution P (x|y)

directly. As noted in [34], a potential advantage of using the discriminative approach

is that the true underlying generative model may be quite complex even though the

class posterior is simple. This means that the generative approach may spend a lot
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of resources on modeling the generative models which are not particularly relevant

to the task of inferring the class labels. Moreover, learning the class density models

may become even harder when the training data is limited [125]. A more complete

comparison between the discriminative and the generative models for the linear family

of classifiers has been presented in [125][109].

In machine learning, the use of powerful probabilistic discriminative techniques

is increasingly becoming common for data classification. Some examples of these

techniques include simple logistic and probit classifiers and more advanced kernel

classifiers such as relevance vector machine [135] and sparse classifier [38]. However,

these techniques are applicable only to independently distributed data. On the other

hand, as discussed before in this chapter, image data is usually not independently

distributed. It contains significant contextual interactions at different levels. To

incorporate these interactions using the existing graphical models, one is commonly

forced to use only generative classifiers. In this thesis, we model the class conditional,

P (x|y), directly as a Markov field as suggested by Lafferty et al. [86]. A crucial

outcome of such models is that one can now use arbitrary discriminative classifiers

even when data is not independently distributed.

Recently, there have been attempts to extend some of the popular discriminative

methods such as AdaBoost [3], perceptron learning [43], and Support Vector Machines

[5][134] to sequential labeling problems. However, one of the drawbacks of most of

these techniques is that they develop models in a non-probabilistic setting. The reason

for preferring probabilistic models is that they allow probabilistic interpretation of

the outputs: in addition to predicting the best labels, one can also compute the

posterior label probabilities. Yet another advantage of probabilistic models is that

they allow the concept of marginalization, which is necessary to obtain optimal labels

that minimize sitewise label errors. Recognizing the need of developing probabilistic

discriminative models for the structured data, Altun et al. [4] have recently extended

the use of Gaussian Processes (GP) to label sequences. The models presented in this

thesis provide one possible strategy of exploiting arbitrary discriminative classifiers

for structured data.

1.6.4 Our Approach

To summarize, the approach taken in this thesis differs from the previous efforts

toward using context in that it
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• derives context automatically from fully labeled training images instead of using

auxiliary meta-data such as date and time of the image capture,

• avoids using rigid rule-based approach by means of statistical modeling of con-

text,

• models context such that the labeling of different image components is done

simultaneously instead of assigning labels in a sequential manner to avoid ex-

cessive dependence on previous mislabelings,

• avoids making simplistic assumptions such as conditional independence of the

observed data by using discriminative models for classification instead of the

generative ones,

• allows data-dependent interactions between labels by avoiding interpreting label

interactions as priors under the Bayesian view,

• manages the exponential growth in computational complexity by leveraging

efficient inference techniques based on network flow or message passing.

1.7 Thesis Contributions

Building upon the work on modeling context using undirected graphs, this thesis

makes the following contributions:

• Introduces new probabilistic graphical models in computer vision that allow

the use of local discriminative classifiers to incorporate contextual interactions

among image components. In particular, this thesis introduces for the first time

Conditional Random Field (CRF) [86] based models in computer vision.

• Develops models to capture complex spatial dependencies in labels as well as

the observed data simultaneously in a principled manner on 2D lattices with

cycles.

• Provides fast and robust parameter learning procedures which are applicable

to even the conventional MRF models. In addition, this thesis gives an empir-

ical comparison between different learning and inference techniques indicating

coupling of learning and inference mechanisms.
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• Proposes a hierarchical field formulation to model different types of contexts

in images simultaneously within the same framework. The context may vary

from short-range interactions between pixels to long-range interactions between

objects or regions.

• Demonstrates the application of the proposed models on several challenging

computer vision tasks such as contextual object detection, semantic image seg-

mentation, texture recognition and image denoising seamlessly within a single

framework.

1.8 Thesis Outline

This thesis is organized as follows:

Causal Models

In Chapter 2, we start with a discussion on how causal models are used in computer

vision to learn spatial interactions in images. In particular, we focus on a popular tree-

structured causal model known as Multi-Scale Random Field (MSRF). This chapter

describes the formulation, parameter learning and inference in this model. At the

end, we discuss several limitations of these models that prevent their use for modeling

context at various levels in images. This leads to the exploration of noncausal models

carried out in the next chapter.

Noncausal Models

Chapter 3 presents a noncausal discriminative field model that alleviates most of

the limitations posed by the traditional MRFs. This chapter further explains the

design of clique potentials, and two different methods for learning the parameters in

these fields. This chapter lays the foundation of the formulations given in the rest

of the thesis. Finally, it demonstrates the benefits of the discriminative fields on the

applications of man-made structure detection and binary image denoising.

Despite the successes of the parameter learning procedures described in this chap-

ter, automatic learning without any hand-tuned control knob remains a challenge in

these fields. This is because exact maximum likelihood learning in these models is
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computationally intractable. So, the question arises: which approximation should we

use to find the ’best’ set of parameters? The answer to this question is explored in

the next chapter.

Approximate Parameter Learning

In Chapter 4, we present an approach for approximate maximum likelihood parameter

learning in discriminative field models, which is based on approximating true expecta-

tions with simple piecewise constant functions constructed using inference techniques.

Gradient ascent with these updates exhibits compelling limit cycle behavior which is

tied closely to the number of errors made during inference. The performance of vari-

ous approximations is evaluated with different inference techniques showing that the

learned parameters lead to good classification performance so long as the method

used for approximating the gradient is consistent with the inference mechanism.

Multiclass Discriminative Fields

The basic formulation of discriminative fields in Chapter 3 was developed for binary

image labeling examples. To deal with more complex real-world tasks, we present its

extensions to multiclass labeling problems in Chapter 5. We motivate this discussion

in the context of parts-based object detection. These fields allow simultaneous dis-

criminative modeling of the appearance of individual parts as well as the geometric

relations among them. The conventional MRF formulations cannot be used for this

purpose because they do not allow the use of data while modeling interaction between

labels, which is crucial for enforcing geometric consistencies between parts. This chap-

ter demonstrates the efficacy of this formulation through controlled experiments on

rigid and deformable synthetic toy objects.

Hierarchical Discriminative Fields

The discussion in the thesis so far concentrates on modeling interactions in images at

a pixel, a block or a patch level. Chapter 6 presents a two-layer hierarchical formula-

tion to exploit different levels of contextual information in images for robust classifi-

cation. Each layer is modeled as a discriminative field. This model encodes both the

short-range interactions (e.g., pixelwise label smoothing) as well as the long-range
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interactions (e.g., relative configurations of objects or regions) in a tractable man-

ner. The parameters of the model are learned using a sequential maximum-likelihood

approximation. The benefits of the proposed framework are demonstrated on four dif-

ferent datasets on the applications of pixelwise image labeling and contextual object

detection.

Conclusions and Future Work

We present the conclusions derived from the theoretical and experimental observations

from this thesis in Chapter 7. Then we describe several possibilities to enhance the

power of the models presented in this thesis. Finally, we wrap up the thesis with a

discussion of several open issues regarding classification problems in computer vision.
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Chapter 2

Causal Models

2.1 Introduction

Causal models are global probability distributions defined on directed graphs using

local transition probabilities. If a causal graph is acyclic1, the joint distribution over

the node variables can be written as,

P (x) =
∏

i

P (xi|pai),

where pai is the parent of node i. Causal models are usually seen as generative models

that describe how the observed data i.e., images are generated. In this chapter we

will primarily discuss hierarchical causal models, in which, nodes in the last layer of

the hierarchy represent actual labels on the image sites. Further, it is assumed that

these hierarchical models follow the Markov Property over scales. A particular form

of such models is a causal tree (Figure 2.2 (b)) in which each node has only one parent.

Causal trees contain no cycles and hence allow the use of very efficient techniques for

exact parameter learning and inference. Such trees have been used under the name

of Multi-Scale Random Field (MSRF)2 [16] or Tree-Structured Belief Networks [34]

in image segmentation and labeling. Using their work as a basis, in our preliminary

research3, we extended the causal trees to include interactions in the observed data

1The directed acyclic graphs are popularly known as Bayesian Networks.
2There is some controversy over whether a directed graph should be called a random field. In

this thesis, we will maintain the same terminology as suggested by Bouman and Shapiro [16].
3An shorter version of this work appeared in IEEE International Conference on Computer Vision

23
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Figure 2.1: A quad-tree causal generative model of an image in which each layer has
four times less nodes than the layer below. Here each node has one parent and four
children except the root node which has no parent and the leaf nodes that have no
children.

by using factored approximations [80] as described next.

2.2 Multi-Scale Random Field (MSRF)

Let y be the observed data associated with the input image, and x be the labels. In

a MSRF model, the labels over an image are generated using Markov chains defined

over coarse to fine scales. It can facilitate easy incorporation of long-range correlations

in the image. In a quad-tree representation, a pyramid is built over the input image

such that the number of nodes in each layer are reduced by four in comparison to

the layer below as shown in Figure 2.1. Since the causal graph shown in Figure 2.1 is

singly-connected, i.e., it does not have any loops, the Maximum A Posteriori (MAP)

or the Maximum Posterior Marginal (MPM) inference in this graph is noniterative

and the time complexity is linear in the number of image sites.

In this work we explored a slightly more complex model in which the MSRF is not

a tree any more. For simplicity, a 1-D representation of the overall image generative

and Pattern Recognition (CVPR ’03)[80].
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Figure 2.2: A 1-D representation of the MSRF based image generative model and its
tree approximation. Note that the last layer of observed data y in the original model
has been replaced by a multiscale feature vector layer f in the tree-approximated
model.

model is given in Figure 2.2 (a). According to the overall image generative model,

the image data y is generated from an underlying process x, where x is a MSRF.

The labels at N levels of the causal tree are denoted by x = {x1,x2, . . . ,xN} with

P (x) = P (x1,x2, . . . ,xN). Here xn is the set of labels at all the nodes in level n. It

can be noted that the observed image labels are nodes of the layer xN . In the Bayesian

framework, given image y, we are interested in finding the predictive posterior over

the labels xN , which can be written as P (xN |y) ∝ P (y|xN)P (xN ). Here P (y|xN) is

the observation (or likelihood) model and P (xN) is the prior model on the labels at

level N .

In the MSRF model, the Markov assumption over scales implies

P (xn|x1, . . . ,xn−1) = P (xn|xn−1) for n= 2, . . . , N.

Further, from the conditional independence assumption for the directed graphs,

P (xn|xn−1) =
∏

i∈Sn

P (xn
i |z

n−1
i ),

where xn
i is ith node at level n, zn−1

i is its parent at level (n − 1), and Sn is the set

containing all the nodes at level n. Note that in the proposed MSRF, the observed
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data is not conditionally independent given the class labels. It interacts with the data

at other sites for the purpose of classifying a certain site. To avoid dealing with an

intractable true joint conditional P (y|xN) in this model, we assume a factored form

of the observation model such that,

P (y|xN) ≈
∏

i∈SN

P (yi|yNi
, xN

i ), (2.1)

where Ni is the neighborhood set of site i, and yNi
= {yi′|i′ ∈ Ni}. The above

approximation is similar to the pseudo-likelihood factorization in the MRF literature

[94]. While making this approximation, we have ignored the fact that the observed

data at each site depend on the labels of the neighboring sites as well. Thus, the

overall generative model of the image can be expressed as,

P (x,y)=P (x1)
∏

i∈S

P (xi|zi)
∏

i∈SN

P (yi|yNi
, xN

i ), (2.2)

where S is the set containing all the nodes in the tree x except the root node x1. To

simplify the notation, we have denoted a generic node at any level of the tree by xi,

and its parent by zi.

We further assume the field over the data y to be homogeneous, and we approx-

imate the conditional P (yi|yNi
, xN

i ) by P (fi|xN
i ), where fi is a feature vector which

encodes the dependencies of data at site i with its neighbors. This approximation

allows us to model rich dependencies in the neighborhoods of a site directly through

arbitrary features, which may otherwise be hard to model in P (yi|yNi
, xN

i ), as argued

in [154]. In addition, such approximation becomes inevitable in the case of limited

training data.

For our application, we need a rich representation of the data for man-made struc-

ture detection, which is inherently contained over multiple scales. In this work, we

design fi as a multiscale feature vector similar to the concept of parent vector de-

fined by De Bonet [14], with the distinction that we compute features at a particular

site by varying the size of the window around it so that the dependencies on the

neighbors could be encoded explicitly. This kind of scale is also known as integration

or artificial scale in the vision literature. Using the above assumptions, we can now

approximate the overall image generative model as given in Figure 2.2 (b). Note that

the original observation layer y has been replaced by a multiscale observation layer
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f . The approximated generative model is now a causal tree and the benefits of that

model in terms of exact noniterative inference can now be reaped.

Finally, exploiting the assumption of homogeneity, the likelihood of the multiscale

feature vector was modeled using a Gaussian Mixture Model (GMM) for each class

as

P (fm|x
N
m)=

Γ∑

γ=1

P (fm|x
N
m, γ)P (γ|xN

m), (2.3)

where P (fm|x
N
m, γ) ∼ N (µγ,Σγ), µγ is the mean and Σγ is the covariance of the γth

Gaussian, and Γ is the total number of Gaussians in the GMM.

2.3 Parameter Estimation and Inference

The full image generative model has two different sets of parameters: Θp in the

prior model, and Θo in the observation model. The observation model parameters

consist of the mean vectors and the covariance matrices of the Gaussians, which

are estimated through standard maximum likelihood formulation for GMM using

Expectation Maximization (EM) [29][12]. The prior model parameter set consists

of conditional transition probabilities over different links in the tree, and the prior

probabilities over the root node. Let θikl be the transition probability for node i∈S,

defined as, θikl =P (xi = l|zi = k), with the constraint
∑

l θikl = 1, where k, l∈{0, 1}.

It simply defines the conditional distribution at ith node in the MSRF given the label

of its parent in the previous layer. The prior model parameters were learned using

the Maximum Likelihood (ML) approach [34] by maximizing the probability of the

labeled training images as,

Θ̂ML
p = arg max

Θp

M∏

m=1

P (xNm,ym|Θp,Θo),

where m indexes over the training images, and M is the total number of training

images. Assuming the observation model to be fixed, the ML estimate of Θp is

simply obtained using the labeled images xNm as,
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Θ̂ML
p = arg maxΘp

M∏

m=1

P (xNm|Θp).

This maximization is carried out using EM, where all the nodes of MSRF from root

to level (N−1) are interpreted as the hidden variables. Denoting the hidden variables

by xh = {x\xN}, in the E-step the lower bound is computed for the likelihood

function at the current estimate of the parameters Θ′
p as the following expectation:

Q(Θp,Θ
′
p) =

M∑

m=1

Exm
h
|Θ′

p

[
logP (xm

h ,x
Nm|Θp)

]
.

Computing the lower bound simply amounts to estimating the posterior probabil-

ities over each parent-child pair,

P (xm
i = l, zm

i =k|xNm,Θ′
p) =

λ(xm
i = l) θ′ikl π(zm

i =k)∑
k′ π(zm

i =k′)λ(zm
i =k′)

∏

u∈U(xm
i )

λu(z
m
i =k), (2.4)

where U(xi) is the set containing all the siblings of xi, λ(xi) is the λ-value at node

xi, π(zi) is the π-value at node zi, and λu(zi) is the λ-message sent from node u to

zi. Here, λ(.) messages are defined as,

λ(xi) =
∏

v∈V (xi)

λv(xi), (2.5)

λv(xi) =
∑

k

P (v = k|xi)λ(v), (2.6)

where V (xi) is the set containing all the children of the node xi. Similarly the π(.)

messages are defined as,

π(xi) =
∑

k

P (xi|zi = k)πxi
(zi = k), (2.7)

πxi
(zi) = γ π(zi)

∏

u∈U(xi)

λ(uz), (2.8)
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where U(xi) is the set containing all the siblings of xi, and γ is a normalizing factor

so that the values of πxi
(zi) sum to one. More detailed derivations of these terms can

be found in the seminal book on belief propagation by Pearl [113] in the context of

singly-connected causal trees.

In the M-step, the new parameter values are obtained by maximizing the bound.

The update of parameters for each link in the tree can be obtained as,

θikl =

∑M
m=1 P (xm

i = l, zm
i =k|xNm,Θ′

p)∑M
m=1

∑
l′ P (xm

i = l′, zm
i =k|xNm,Θ′

p)
. (2.9)

However, in the case of limited training data, computing a different θikl for each

link is not practical. Thus, all the θikl at each level n were forced to be the same as

suggested in [34], and denoted as θnkl. Maximizing the bound defined above, subject

to the constraint
∑

lθnkl=1 yields for level n,

θnkl =

∑M
m=1

∑
xi∈Sn P (xm

i = l, zm
i =k|xNm,Θ′

p)∑M
m=1

∑
xi∈Sn

∑
l′ P (xm

i = l′, zm
i =k|xNm,Θ′

p)
. (2.10)

The prior probabilities over the root node are simply given by the belief at that

node obtained through λ-π message passing scheme of Pearl [113].

Given a new test image y, the problem of inference is to find the optimal class la-

bels over the image sites where the optimality is evaluated with respect to a particular

cost function. The MAP and the MPM estimates of the labels can be obtained us-

ing the max-product and sum-product versions of the belief propagation respectively

[113]. For further details on the MSRF based causal models and their experimental

evaluation, we point the reader to Appendix B. Now we discuss some of the main

problems associated with these models which led us to explore newer models that

form the basis of this thesis.

2.4 Discussion

Even though the tree-structured models provide the advantage of exact parameter

learning and inference using very efficient techniques, there are several problems that

undermine their applicability to generic image analysis tasks:
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1. The main problem with the fixed tree-structured models is that they suffer from

the non-stationarity of the induced random field, leading to ’blocky’ smoothing

of the image labels [34]. This point is illustrated in Figure 2.2 (b), where in

layer xN , the first and the second node from the left have the same parents

while the third node is connected to the second through a grandparent. This

causes an imposed difference in the behavior of interactions between neighboring

nodes at different places dictated by the tree structure even though there is

no a priori reason for such a difference. This problem exists in all the tree-

structured models whether causal or noncausal. One way to solve this problem

is to dynamically adapt the tree-structure to a given input image. This idea

was explored in dynamic trees [149] but the inference over tree-structure still

remains an intractable problem.

2. When trained discriminatively, the causal models sometimes suffer from the

label bias problem which unfairly favors labels with fewer successors due to the

need of normalizing each link to be a proper transition probability [15][86]. On

the other hand, in noncausal models this problem does not arise as one needs

to define potential functions for each clique (which are not required to sum to

one) and there is a universal normalizing constant for the whole distribution

known as the partition function.

3. Crude approximations are usually required to make the data generative model

computationally tractable to partially retain its expressive power.

4. There is no natural extension of the hierarchical tree models to more generic

tasks such as object detection. In parts-based object detection problems, in-

teractions among various parts are governed by the geometric (and possibly

photometric) relationship of parts rather than some smoothing prior over them.

In addition, it is also not clear how one can model the hierarchical structure for

the irregular neighborhoods defined over random patches in the scene.

On a more philosophical side, it is not clear what the nodes in the various hidden

layers of a hierarchical causal model really represent. The actual observed image

does not have any explicit notion of label hierarchy. If it is purely a mathematical

concept, the nodes in the hidden layers need not be restricted to the same cardinality

as the actual label nodes. This opens several interesting issues about the selection of

cardinality for the nodes at each hidden layer.
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Based on the above limitations of the causal model, in this thesis we focus on

noncausal models (undirected graphs) to model different types of context in images

as discussed in the following chapters.
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Chapter 3

Noncausal Models

3.1 Introduction

Noncausal models are global probability distributions defined on undirected graphs

using local clique potentials, i.e.,

P (x) ∝
∏

c∈C

ψc(xc), (3.1)

where C is the set of all the cliques1 in the graph, and ψc(xc) are clique potentials

i.e., positive functions of clique variables xc. Noncausal graphs are more suited to

handle interactions over image lattices since usually there exists no natural causal

relationships among image components. For instance, both keyboard and mouse

mutually reinforce the chances of their occurrence in an image rather than any one

of them causing the presence of the other.

One important issue that needs to be addressed while using general noncausal

graphs is computational tractability in these models. One possible choice of making

the computations efficient is to use tree-structured noncausal models, where parame-

ter learning and inference can be done using efficient techniques since such graphs do

not contain loops. Such models have recently been explored for image segmentation

and restoration applications [61][28]. However, the tree-structured noncausal models

suffer from similar problems as the causal trees described in Section 2.4 except the

label-bias problem. So, in the following discussion we will explore models based on

1A clique is a fully connected subgraph of the original graph

33
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arbitrary undirected graphs with loops.

Markov Random Fields (MRFs) are commonly used undirected models in com-

puter vision. As discussed in Section 1.6.3, MRFs are modeled in a generative frame-

work, which requires simplifying assumptions precluding the use of arbitrarily complex

dependencies in the observed data that might be desired for the purpose of classifica-

tion. In addition, for several vision applications, e.g. object detection, the interaction

in labels is based on the observed relational data between different sites. But the

traditional MRF formulation does not allow any use of data in label interactions. In

MRF formulations of binary classification problems, the label interaction field, P (x),

is commonly assumed to be a homogeneous and isotropic MRF such as Ising model

(or Potts model for multiclass labeling problems) with only pairwise nonzero poten-

tials. If the data likelihood p(y|x) is assumed to be conditionally independent given

the labels, the posterior distribution2 over the labels can be written as,

P (x|y)=
1

Zm

exp

(
∑

i∈S

log p(si(yi)|xi)+
∑

i∈S

∑

j∈Ni

βmxixj

)
, (3.2)

where βm is the interaction parameter of the MRF, and si(yi) is the data (feature

vector) at site i. Note that even though only the label prior, P (x) was assumed to

be a MRF, the assumption of the conditional independence of the data implies that

the posterior given in Eq. (3.2) is also a MRF. This allows one to reap the benefits

of readily available tools of inference over a MRF. If the conditional independence

assumption is not used, the posterior will usually not be a MRF making the inference

difficult. As discussed in Chapter 1, the assumption of conditional independence is

usually too restrictive for many application in computer vision.

For classification purposes, we want to estimate the conditional distribution over

labels given the observations, i.e., P (x|y). As explained in section 1.6.3, in a discrim-

inative framework, one models the distribution P (x|y) directly, unlike the generative

models (e.g., conventional MRFs) where one obtains this distribution indirectly by

modeling the joint distribution p(x,y). This saves one from making simplistic as-

sumptions about the data. This view forms the core theme of the models we propose

in this thesis as discussed in the following sections.

2With a slight abuse of notation, we will use the term ’traditional MRF model’ to indicate this
posterior in the rest of the document.
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3.2 Discriminative Random Field (DRF)

In this thesis, we present Discriminative Random Fields (DRFs)3 based on the concept

of Conditional Random Field (CRF) proposed by Lafferty et al. [86] in the context

of segmentation and labeling of 1-D text sequences. The CRFs are discriminative

models that directly model the conditional distribution over labels i.e., P (x|y) as a

Markov Random Field. This approach allows one to capture arbitrary dependencies

between the observations without resorting to any model approximations. CRFs

have been shown to outperform the traditional Hidden Markov Model based labeling

of text sequences [86]. Our model further enhances the 1-D CRFs described in [86] by

proposing the use of local discriminative models to capture the class associations at

individual sites as well as the interactions among the neighboring sites on 2-D regular

as well as irregular image lattices.

We first restate in our notations the definition of CRFs as given by Lafferty et

al. [86]. Let the observed data from an input image be given by y = {yi}i∈S where

yi is the data from ith site and yi ∈ <
c. The corresponding labels at the image sites

are given by x = {xi}i∈S. In this chapter, we will be restrict ourselves to binary

classification problems, i.e. xi ∈ {−1, 1}. In Chapter 5, we will extend the framework

to multiclass labeling problems. The random variables x and y are jointly distributed,

but in a discriminative framework, a conditional model P (x|y) is constructed from

the observations and labels, and the marginal p(y) is not modeled explicitly.

Definition 1. CRF: Let G = (S,E) be a graph such that x is indexed by the ver-

tices of G. Then (x,y) is said to be a conditional random field if, when conditioned

on y, the random variables xi obey the Markov property with respect to the graph:

P (xi|y,xS−{i}) = P (xi|y,xNi
), where S − {i} is the set of all the nodes in the graph

except the node i, Ni is the set of neighbors of the node i in G, and xΩ represents the

set of labels at the nodes in set Ω.

Thus, a CRF is a random field globally conditioned on the observations y. The

condition of positivity requiring,

P (x|y) > 0 ∀ x

3An earlier version of this work appeared in International Conference on Computer Vision (ICCV
’03)[79].



36 CHAPTER 3. NONCAUSAL MODELS

has been assumed implicitly. Now, using the Hammersley-Clifford theorem [53] and

assuming only up to pairwise clique potentials to be nonzero, the conditional dis-

tribution over all the labels x given the observations y in a CRF can be written

as,

P (x|y)=
1

Z
exp

(
∑

i∈S

Ai(xi,y)+
∑

i∈S

∑

j∈Ni

Iij(xi, xj,y)

)

, (3.3)

where Z is a normalizing constant known as the partition function, and -Ai and -Iij

are the unary and pairwise potentials respectively. With a slight abuse of notations,

in the rest of this document we will call Ai the association potential and Iij the

interaction potential.

There are two main differences between the conditional model given in Eq. (3.3)

and the traditional MRF framework given in Eq. (3.2). First, in the conditional fields,

the association potential at any site is a function of all the observations y while in

MRFs (with the assumption of conditional independence of the data), the association

potential is a function of data only at that site, i,e., yi. Second, the interaction

potential for each pair of nodes in MRFs is a function of only labels, while in the

conditional models it is a function of labels as well as all the observations y. As will

be shown later, these differences play a crucial role in modeling arbitrary interactions

in both observed data and labels in natural images in a principled manner.

The DRF model we present in this thesis is a specific type of CRF defined in

Eq. (3.3), and thus inherits all its advantages over the traditional MRF as described

above. In the DRF model, we extend the specific 1-D sequential CRF form proposed

in [86]. There are two main extensions: First, the unary and pairwise potentials

in DRFs are designed using arbitrary local discriminative classifiers. This allows

one to use domain-specific discriminative classifiers for structured data rather than

restricting the potentials to a specific form. Taking a similar view, several researchers

have recently demonstrated good results using different classifiers such as probit [119],

boosting [136] and even neural network [56]. This view is consistent with one of the

key motivations behind this work in which we wanted to develop models that allow

one to leverage the power of discriminative classifiers in problems where data has

interactions rather than being independent. Second, instead of being 1-D sequential

models, the DRFs are defined over 2-D image lattices which generally induce graphs

with loops. This makes the problem of parameter learning and inference significantly
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Figure 3.1: An illustration of a typical DRF for an example task of man-made struc-
ture detection in natural images. The aim is to label each site i.e., each 16×16 image
block whether it is a man-made structure or not. The top layer represents the labels
on all the image sites. Note that each site i can potentially use features from the
whole image y unlike the traditional MRFs.

harder. To the best of our knowledge, ours is the first work that introduced CRF-

based models in computer vision for image analysis. Recently, a number of researchers

have demonstrated the utility of such models in various computer vision applications

[108][56] [136][120][147][133][119][145].

In the rest of the thesis, we assume the random field given in Eq. (3.3) to be

homogeneous i.e., the functional forms of Ai and Iij are independent of the location i.

In addition, we also assume the field to be isotropic implying that the label interac-

tions are non-directional. In other words, Iij is independent of the relative locations

of sites i and j. Thus, subsequently we will drop the subscripts and simply use the

notations A and I to denote the two potentials. Note that the assumption of isotropy

can be easily relaxed at the cost of a few additional parameters. Thus, in this thesis,

we will consider the models of the following form:

P (x|y)=
1

Z
exp

(
∑

i∈S

A(xi,y)+
∑

i∈S

∑

j∈Ni

I(xi, xj ,y)

)
. (3.4)

This form of discriminative field makes it possible to treat different applications
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from low-level image denoising to high-level contextual object detection tasks in a

single framework in a seamless fashion. Figure 3.1 illustrates a typical DRF for an

example image analysis task of man-made structure detection4. Suppose, we are given

an input image y shown in the bottom layer and we are interested in labeling each

image site (in this case a 16× 16 image block) based on whether it contains a man-

made structure or not. The top layer represents the labels x on all the image sites.

Note that each site i can potentially use features from the whole image y unlike the

traditional MRFs. In addition, DRFs allow to use image data to model interactions

between two neighboring sites i and j. In the following sections we discuss how the

unary and the pairwise potentials are designed in DRFs.

3.2.1 Association Potential

In the DRF framework, the association potential, A(xi,y), can be seen as a measure

of how likely a site i will take label xi given image y, ignoring the effects of other

sites in the image (Figure 3.2). Suppose, f (.) is a function that maps an arbitrary

patch in an image to a feature vector such that f : Yp → <l. Here Yp is the set of

all possible patches in all possible images. Let ωi(y) be an arbitrary patch in the

neighborhood of site i in image y from which we want to extract a feature vector

f (ωi(y)). Note that the neighborhood used for the patch ωi(y) need not be the same

as the label neighborhood Ni. Indeed, ωi(y) can potentially be the whole image itself.

For clarity, with slight abuse of notation, we will denote the feature vector f(ωi(y))

at each site i by f i(y). The subscript i indicates the difference just in the feature

vectors at different sites, not in the functional form of f(.). Then, A(xi,y) is modeled

using a local discriminative model that outputs the association of the site i with class

xi as,

A(xi,y) = logP ′(xi|f i(y)), (3.5)

where P ′(xi|f i(y)) is the local class conditional at site i. This form allows one to use

an arbitrary domain-specific probabilistic discriminative classifier for a given task.

This can be seen as a parallel to the traditional MRF models where one can use

arbitrary local generative classifier to model the unary potential. One possible choice

of P ′(.) can be Generalized Linear Models (GLM), which are used extensively in

4More details on this application are given in Appendix A



3.2. DISCRIMINATIVE RANDOM FIELD (DRF) 39

Figure 3.2: Given a feature vector f i(y) at site i, the association potential in DRFs
can be seen as a measure of how likely the site i will take label xi, ignoring the effects
of other sites in the image. Note that the feature vector f i(y) can be constructed by
pooling arbitrarily complex dependencies in the observed data y.

statistics to model the class posteriors given the observations [102]. In this work we

used the logistic function5 as a link in the GLM. Thus, the local class conditional can

be written as,

P ′(xi=1|f i(y))=
1

1+e−(w0+wT
1 f i

(y))
=σ(w0+w

T
1 f i(y)), (3.6)

where w = {w0,w1} are the model parameters. This form of P ′(.) will yield a

linear decision boundary in the feature space spanned by vectors f i(y). To extend

the logistic model to induce a nonlinear decision boundary, a transformed feature

vector at each site i is defined as hi(y) = [1, φ1(f i(y)), . . . , φR(f i(y))]T where φk(.)

are arbitrary nonlinear functions. These functions can be seen as kernel mapping of

the original feature vector into a high dimensional space. The first element of the

transformed vector is kept as 1 to accommodate the bias parameter w0. Further, since

xi ∈ {−1, 1}, the probability in Eq. (3.6) can be compactly expressed as,

5One can use other choices of link such as probit link.
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P ′(xi|y) = σ(xiw
Thi(y)). (3.7)

Finally, for this choice of P ′(.), the association potential can be written as,

A(xi,y) = log(σ(xiw
Thi(y))) (3.8)

This transformation ensures that the DRF is equivalent to a logistic classifier if the

interaction potential in Eq. (3.3) is set to zero. Note that the use of logistic function to

model the discriminative classifier yields A(.) that is linear in features. This is similar

to the original form of the 1-D sequential CRFs of [86] with the difference that we

use kernels to define this potential. Parallel to our work, researchers have proposed

the use of kernels in CRF-type of models [87] [134]. Moreover, while designing graph

potentials, recently other researchers have explored the use of different classifiers such

as probit classifier [119][133] which will not yield a linear form of Ai(.). Similarly,

in Boosted Random Fields (BRFs) proposed by Torralba et at. [136], the authors

design unary potential using boosting. They show good results on the application of

contextual object detection using BRFs.

Note that in Eq. (3.8), the transformed feature vector at each site i i.e., hi(y)

is a function of the whole set of observations y. This allows one to pool arbitrarily

complex dependencies in the observed data for the purpose of classification. On the

contrary, the assumption of conditional independence of the data in the traditional

MRF framework allows one to use the data only from a particular site, i.e., yi to get

the log-likelihood, which acts as the association potential as shown in Eq. (3.2).

In related work, a neural network based discriminative classifier was used by Feng

et al. [34] to model the observations in a generative tree-structured belief network

model. Since the model required generative data likelihood, the discriminative output

of the neural network was used to approximate the actual likelihood of the data in

an ad-hoc fashion. On the contrary, in the DRF model, the discriminative class

posterior is an integral part of the full conditional model in Eq. (3.4), and all the

models parameters are learned simultaneously.
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Figure 3.3: Given feature vectors ψi(y) and ψj(y) at two neighboring sites i and j
respectively, the interaction potential can be seen as a measure of how the labels at
sites i and j influence each other. Note that such interaction in labels is dependent
on the observed image data y, unlike the traditional generative MRFs.

3.2.2 Interaction Potential

In the DRF framework, the interaction potential can be seen as a measure of how the

labels at neighboring sites i and j should interact given the observed image y (Figure

3.3). To model the interaction potential, I(.), we first analyze a form commonly used

in the MRF framework. For the isotropic, homogeneous Ising model, the interaction

potential is given as I(.) = βxixj , which penalizes every dissimilar pair of labels by

the cost β [64]. This form of interaction favors piecewise constant smoothing of the

labels without considering the discontinuities in the observed data explicitly. Geman

and Geman [49] have proposed a line-process model which allows discontinuities in

the labels through piecewise continuous smoothing. Other discontinuity models have

also been proposed for adaptive smoothing [94], but all of them require the labels to

be either continuous or ordered. On the contrary, in the classification task there is no

natural ordering in the labels. Also, these discontinuity adaptive models do not use

the observed data to model the discontinuities, which may be important for several
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applications [17][13].

In contrast, in the DRF formulation, the interaction potential is a function of all

the observations y. In our preliminary work, we proposed to model I(.) in DRFs using

a data-dependent term along with the constant smoothing term of the Ising model.

In addition to modeling arbitrary pairwise relational information between sites, the

data-dependent smoothing can compensate for the errors in modeling the association

potential. To model the data-dependent smoothing term, the aim is to have similar

labels at a pair of sites for which the observed data supports such a hypothesis. In

other words, we are interested in learning a pairwise discriminative model.

Suppose, ψ(.) is a function that maps an arbitrary patch in an image to a feature

vector such that ψ : Yp → <γ . Let Ωi(y) be an arbitrary patch in the neighborhood

of site i in image y from which we want to extract a feature vector ψ(Ωi(y)). Note

that the neighborhood used for the patch Ωi(y) need not be the same as the label

neighborhood Ni. For clarity, with slight abuse of notation, we will denote the feature

vector ψ(Ωi(y)) at each site i by ψi(y). Similarly, we define a feature vector ψj(y)

for site j. Again, to emphasize, the subscripts i and j indicate the difference just

in the feature vectors at different sites, not in the functional form of ψ(.). Given

the features at two different sites, we want to learn a pairwise discriminative model

P ′′(xi =xj |ψi(y),ψj(y)) . Note that by choosing the function ψi to be different from

f i, used in Eq. (3.6), information different from f i can be used to model the relations

between pairs of sites.

Let tij be an auxiliary variable defined as

tij = xixj ,

and let µ(ψi(y),ψj(y)) be a new feature vector such that µ :<γ×<γ → <q. Denoting

this feature vector as µij(y) for simplification, we model the pairwise discriminatory

term similar to the one defined in Eq. (3.7) as,

P ′′(tij |ψi(y),ψj(y)) = σ(tijv
Tµij(y)), (3.9)

where v are the model parameters. Note that the first component of µij(y) is fixed

to be 1 to accommodate the bias parameter. Now, the interaction potential in DRFs

is modeled as a convex combination of two terms, i.e.
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I(xi, xj ,y) = β
(
Kxixj + (1−K)(2σ(tijv

Tµij(y))− 1)
)

(3.10)

where 0 ≤ K ≤ 1. The first term is a data-independent smoothing term, similar to

the Ising model. The second term is a [−1, 1] mapping of the pairwise logistic function

defined in Eq. (3.9). This mapping ensures that both terms have the same range.

Ideally, the data-dependent term will act as a discontinuity adaptive model that

will moderate smoothing when the data from two sites is ’different’. The parameter

K gives flexibility to the model by allowing the learning algorithm to adjust the

relative contributions of these two terms according to the training data. Finally, β

is the interaction coefficient that controls the degree of smoothing. Large values of

β encourage smoother solutions. Note that even though the model seems to have

some resemblance to the line process suggested in [49], K in Eq. (3.10) is a global

weighting parameter unlike the line process where a discrete parameter is introduced

for each pair of sites to facilitate discontinuities in smoothing. Anisotropy can be

easily included in the DRF model by parameterizing the interaction potentials of

different directional pairwise cliques with different sets of parameters {β,K,v}.

To summarize the roles of the two potentials in DRFs, the association poten-

tial acts as a complex nonlinear classifier for individual sites, while the interaction

potential can be seen as a data-dependent discriminative label interaction.

3.2.3 Parameter Estimation

Let θ be the set of parameters of the DRF model where θ = {w,v, β,K}. The

form of the DRF model resembles the posterior for the traditional MRF framework

given in Eq. (3.2). However, in the MRF framework, the parameters of the class

generative models, p(yi|xi) and the parameters of the prior random field on labels,

P (x) are generally assumed to be independent and are learned separately [94]. In

contrast, we make no such assumption and learn all the parameters of the DRF

model simultaneously. Nevertheless, the similarity of the forms allows for most of the

techniques used for learning the MRF parameters to be utilized for learning the DRF

parameters with a few modifications.

We take the standard maximum-likelihood approach to learn the DRF parameters,

which involves the evaluation of the partition function Z given as,
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Z =
∑

x

exp

(
∑

i

A(xi,y) +
∑

i

∑

j∈Ni

I(xi, xj ,y)

)
. (3.11)

Since there are exponential number of label configurations in the label space {x},

the evaluation of the sum over x in Z is a NP-hard problem. The brute-force compu-

tation is intractable even for a moderate size graph. In principle, one can use either

sampling techniques or resort to some approximations e.g. mean-field or pseudo-

likelihood to estimate the parameters [94]. In the first set of experiments, we used

the pseudo-likelihood formulation due to its simplicity. We will discuss some more

advanced techniques of maximum likelihood parameter learning in DRFs in Chapter

4. According to the pseudo-likelihood approach, the parameters are estimated by

maximizing the pseudo-likelihood instead of the true likelihood as,

θ̂ML ≈ arg max
θ

M∏

m=1

∏

i∈S

P (xm
i |x

m
Ni
,ym, θ), (3.12)

Subject to 0 ≤ K ≤ 1

where m indexes over the training images and M is the total number of training

images, and

P (xi|xNi
,y, θ) =

1

zi
exp{A(xi,y) +

∑

j∈Ni

I(xi, xj ,y)},

where zi =
∑

xi∈{−1,1}

exp

(
A(xi,y) +

∑

j∈Ni

I(xi, xj ,y)

)
.

The pseudo-likelihood given in Eq. (3.12) can be maximized by using line search

methods for constrained maximization with bounds [50]. Since the pseudo-likelihood

in Eq. (3.12) is not a convex function of the parameters, good initialization of the

parameters is important to avoid bad local maxima. To initialize the parameters w in

A(xi,y), we first learn these parameters using standard maximum likelihood logistic

regression assuming all the labels xm
i to be independent given the data ym for each

image m [105]. Using Eq. (3.7), the log-likelihood can be expressed as,
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L(w) =

M∑

m=1

∑

i∈S

log(σ(xm
i w

Thi(y
m))). (3.13)

The Hessian of the log-likelihood is given as,

∇2
wL(w) = −

M∑

m=1

∑

i∈S

{
σ(wThi(y

m))(1− σ(wThi(y
m)))

}
hi(y

m)hT
i (ym).

Note that the Hessian does not depend on how the data is labeled and is non-

positive definite. Hence the log-likelihood in Eq. (3.13) is convex (convex downward

or concave), and any local maximum is the global maximum. Newton’s method was

used for maximization which has been shown to be much faster than other tech-

niques for correlated features [105]. The initial estimates of the parameters v in the

data-dependent term in I(xi, xj ,y) were obtained similarly.

3.2.4 Inference

Given a new test image y, our aim is to find the optimal label configuration x over

the image sites where optimality is defined with respect to a given cost function.

Maximum A Posteriori (MAP) solution is a widely used estimate that is optimal

with respect to the zero-one cost function defined as,

C(x,x∗) = 1− δ(x− x∗), (3.14)

where x∗ is the true label configuration, and δ(x − x∗) is 1 if x = x∗, and 0 oth-

erwise. For binary classifications, the MAP estimate can be computed exactly for

an undirected graph using the max-flow/min-cut type of algorithms if the proba-

bility distribution meets certain conditions [41][51][73]. For the DRF model, exact

MAP solution can be computed if K ≥ 0.5 and β ≥ 0. However, in the context of

MRFs, the MAP solution has been shown to perform poorly for the Ising model when

the interaction parameter, β takes large values [51][42]. Our results in Section 3.3.2

corroborate this observation for the DRFs too.

An alternative to the MAP solution is the Maximum Posterior Marginal (MPM)

solution which is optimal for the sitewise zero-one cost function defined as,



46 CHAPTER 3. NONCAUSAL MODELS

C(x,x∗) =
∑

i∈S

(1− δ(xi − x
∗
i )), (3.15)

where x∗i is the true label at the ith site. The MPM computation requires marginal-

ization over a large number of variables which is generally NP-hard. One can use

either sampling procedures [42] or Belief Propagation to obtain an estimate of the

MPM solution. In our preliminary work we obtained local MAP estimates using the

algorithm Iterated Conditional Modes (ICM), proposed by Besag [11] which is equiv-

alent to zero-temperature simulated annealing. Given an initial label configuration,

ICM maximizes the local conditional probabilities iteratively, i.e.

xi ← arg max
xi

P (xi|xNi
,y). (3.16)

ICM yields local maximum of the posterior and has been shown to give reasonably

good results even when exact MAP performs poorly for large values of β [51][42]. As

described by Besag [11], ICM is guaranteed to converge if the updates are carried

out asynchronously. However, directional effects may arise due to the selection of a

fixed sequence in which the sites are updated. The spurious directional effects can

be eliminated by implementing a synchronous update procedure where all the sites

are updated in parallel. But convergence can no longer be guaranteed in this case

and small oscillations may occur. In our ICM implementation we use a partially

synchronous scheme, in which coding sets of pixels are simultaneously updated [11].

A coding sets is a set of image pixels such that each pixel in this set is a non-neighbor

of any other pixel in the set. This type of update provides a useful compromise

between the synchronous and the asynchronous schemes [11].

3.3 Man-made Structure Detection Task

We evaluated the performance of the proposed DRF model on the task of detecting

man-made structures in natural scenes. This is a difficult task because there are sig-

nificant within class variations in the appearance of data from man-made structures

(structured class). Similarly, the data from background (nonstructured class) is vir-

tually unconstrained, and there is a large overlap between these two classes. This

section focuses on the detection of man-made structures, which can be characterized
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primarily by the presence of linear structures. A detailed account of the main issues

related to this application is given in Appendix A.

The training and the test set contained 108 and 129 images respectively, each

of size 256×384 pixels, from the Corel image database. Each image was divided in

nonoverlapping 16×16 pixels blocks, and we call each such block an image site. The

ground truth was generated by hand-labeling every site in each image as a struc-

tured or nonstructured block. The whole training set contained 36, 269 blocks from

the nonstructured class, and 3, 004 blocks from the structured class. The detailed

explanation of the features we used for the structure detection application is given in

Appendix A. Here we briefly describe the features to set the notations. The intensity

gradients contained within a window (defined later) in the image are combined to

yield a histogram over gradient orientations. Each histogram count is weighted by

the gradient magnitude at that pixel. To alleviate the problem of hard binning of the

data, the histogram is smoothed using kernel smoothing. Heaved central-shift mo-

ments are computed to capture the the average spikeness of the smoothed histogram

as an indicator of the structuredness of the patch. The orientation based feature is

obtained by passing the absolute difference between the locations of the two highest

peaks of the histogram through sinusoidal nonlinearity. The absolute location of the

highest peak is also used.

For each image we compute two different type of feature vectors at each site. Using

the same notations as introduced in Section 3.2, first a single-site feature vector at

the site i, si(yi) is computed using the histogram from the data yi at that site (i.e.,

16×16 block). Obviously, this vector does not take into account the influence of the

data in the neighborhood of that site. The vector si(yi) is composed of the first three

moments and the two orientation based features described above. Next, a multiscale

feature vector at the site i, f i(y) is computed which explicitly takes into account

the dependencies in the data contained in the neighboring sites. It should be noted

that the neighborhood for the data interaction need not be the same as for the label

interaction. To compute f i(y), smoothed histograms are obtained at three different

scales, where each scale is defined as a varying window size around the site i. The

number of scales is chosen to be 3, with the scales changing in regular octaves. The

lowest scale is fixed at 16×16 pixels (i.e., the size of a single site), and the highest scale

at 64×64 pixels. The moment and orientation based features are obtained at each

scale similar to si(yi). In addition, two interscale features are also obtained using the

highest peaks from the histograms at consecutive scales. To avoid redundancy in the
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moments based features, only two moment features are used from each scale yielding

a 14 dimensional feature vector.

3.3.1 Learning

The parameters of the DRF model θ = {w,v, β,K} were learned from the training

data using the maximum pseudo-likelihood method described in Section 3.2.3. For the

association potential, a transformed feature vector hi(y) was computed at each site

i. In this work we used the quadratic transform such that the functions φk(f i(y))

include all the l components of the feature vector f i(y), their squares and all the

pairwise products yielding l+ l(l+ 1)/2 features [38]. This is equivalent to the kernel

mapping of the data using a polynomial kernel of degree two. Any linear classifier in

the transformed feature space will induce a quadratic boundary in the original feature

space. Since l is 14, the quadratic mapping gives a 119 dimensional vector at each

site. In this work, the function ψi, defined in Section 3.2.2 was chosen to be the same

as f i. The pairwise data vector µij(y) can be obtained either by passing the two

vectors ψi(y) and ψj(y) through a distance function, e.g. absolute component wise

difference, or by concatenating the two vectors. We used the concatenated vector in

the present work which yielded slightly better results. This is possibly due to wide

within class variations in the nonstructured class. For the interaction potential, first

order neighborhood (i.e., four nearest neighbors) was considered similar to the Ising

model.

First, the parameters of the logistic functions, w and v, were estimated separately

to initialize the pseudo-likelihood maximization scheme. Newton’s method was used

for logistic regression and the initial values for all the parameters were set to 0. Since

the logistic log-likelihood given in Eq. (3.13) is convex, initial values are not a concern

for the logistic regression. Approximately equal number of data points were used from

both classes. For the DRF learning, the interaction parameter β was initialized to 0,

i.e., no contextual interaction between the labels. The weighting parameter K was

initialized to 0.5 giving equal weights to both the data-independent and the data-

dependent terms in I(xi, xj,y). All the parameters θ were learned by using gradient

ascent for constrained maximization. The final values of β and K were found to be

0.77, and 0.83 respectively. The learning took 100 iterations to converge in 627 s on

a 1.5 GHz Pentium class machine.

To compare the results from the DRF model with those from the traditional MRF
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framework, we learned the MRF interaction parameter using the pseudo-likelihood

formulation. The observation parameters in the MRF were learned separately using

maximum likelihood. To model the observations, each class conditional density was

modeled as a mixture of Gaussian. The number of Gaussians in the mixture was

selected to be 5 using cross-validation. The mean vectors, full covariance matrices

and the mixing parameters were learned using the standard EM technique [12]. In

EM, all the parameters were initialized randomly over several trials to avoid bad local

minima. The parameters that performed best on the cross-validation set were chosen

to be the final parameters. For the interaction parameter, the pseudo-likelihood

learning algorithm yielded βm to be 0.68. The learning took 9.5 s to converge in 70

iterations.

3.3.2 Performance Evaluation

In this section we present a qualitative as well as a quantitative evaluation of the

proposed DRF model. First we compare the detection results on the test images

using three different methods: logistic classifier with MAP inference, and MRF and

DRF with ICM inference. The ICM algorithm was initialized from the maximum

likelihood solution for the traditional MRF and from the MAP solution of the logistic

classifier for the DRF.

Qualitative Evaluation

For an input test image given in Figure 3.4 (a), the structure detection results for the

three methods are shown in Figure 3.4. The blocks identified as structured have been

shown enclosed within an artificial boundary. It can be noted that for similar detec-

tion rates, the number of false positives have significantly reduced for the DRF based

detection. The logistic classifier does not enforce smoothness in the labels, which led

to increased isolated false positives. However, the MRF solution shows a smoothed

false positive region around the tree branches because it does not take into account

the neighborhood interaction of the data. Locally, different branches may yield fea-

tures similar to those from the man-made structures. In addition, the discriminative

association potential and the data-dependent smoothing in the interaction potential

in the DRF also affect the detection results.

The ICM algorithm converged in less than 5 iterations for both the DRF and
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(a) Input image (b) Logistic

(c) MRF (d) DRF

Figure 3.4: Structure detection results on a test example for different methods. For
similar detection rates, DRF reduces the false positives considerably.

the MRF. The average time taken in processing an image of size 256× 384 pixels in

Matlab 6.5 on a 1.5 GHz Pentium class machine was 2.42 s for the DRF, 2.33 s for

the MRF and 2.18 s for the logistic classifier. As expected, the DRF takes more time

than the MRF due to the additional computation of the data-dependent term in the

interaction potential in the DRF.

Additional comparisons of the performance of the three classifiers on two test

examples are given in Figure 3.5 and 3.6 respectively. Figure 3.5 shows the detection

of a building in poor illumination conditions. Note that the interactions among data

in larger neighborhoods beyond a single block are necessary to detect the building as

shown by better detection rate of the logistic and the DRF models over the traditional

MRF model. On the other hand, enforcing interactions among labels is necessary to

reduce isolated false positives as shown by better performance of the DRF than the
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(a) Input image (b) Logistic

(c) MRF (d) DRF

Figure 3.5: Detection of a building in poor illumination conditions in a test image.
The interactions among data in larger neighborhoods beyond a single block are nec-
essary to detect the building as shown by better detection rate of the logistic and the
DRF models over the traditional MRF model. On the other hand, enforcing interac-
tions among labels is necessary to reduce isolated false positives as shown by better
performance of the DRF than the logistic classifier.

logistic classifier. Figure 3.6 shows the detection of a man-made structure (not a

building) in a cluttered scene. The DRF model outperforms the other two models.

Some more examples from the test set comparing the detection performance of the

MRF and the DRF models are shown in Figure 3.7 and Figure 3.8. Figure 3.7 shows

the detection of structures at different scales varying from small structures to large

structures. Figure 3.8 demonstrates the power of the DRF framework on complex

textured structures, and edgy non-structures that locally yield features similar to

those from structures. The examples indicate that the data interaction is important

for both increasing the detection rate as well as reducing the false positives.



52 CHAPTER 3. NONCAUSAL MODELS

(a) Input image (b) Logistic

(c) MRF (d) DRF

Figure 3.6: Detection of a man-made structure in a cluttered scene from another test
example. The DRF outperforms the other two models.
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MRF DRF

Figure 3.7: Structure detection results from the test set at varying degree of scales
with large scale structures in the top row and small scale structures in the bottom
row. The DRF has higher detection rates and lower false positives in comparison to
the traditional MRF.



54 CHAPTER 3. NONCAUSAL MODELS

MRF DRF

Figure 3.8: Some more examples of structure detection from test set. The DRF
has higher detection rates and lower false positives in comparison to the traditional
MRF. The top image contains structure with complex texture. The bottom row shows
detection on edgy texture corresponding to clutter.
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Figure 3.9: Some typical errors made by the DRF model on the test set. Top row: The
tree trunks give very strong man-made structure type features. However, considering
the interactions among data in larger neighborhoods, it is still possible to filter most
of the false positives. Bottom left: Too small structures are hard to detect due to
fixed block size. Bottom right: The DRF has detected most of the subregions of the
structure but it fails on the grass-covered walls etc. Should these areas be labeled as
grass or man-made structure or something intermediate?

Finally, we show some typical errors made by the DRF model on the test set in

Figure 3.9. In the case of tree images, the tree trunks give very strong man-made

structure type features. However, considering the interactions among data in larger

neighborhoods in DRFs, it is still possible to filter most of the false positives. In

addition, too small structures are hard to detect. This problem may possibly be

alleviated by letting the block size be adaptive rather than being fixed at 16 × 16

pixels. Of course, the cost to pay would be in the form of added computations. We

leave the exploration of this issue for future work. Finally, there is an interesting

example in the bottom right of Figure 3.9, which raises the philosophical debate

about how we define a concept ’building’. From the vision standpoint, the DRF has

detected most of the subregions of the structure but it fails on the grass-covered walls

etc. Should these areas be labeled as grass or man-made structure or something
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intermediate? To be able to infer entities at this level, clearly one has to incorporate

knowledge beyond what is currently captured in the random field models. This is a

topic for future research.

Quantitative Evaluation

To carry out the quantitative evaluation of our work, we compared the detection

rates, and the number of false positives per image for each technique. To avoid

the confusion due to different effects in the DRF model, the first set of experiments

was conducted using the single-site features for all the three methods. Thus, no

neighborhood data interaction was used for both the logistic classifier and the DRF

i.e., f i =si. The comparative results for the three methods are given in Table 3.1 next

to ’MRF’, ’Logistic−’ and ’DRF−’. For comparison purposes, the false positive rate

of the logistic classifier was fixed to be the same as the DRF in all the experiments.

It can be noted that for similar false positives, the detection rates of the traditional

MRF and the DRF are higher than the logistic classifier due to the label interaction.

However, the higher detection rate of the DRF in comparison to the MRF indicates

the gain due to the use of discriminative models in the association and interaction

potentials in the DRF.

In the next experiment, to take advantage of the power of the DRF framework,

data interaction was allowed for both the logistic classifier as well as the DRF. Further,

to decouple the effect of the data-dependent term from the data-independent term

in the interaction potential in the DRF, the weighting parameter K was set to 0.

Thus, only data-dependent smoothing was used for the DRF. The DRF parameters

were learned for this setting (Section 3.2.3) and β was found to be 1.26. The DRF

results (’DRF(K=0)’ in Table 3.1) show significantly higher detection rate than that

from the logistic and the MRF classifiers. At the same time, the DRF reduces false

positives from the MRF by more than 48%. Finally, allowing all the components of

the DRF to act together, the detection rate further increases with a marginal increase

in false positives (’DRF’ in Table 3.1). However, observe that for the full DRF, the

learned value of K(0.83) signifies that the data-independent term dominates in the

interaction potential. This indicates that there is some redundancy in the smoothing

effects produced by the two different terms in the interaction potential. This is not

surprising because the neighboring sites usually have ’similar’ data. In Section 3.4.1

we will describe a modified form of the interaction potential that combines these two
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Table 3.1: Detection Rates (DR) and False Positives (FP) for the test set containing
129 images. FP for logistic classifier were kept to be the same as for DRF for DR
comparison. Superscript ′−′ indicates no neighborhood data interaction was used.
K = 0 indicates the absence of the data-independent term in the interaction potential
in DRF.

Method FP (per image) DR (%)

MRF 2.36 57.2
Logistic− 2.24 45.5

DRF− 2.24 60.9

Logistic 1.37 55.4
DRF (K = 0) 1.21 68.6

DRF 1.37 70.5
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Figure 3.10: Comparison of the detection rates per image for the DRF and the other
two methods for similar false positive rates. For most of the images in the test set,
DRF detection rate is higher than others.

terms without duplicating their smoothing effects.

To compare per image performance of the DRF with the traditional MRF and the

logistic classifier, scatter plots were obtained for the detection rates for each image

(Figure 3.10). Each point on these plots is an image from the test set. These plots

indicate that for a majority of the images, the DRF has higher detection rate than

the other two methods.

To analyze the performance of the MAP inference for the DRF, a MAP solution

was obtained using the min-cut algorithm. The overall detection rate was found
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Table 3.2: Results with linear classifiers (See text for more).

Method FP (per image) DR (%)

Logistic(linear) 2.04 55.0
DRF (linear) 2.04 62.3

to be 24.3% for 0.41 false positives per image. Very low detection rate along with

low false positives indicates that MAP is preferring oversmoothed solutions in the

present setting. This is because the pseudo-likelihood approximation used in this

work for learning the parameters tends to overestimate the interaction parameter β.

Our MAP results match the observations made by Greig et al. [51], and Fox and

Nicholls [42] for large values of β in MRFs. In contrast, ICM is more resilient to the

errors in parameter estimation and performs well even for large β, which is consistent

with the results of [51], [42], and Besag [11]. For MAP to perform well, a better

parameter learning procedure than using a factored approximation of the likelihood

will be helpful. In addition, one may also need to impose a prior that favors small

values of β. These observations lay the foundation for an improved parameter learning

procedure explained in Section 3.4.2.

One additional aspect of the DRF model is the use of general kernel mappings to

increase the classification accuracy. To assess the sensitivity to the choice of kernel,

we changed the quadratic functions used in the DRF experiments to compute hi(y) to

one-to-one transform such that hi(y)=[1 f i(y)]. This transform will induce a linear

decision boundary in the feature space. The DRF results with quadratic boundary

(Table 3.1) indicate higher detection rate and lower false positives in comparison

to the linear boundary (Table 3.2). This shows that with more complex decision

boundaries one may hope to do better. However, since the number of parameters

for a general kernel mapping is of the order of the number of data points, one will

need some method to induce sparseness to avoid overfitting [38]. Lafferty et al. [87]

have recently proposed a greedy method of learning the parameters that permits the

use general kernels in conditional fields. However, this method is computationally

expensive even for moderately large number of data points as in the case of image

analysis applications. Thus, a computationally efficient procedure to learn generic

kernel classification in conditional fields is still an open question.



3.4. MODIFIED DISCRIMINATIVE RANDOM FIELD 59

3.4 Modified Discriminative Random Field

As explained in the previous section, there were two main reasons that prompted

us to explore a modified form of the original DRF and a better parameter learning

procedure:

1. The form of the interaction potential given in Eq. (3.10) has redundancy in the

smoothing effects produced by the data-independent and the data-dependent

terms. Also this form makes the parameter learning a non-convex problem.

2. The pseudo-likelihood parameter learning tends to overestimate the interaction

coefficients which makes the global MAP estimates to be bad solutions.

In the following sections we discuss the main components of the original DRF formu-

lation that have been modified.6

3.4.1 Interaction potential

For a pair of sites (i, j), let µij(ψi(y),ψj(y)) be a new feature vector such that

µij :<γ × <γ → <q, where ψk : y → <γ. Denoting this feature vector as µij(y) for

simplification, the interaction potential is modeled as,

I(xi, xj ,y) = xixjv
Tµij(y), (3.17)

where v are the model parameters. Note that the first component of µij(y) is fixed

to be 1 to accommodate the bias parameter. There are two interesting properties

of the interaction potential given in Eq. (3.17). First, if the association potential

at each site and the interaction potentials of all the pairwise cliques except the pair

(i, j) are set to zero in Eq. (3.3), the DRF acts as a logistic classifier which yields

the probability of the site pair to have the same labels given the observed data. Of

course, one can generalize the form in Eq. (3.17) as,

I(xi, xj,y) = logP ′′(xi, xj|ψi(.),ψj(.)), (3.18)

similar to the association potential in Section 3.2.1 and can use arbitrary pairwise

discriminative classifier to define this term. Recently, a similar idea has been used by

6This work appeared in Advances in Neural Information Processing Systems (NIPS ’03) [81].
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other researchers [119][136]. The second property of the interaction potential form

given in Eq. (3.17) is that it generalizes the Ising model. The original Ising form

is recovered if all the components of vector v other than the bias parameter are set

to zero in Eq. (3.17). Thus, the form of interaction potential given in Eq. (3.17)

effectively combines both the terms of earlier model in Eq. (3.10). A geometric

interpretation of interaction potential is that it partitions the space induced by the

relational features µij(y) between the pairs that have the same labels and the ones

that have different labels. Hence Eq. (3.17) acts as a data-dependent discontinuity

adaptive model that will moderate smoothing when the data from the two sites is

’different’. The data-dependent smoothing can especially be useful to absorb the

errors in modeling the association potential. Anisotropy can be easily included in

the DRF model by parameterizing the interaction potentials of different directional

pairwise cliques with different sets of parameters v.

3.4.2 Parameter learning and inference

Let θ be the set of DRF parameters where θ = {w,v}. As shown in Section 3.3.2,

maximizing the pseudo-likelihood tends to overestimate the interaction parameters

causing the MAP estimates of the field to be very poor solutions. Our experiments

in Section 3.4.3 verify these observations for the interaction parameters v in modified

DRFs too. To alleviate this problem, we take a Bayesian approach to get the maxi-

mum a posteriori estimates of the parameters. Similar to the concept of weight decay

in neural learning literature, we assume a Gaussian prior over the interaction param-

eters v such that p(v|τ) = N (v; 0, τ 2I) where I is the identity matrix. Using a prior

over parameters w that leads to weight decay or shrinkage might also be beneficial

but we leave that for future exploration. The prior over parameters w is assumed to

be uniform. Thus, given M independent training images,

θ̂=arg max
θ

M∑

m=1

∑

i∈S

{
log σ(xiw

Thi(y))+
∑

j∈Ni

xixjv
Tµij(y)−log zi

}
−

1

2τ 2
vTv, (3.19)

where zi =
∑

xi∈{−1,1}

exp

{

log σ(xiw
Thi(y)) +

∑

j∈Ni

xixjv
Tµij(y)

}

.
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If τ is given, the penalized log pseudo-likelihood in Eq. (3.19) is convex with

respect to the model parameters and can be easily maximized using gradient ascent.

In related work regarding the estimation of τ , Mackay [97] has suggested the use of

type II marginal likelihood. But in the DRF formulation, integrating the parameters v

is a hard problem. Another choice is to integrate out τ by choosing a non-informative

hyperprior on τ as in [151][37]. However our experiments showed that these methods

do not yield good estimates of the parameters because of the use of pseudo-likelihood

in our framework. In the present work we choose τ by cross-validation. Alternative

ways of parameter estimation include the use of contrastive divergence [58] and saddle

point approximations resembling perceptron learning rules [23]. In chapter 4, we will

discuss several techniques to learn the approximate maximum likelihood parameters

in the discriminative fields, that require no hand-tuning of the parameters.

To test the efficacy of the penalized pseudo-likelihood procedure, we were inter-

ested in obtaining the MAP estimates of labels x given an image y. Following the

discussion in Section 3.2.4, the MAP estimates for the modified DRFs can also be

obtained using graph min-cut algorithms. However, since these algorithms do not

allow negative interaction between the sites, the data-dependent smoothing for each

clique in Eq. (3.17) is set to be vTµij(y) = max{0,vTµij(y)}, yielding an approxi-

mate MAP estimate. This is equivalent to switching the smoothing off at the image

discontinuities.

3.4.3 Man-made Structure Detection Revisited

The modified DRF model was applied to the task of detecting man-made structures

in natural scenes. The features were fixed to be the same as used in the tests with

the original DRF in Section 3.3. The penalty coefficient τ was chosen to be 0.001

for parameter learning. The detection results were obtained using graph min-cuts for

both the MRF and the DRF models.

For a quantitative evaluation, we compared the detection rates and the number of

false positives per image for the traditional MRF, the DRF and the logistic classifier.

Similar to the experimental procedure of Section 3.3.2, for the comparison of detection

rates in all the experiments, the decision threshold of the logistic classifier was fixed

such that it yields the same false positive rate as the DRF. The first set of experiments

was conducted using the single-site features for all the three methods. Thus, no
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neighborhood data interaction was used for both the logistic classifier and the DRF,

i.e. f i(y)=si(yi). The comparative results for the three methods are given in Table

3.3 under ’MRF’, ’Logistic−’ and ’DRF−’. The detection rates of the traditional

MRF and the DRF are higher than the logistic classifier due to the label interaction.

However, higher detection rate and lower false positives for the DRF in comparison to

the MRF indicate the gains due to the use of discriminative models in the association

and interaction potentials in the DRF. In the next experiment, to take advantage of

the power of the DRF framework, data interaction was allowed for both the logistic

classifier as well as the DRF (’Logistic’ and ’DRF’ in Table 3.3). The DRF detection

rate increases substantially and the false positives decrease further indicating the

importance of allowing the data interaction in addition to the label interaction.

Now we compare the results of the modified DRF formulation with those from

the original DRF. Comparing the results in table 3.1 with those in table 3.3, we find

that the original DRF (with ICM inference) gave 70.5% correct detection with 1.37

average false positive per image in comparison to 72.5% correction detection and 1.76

false positives from the modified DRF (with MAP inference). Even though the results

seem to be comparable for this application, we have achieved two main advantages

in the modified DRFs. First, in comparison to the original DRF formulation, the

modified DRF has a much simpler form of interaction potential with comparatively

better behaved parameter learning problem (a convex problem). Second, clearly the

experiments in this section reveal that the bad MAP solutions of DRFs were due to

a particular parameter learning scheme (pseudo-likelihood) we chose in our earlier

experiments. It overcomes the criticism of the original DRFs on the ground that if

the global minimum of the energy (− logP (x|y)) given by MAP is not an acceptable

solution, it probably implies that the DRFs are not appropriate for the purpose of

classification.

These results also point toward another interesting observation regarding the com-

patibility of a parameter learning procedure with the inference procedure. Local pa-

rameter learning (pseudo-likelihood) seems to be yielding acceptable, though usually

not the best, results when used with a local inference mechanism (ICM). On the other

hand, to make a global inference scheme yield good solutions, it is inevitable to use

nonlocal learning procedures. We will further elaborate on such coupling of inference

and parameter learning procedures in Chapter 4.

Finally, one common question that arises for any classifier is: how good is the

generalization capability of the classifier? In other words, how well does the classifier
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Table 3.3: Detection Rates (DR) and False Positives (FP) for the test set containing
129 images (49, 536 sites). FP for logistic classifier were kept to be the same as for
DRF for DR comparison. Superscript ′−′ indicates no neighborhood data interaction
was used.

MRF Logistic− DRF− Logistic DRF

DR (%) 58.35 47.50 61.79 60.80 72.54
FP (per image) 2.44 2.28 2.28 1.76 1.76

perform on unseen data? Our experiments with the Corel test data (which was unseen

during training) indicate good generalization performance of the DRF-based classifier

as described above. However, to further evaluate this capability of DRFs, we tested

their performance on images that were not from the Corel set. The aim of this

experiment, conducted by R. Collins at CMU, was to find man-made structures in

outdoor scenes for the navigation of a robotic boat. It is worth noting that the same

parameter setting was used in this experiment as learned from the Corel training set.

The DRF was able to detect man-made structures with high accuracy (about 90 %)

at the speed of about 5 frames (320× 240 pixels each) per second.

3.4.4 Binary Image Denoising Task

We applied the DRF formulation to another task of image denoising. The aim of

these experiments was to obtain true underlying images from their corrupted versions.

Traditionally this application has been used heavily as a testbed by the researchers

working on MRFs [10][51]. In our experiments, four base images of size 64 × 64

pixels each were used (top row in Figure 3.11). The training as well as the test sets

were created by corrupting the base images with two different types of noises. The

first noise model was a simple Gaussian noise and the second was a ’bimodal’ noise

(i.e., mixture of two Gaussians). For each noise model, 50 corrupted versions were

generated from each base image.

In this application, each pixel was considered as an image site and the feature

vector si(yi) was simply chosen to be a scalar representing the intensity at ith site.

No neighborhood data interaction was used for the DRFs in these experiments (i.e.,

f i(y) = si(yi)) to observe the gains only due to the use of discriminative models in

the association and interaction potentials. A linear discriminant was implemented
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Table 3.4: Pixelwise classification errors (%) on 150 synthetic test images. For the
Gaussian noise, MRF and DRF give similar error while for ’bimodal’ noise, DRF
performs better. Note that only label interaction (i.e. no data interaction) was used
for these tests (see text).

Noise ML Logistic MRF (PL) DRF (PL) MRF DRF

Gaussian 15.62 15.78 2.66 3.82 2.35 2.30
Bimodal 24.00 29.86 8.70 17.69 7.00 6.21

in the association potential such that hi(y) = [1,f i(y)]T . The pairwise data vector

µij(y) was obtained by taking the absolute difference of si(yi) and sj(yj). For the

traditional MRF model, a linear discriminant was implemented by modeling each

class-conditional density, p(si(yi)|xi), as a Gaussian. The learning of parameters of

a single Gaussian is a trivial convex problem. The noisy data from the left most base

image in Figure 3.11 was used for training while 150 noisy images from the rest of

the three base images were used for testing.

Three experiments were conducted for each noise model. (i) The interaction pa-

rameters for the DRF (v) as well as for the MRF (βm) were set to zero. This reduces

the DRF model to a logistic classifier and MRF to a local maximum likelihood (ML)

classifier. (ii) The parameters of the DRF, i.e. [w,v], and the MRF, i.e. βm, were

learned using pseudo-likelihood approach without any penalty, i.e. τ = ∞. (iii) Fi-

nally, the DRF parameters were learned using penalized pseudo-likelihood and the

best βm for the MRF was chosen from cross-validation. The MAP estimates of the

labels were obtained using graph-cuts for both the models.

Under the first noise model, each image pixel was corrupted with independent

Gaussian noise of standard deviation 0.3. For the DRF parameter learning, τ was

chosen to be 0.01. The pixelwise classification error for this noise model is given in the

top row of Table 3.4. Since the form of noise is the same as the likelihood model in the

MRF, MRF is expected to give good results. The DRF model does marginally better

than MRF even for this case. Note that the DRF and the MRF results are worse

when the parameters were learned without penalizing the pseudo-likelihood (shown

in Table 3.4 with suffix (PL)). The MAP inference yields oversmoothed images for

these parameters. The DRF model is affected more because all the parameters in

DRFs are learned simultaneously unlike MRFs.
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In the second noise model each pixel was corrupted with independent mixture

of Gaussian noise. For each class, a mixture of two Gaussians with equal mix-

ing weights was used yielding a ’bimodal’ class noise. The mixture model param-

eters (mean, std) for the two classes were chosen to be [(0.08, 0.03), (0.46, 0.03)], and

[(0.55, 0.02), (0.42, 0.10)] inspired by [125]. The classification results are shown in the

bottom row of Table 3.4. An interesting point to note is that DRF yields lower error

than MRF even when the logistic classifier has higher error than the ML classifier on

the test data. For a typical noisy version of the four base images, the performance of

different techniques in compared in Figure 3.11. The logistic classifier gives very poor

results because it classifies each pixel independently. It ignores the very basic theme

of underlying smoothness of natural images due to which one can hope for recovering

the true image from its noisy version. The DRF gives better performance than the

MRF model.

3.5 Summary

In this chapter, we introduced noncausal Discriminative Random Field models that

combine local discriminative classifiers for individual classification of image sites with

interaction between neighboring sites. These models allow capturing spatial depen-

dencies in labels and observed data simultaneously in a principled manner on 2D

image lattices. Two different parameter learning procedures i.e., pseudo-likelihood

and penalized pseudo-likelihood were described. The inference over these models was

carried out using min-cut and ICM. We demonstrated the advantages of these mod-

els over the traditional generative MRFs on two different tasks: man-made structure

detection in outdoor scenes and binary image denoising. The experiments suggest

some type of coupling between parameter learning and inference methods which is

explored more in the next chapter.

Several extensions are required to demonstrate the power of DRFs on other real-

world classification tasks. The first natural step is to extend the proposed binary DRF

model to accommodate multiclass classification problems. The multiclass extension

of the binary DRFs is relatively simple and will be described in Chapter 5. The

next most important challenge in the DRF framework is robust and fast learning

of the model parameters. In the next chapter, we will discuss several approximate

techniques to obtain the maximum likelihood parameter estimates in discriminative
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Figure 3.11: Results of binary image denoising task. From top, first row:original im-
ages, second row: images corrupted with ’bimodal’ noise, third row: Logistic Classifier
results, fourth row: MRF results, fifth row: DRF results.
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fields.
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Chapter 4

Approximate Parameter Learning

4.1 Introduction

In the previous chapter we introduced discriminative field models for the labeling

of image components. One of the crucial requirements to make these models ap-

plicable to a variety of real-world tasks is accurate and efficient parameter learning

in these models. For 1-D sequential CRFs proposed by Lafferty et al. [86], exact

maximum likelihood parameter learning is feasible because the induced graph does

not contain loops. This is because the loop-free graphs allow easy computation of

the partition function using Dynamic Programming. Several efficient techniques have

been proposed to learn parameters in these models, e.g., iterative scaling [86][27][9],

quasi-Newton methods [129][126], conjugate gradient [143] and gradient boosting [30].

However, when a graph contains loops, it is not feasible to compute the partition

function using Dynamic Programming. Thus, it is difficult to exactly maximize the

likelihood with respect to the parameters. Therefore, a critical issue in applying dis-

criminative fields is the design of effective parameter learning techniques that can

operate on arbitrary graphs. The objective of this chapter is to address this central

issue.

In the previous chapter we described two methods of learning the parameters in

discriminative fields: pseudo-likelihood and penalized pseudo-likelihood. As discussed

in Section 3.3 and Section 3.4.3, pseudo-likelihood tends to overestimate the field

parameters leading to poor performance with global inference such as MAP. Penalizing

the pseudo-likelihood can result in good performance but it requires ad-hoc hand-

69
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tuning of the penalizing coefficient.

In this chapter, our goal is to explore various automatic parameter learning tech-

niques in arbitrary discriminative fields 1. Here, we approximate the gradients of the

log likelihood function directly using the inference techniques. Our experimental re-

sults may be summarized by the following two observations: First, parameter learning

can be achieved by approximating the likelihood gradient using the label estimates

obtained through methods such as Maximum A Posteriori (MAP) or Maximum Pos-

terior Marginal (MPM) for the given conditional probability model. Second, good

classification performance can be achieved by any of these approximations, so long

as the method used for inference matches the method used for approximating the

gradient in the parameter learning. We note that this learning/inference coupling is

reasonable because the usual goal in classification problems is to minimize the number

of errors, which is what our gradient approximation does, even though this may not

necessarily maximize the likelihood. We also present a new experimental comparison

of several learning and inference algorithm combinations for guiding what type of

learning approximation should be adopted for a given choice of inference method.

4.2 Parameter learning approach

We take a supervised training approach to learning the parameters of the DRF model.

The data required are the observed training images and their corresponding ground-

truth labeling e.g., known segmentation. In this work we focus on the standard

maximum likelihood approach to learning the parameters.

4.2.1 Maximum likelihood parameter learning

Let θ be the set of unknown DRF parameters where θ = {w,v}. Given M i.i.d.

labeled training images, the maximum likelihood estimates of the parameters are

given by maximizing the log-likelihood l(θ) =
∑M

m=1 logP (xm|ym, θ), i.e.,

1A shorter version of this work will appear in Energy Minimization Methods in Computer Vision
and Pattern Recognition (EMMCVPR), 2005 [78].
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θ̂=argmax
θ

M∑

m=1

{
∑

i∈Sm

log σ(xm
i w

Thi(y
m))+

∑

i∈Sm

∑

j∈Ni

xm
i x

m
j v

Tµij(y
m)−logZm

}

, (4.1)

where the partition function for the mth image is,

Zm =
∑

x

exp

{
∑

i∈Sm

log σ(xiw
Thi(y

m))+
∑

i∈Sm

∑

j∈Ni

xixjv
Tµij(y

m)

}
.

Note that Zm is a function of the parameters θ and the observed data ym. For learning

the parameters using gradient ascent, the derivatives of the log-likelihood are

∂l(θ)

∂w
=

1

2

∑

m

∑

i∈Sm

(xm
i − 〈xi〉θ;ym)hi(y

m), (4.2)

∂l(θ)

∂v
=
∑

m

∑

i∈Sm

∑

j∈Ni

(xm
i x

m
j −〈xixj〉θ;ym)µij(y

m). (4.3)

Here 〈·〉θ;ym denotes expectation with P (x|ym, θ). Ignoring µij(y
m), gradient ascent

with Eq. (4.3) resembles the learning problem in Boltzmann machines [2][60], with

all the nodes being observed at the training stage and computing the expectations

can be seen as the ‘free’ phase.

Generally the expectations in Eq. (4.2) and Eq. (4.3) cannot be computed ana-

lytically due to the combinatorial size of the label space. Sampling procedures such

as Markov Chain Monte Carlo (MCMC) can be used to approximate the true ex-

pectations [65]. A practical use of MCMC requires the Markov process to converge

sufficiently fast - in polynomial time - to the equilibrium distribution. This property

known as ’rapid mixing’ does not hold in general [130]. Unfortunately, MCMC tech-

niques have two main problems: a long ‘burn-in’ period (which makes them slow)

and high variance in estimates [58]. To avoid the MCMC drawbacks, Contrastive Di-

vergence (CD) was proposed by Hinton [58] which is explained more in Section 4.3.1.

The approximation of expectations in CD inspired the different approximations we

propose in this work, as shown in Section 4.3.
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4.2.2 Coupling parameter learning and inference

The approximations, commonly used in the literature, replace the exact gradient of

Eq. (4.2) and Eq. (4.3) by J(θ) = (J1(θ),J2(θ)) where,

J1(θ) =
1

2

∑

m

∑

i∈Sm

(xm
i − fi(θ;y

m))hi(y
m), (4.4)

J2(θ) =
∑

m

∑

i∈Sm

∑

j∈Ni

(xm
i x

m
j −gij(θ;y

m))µij(y
m), (4.5)

and fi and gij are functions that approximate the true expectations in the gradi-

ent. Several approaches have been proposed that compute fi and gij using pseudo-

marginals [141][101]. In this work, we propose to directly construct fi and gij using

label estimates obtained through MAP and MPM inference at the current parameter

estimates (Section 4.3.3 and 4.3.4).

However, will the gradient ascent of the likelihood with such gradients still con-

verge? The answer is that, while the approximate gradient ascent is not strictly

convergent in general, it is weakly convergent in that it oscillates within a set of

good parameters, or converges to a good parameter with isolated large deviations, as

shown experimentally in Section 4.4. But why should the parameters learned using

a particular choice of approximating functions yield good classification performance?

Informally, if we use for parameter learning the same approximating function fi that

was used for inference (e.g. MAP label estimate), then, given input training labels

{xm
i },

N θ
E =

1

2

∑

m

∑

i∈Sm

|xm
i − fi(θ;y

m))| (4.6)

can be interpreted as the number of errors in classification. Comparing Eq. (4.6) with

Eq. (4.4) shows that the approximated gradient is directly related to the number of

errors, so long as the same approximation is used in both parameter learning and

inference. We provide more details in Section 4.6.1.
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4.3 Candidate approximations

We first explore the form of fi and gij based on Contrastive Divergence and pseudo-

marginals, and then using two approximations directly based on two different label

estimates: Maximum A Posteriori (MAP) which is optimal for 0-1 loss function, and

Maximum Posterior Marginal (MPM) which is optimal for ‘sitewise’ 0-1 loss function.

For the binary DRFs, approximate MAP estimates were obtained using the min-

cut/max-flow algorithms as explained in [81]. We use the sum-product version of loopy

Belief Propagation (BP) to obtain the MPM estimates [157]. The approximations

described in Section 4.3.2 to Section 4.3.4 are designed to match these two classes of

inference techniques.

4.3.1 Contrastive Divergence (CD)

In CD proposed by Hinton [58], only a single MCMC move is made from the cur-

rent empirical distribution of the data (P 0) leading to new distribution (P 1), thus

eliminating the need for running the chain beyond burn-in as in traditional MCMC

approaches. According to CD,

〈xi〉θ;y ≈ 〈xi〉
P 1

θ;y and 〈xixj〉θ;y ≈ 〈xixj〉
P 1

θ;y .

Even though CD is computationally simple and yields estimates with low variance,

the bias in estimates can be a problem [150], which was also verified in our experiments

in Section 4.5.

4.3.2 Pseudo-Marginal Approximation (PMA)

It is easy to see that if we had true marginal distributions Pi(xi|y, θ) at each site

i, and Pij(xi, xj|y, θ) at each pair of sites i and j ∈ Ni, we could compute exact

expectations as:

〈xi〉θ;y =
∑

xi

xiPi(xi|y, θ) and 〈xixj〉θ;y =
∑

xi,xj

xixjPij(xi, xj|y, θ).

Since computing exact marginal distributions is in general infeasible, a standard ap-

proach is to replace the actual marginals by pseudo-marginals [101]. Here, we again
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used loopy BP to get these marginals. Since loopy BP assumes a tree approximation

of the graph [157], it is expected to produce better approximations of these marginals

than mean-field, which assumes the nodes in the graph to be disconnected. McCal-

lum et al. [101] use a similar approximation, where pseudo-marginals estimated using

Tree-based Reparametrization (TRP) were used for parameter learning in Factorial

CRFs.

4.3.3 Learning with MAP inference: Saddle Point Approxi-

mation (SPA)

Here, we propose a very simple approximation inspired by CD [58], using MAP label

estimates. It is based on approximating the partition function (Z) using the Saddle

Point Approximation (SPA) [48]. According to SPA, Z is approximated such that the

summation over all the label configurations x in Z is replaced by the largest term in

the sum, which occurs at the most probable label configuration. In other words, if

x̂ = arg max
x

P (x|y, θ),

then according to SPA,

Z ≈ exp

{
∑

i∈S

log σ(x̂iw
Thi(y))+

∑

i∈S

∑

j∈Ni

x̂ix̂jv
Tµij(y)

}

.

This leads to a very simple approximation to the expectation, i.e., 〈xi〉θ;y ≈ x̂i (This

approximation would be exact if x were Gaussian.). If we further assume mean-

field type of decoupling [115], i.e., 〈xixj〉θ;y = 〈xi〉θ;y 〈xj〉θ;y, it also follows that

〈xixj〉θ;y ≈ x̂ix̂j . However, this approximation is different from that of mean-field in

[115] because here expectations, 〈xi〉θ;y are replaced by the modes of the exact field,

instead of the means of an approximated field. It is interesting to note that with

the saddle point approximation of Z, the gradient ascent updates are similar to the

perceptron-learning type updates used in [91] and [23] in nonprobabilistic settings.
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4.3.4 Learning with MPM inference: Maximum Marginal

Approximation (MMA)

This is the second approximation based on BP inference in which Maximum Poste-

rior Marginal (MPM) label estimates are used for approximating the expectations.

Following the arguments of SPA-based parameter learning in the previous section,

one can make a similar approximation of Z such that all the mass of Z is assumed

to be concentrated on the maximum marginal configuration, x̃i = arg max
xi

Pi(xi|y, θ).

The expectations in this case can be written as: 〈xi〉θ;y ≈ x̃i and 〈xixj〉θ;y ≈ x̃ix̃j .

Clearly, in the binary case, maximum marginals are just the thresholded sitewise

marginals. Thus, MMA can be interpreted as a discrete approximation of PMA. We

experimented with both MMA and SPA in order to gain a better understanding of

the consequences of discretization (see Section 4.4 and 4.6.1).

4.4 Experimental observations: parameter learn-

ing

To analyze the convergence behavior of various parameter learning procedures de-

scribed in the previous section, we learned a DRF model for a binary image denoising

application. The aim was to obtain true labels from corrupted binary images. A

binary image (leftmost image in the top row of Figure 4.2) of size 64 × 64 pixels

was corrupted by two types of noise: Gaussian noise and Bimodal (mixture of two

Gaussians) noise. For each noise model, 10 noisy images were used as the training

set for learning the parameters. The unary and pairwise features were defined as:

hi(y) = [1, Ii]
T and µij(y) = [1, |Ii − Ij |]T respectively, where Ii and Ij are the pixel

intensities at site i and site j. The details of the noise parameters for this dataset are

given in [81]. Here, the parameter vectors w and v both were two-element vectors,

i.e., w = [w0 w1], and v = [v0 v1].

In all the experiments, the parameters were initialized from random values and

updates were based on gradient ascent. The step size η was fixed to a small value

(10−5). Fig. 4.1 shows, for each approximation, plots of the approximated gradients

and the parameters at each iteration for a typical run with bimodal noise. For brevity

we show plots only for parameters w0 and w1. The other parameters behaved similarly.

The last row in Figure 4.1 shows the number of training errors (N θ
E) made at the
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(a) PMA (b) SPA-1 (c) SPA-2 (d) MMA

Figure 4.1: Plots of DRF parameter (w0) updates (top row), and the approximate
gradient (second row) for different approximations. PMA shows a converging behavior
while SPA shows oscillations which may be large-scale (SPA-1) or small-scale (SPA-2)
depending on the initialization of the parameters. MMA shows similar behavior as
SPA. Rows 3 and 4 show the analogous plots for parameter w1. The last row shows
number of errors at each parameter update. The errors are low when the gradient
magnitudes are small.
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current estimate of the parameters using the same inference technique on which a

particular gradient approximation is based.

Since the log likelihood in Eq. (4.1) is a convex function of parameters, the final

parameter values at convergence will be independent of their initialization in the true

gradient ascent. For the PMA based learning, this desirable behavior was seen (Fig.

4.1 (a)). This indicates that the beliefs from loopy BP were possibly converging to

reasonable estimates for this dataset.

For SPA and MMA based learning, an interesting behavior emerges since both

of them make discrete approximations of the true expectations. It was found that

any random initialization of the parameters in the approximate gradient ascent using

SPA or MMA yields one of the two different stereotypical patterns of limit cycle

convergence (see Section 4.6.1). For SPA, we denote these two patterns as SPA-1 and

SPA-2. In the first pattern (Figure 4.1 (b), ’SPA-1’), the approximated gradients for

all the parameters show oscillatory behavior. Initially there are large oscillations in

gradients which later settle down to a low gradient zone. The gradients remain in

this zone for a relatively long duration before showing large oscillations with changing

sign again. Note that this will not occur for the gradient ascent with true gradients if

suitably small η is chosen. One possibility of damping the oscillations is by annealing

η following a decrementing schedule for η. However such ad-hoc procedures of forcing

convergence lead to bias in the final parameters. In the oscillatory case, there are

several commonly-used heuristics for choosing the parameters when convergence is not

guaranteed, e.g., the voted perceptron used in [43] and [23]. In this work we simply

used majority vote parameter setting, i.e., the parameters for which the training error

was minimum.

In the second kind of SPA pattern (‘SPA-2’), as seen in Figure 4.1 (c), after initial

oscillations, the gradients do not show ‘periodic’ large oscillations again but maintain

microscopic oscillations within low gradient zones (not visible in the figure due to

the scale of the plots). The MMA based learning showed similar behavior as for the

SPA indicating that these behaviors are related to the discrete, piecewise constant

approximation of the actual expectations. An oscillating gradients case for MMA is

shown in Figure 4.1 (d). In Section 4.6.1 we will discuss these limit cycle behaviors

of SPA and MMA based learning procedures.

Finally, note that number of errors for all approximations is small whenever gra-

dient magnitudes are small which indicates that all the three techniques tend to
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achieve parameter values that minimize the errors for that particular inference. This

is especially interesting in the case of SPA and MMA because of the nature of the ap-

proximations. We will compare the performance of the parameter learning procedures

with different inference techniques on a separate test set in Section 4.5.

4.5 Experimental observations: inference

The aim of these experiments was to compare the performance of different parameter

learning procedures for a fixed inference procedure. For each noise model introduced

in Section 4.4, a test set of 200 noisy images was generated using 50 noisy images

each from four base images shown in top row of Figure 4.2. For comparison, we also

obtain the local MAP solution using Iterated Conditional Modes (ICM) [11] which

has been shown to be robust to incorrect parameter settings. In addition, we also

compare results with parameters learned through pseudo-likelihood (PL), which uses

a factored approximation of the partition function, Z, for tractability [81].

Figure 4.2 shows the denoising performance on four typical test images corrupted

by the ‘bimodal’ noise. The parameters were first learned using existing techniques,

i.e., pseudo-likelihood and contrastive divergence. It is clear from the figure that both

the techniques give poor results with MAP or MPM inference. The MAP inference

with the matched learning technique, i.e., SPA, yields good results as shown in Figure

4.3. The same is true for MPM inference with MMA learning.

Table 4.1: Pixelwise classification errors (%) on 10 training images (64 × 64 pix-
els each). The rows show different parameter learning procedures and the columns
show different inference techniques used for two different noise models. To interpret
this table, for each noise model, different parameter learning techniques should be
compared by fixing a column that corresponds to a fixed inference technique.

Gaussian noise Bimodal noise Learning time
Inference methods MAP MPM ICM MAP MPM ICM (Sec)

SPA 2.89 7.94 5.13 5.29 11.56 19.52 81.52
Parameter PMA 3.62 3.01 4.84 5.94 4.92 22.70 1183.13
Learning MMA 48.36 3.01 10.33 22.67 4.83 14.93 635.78
Methods PL 4.58 3.80 4.76 22.74 6.95 29.38 299.75

CD 4.40 3.39 4.58 7.32 5.62 14.62 206.93
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Original
image

Image with
bimodal noise

Independent pixel
label estimate

(Logistic)

MAP
inference with
PL learning

MPM
inference with
PL learning

MAP
inference with
CD learning

MPM
inference with
CD learning

Figure 4.2: Image denoising results on synthetic images with existing parameter learn-
ing methods (MAP: Maximum A Posteriori, MPM: Maximum Posterior Marginal,
PL: Pseudo-Likelihood, CD: Contrastive Divergence). Both PL and CD yield poor
estimates of the parameters.
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Original
image

MAP inference
with MMA

learning

MPM
inference with
SPA learning

MAP
inference with
SPA learning

MPM inference
with MMA

learning

Figure 4.3: Image denoising results on the noisy images shown in Figure 4.2 (MAP:
Maximum A Posteriori, MPM: Maximum Posterior Marginal, SPA: Saddle Point
Approximation, MMA: Maximum Marginal Approximation.) When an inference al-
gorithm is mismatched to a parameter learning method, the results are poor (rows 2
and 3). For example, oversmoothing is observed for MAP inference with MMA learn-
ing. MPM inference yields undersmoothed results with SPA learning. The results
are good whenever the parameter learning is matched with the inference procedure
(rows 4 and 5), i.e., MAP inference with SPA learning (both use min-cut) or MPM
inference with MMA learning (both use BP).
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The overall pixelwise errors on the training set and the test set are given in Table

4.1 and Table 4.2 respectively. There are three key observations: First, the MAP

inference works best with SPA parameters (both use min-cut [51]), and MPM works

best with PMA or MMA parameters (all three use BP), empirically verifying the claim

of learning/inference coupling. Second, for the MAP inference, SPA based learning

is also the most efficient approach. The SPA learning is more than 14 times faster

than the next most accurate method, PMA. Last, for the training set, MMA is able

to learn reasonable parameters for MPM inference equivalent to PMA (slightly better

on the training set and slightly worse on the test set), at almost half the training

time for PMA. Note that both PMA and MMA use BP at the learning stage and

slightly better results of PMA on the test set may be because PMA returns a single

converged estimate of the parameters while in MMA one has to heuristically pick the

best set of parameters. Better performance may be expected if a better heuristic is

used instead of picking the majority voted parameters.

Table 4.2: Pixelwise classification errors (%) on 200 test images (64×64 pixels each).
The rows show different parameter learning procedures and the columns show different
inference techniques used for two different noise models. To interpret this table, for
each noise model, different parameter learning techniques should be compared by
fixing a column that corresponds to a fixed inference technique.

Gaussian noise Bimodal noise
Inference methods MAP MPM ICM MAP MPM ICM

SPA 2.49 7.64 3.98 5.82 19.19 14.88
Parameter PMA 2.73 2.51 3.91 6.45 5.48 17.39
Learning MMA 34.34 2.96 4.11 26.53 5.70 16.00
Methods PL 3.82 3.10 3.89 17.69 7.31 22.22

CD 3.78 2.82 4.09 8.88 6.29 8.92

Inference time (Sec) 5.52 90.04 5.20 5.96 113.84 5.20

Three main observations help understand the differences between PMA and MMA.

Firstly, since MMA is simply a discretized version of PMA, MMA will remain exact

even if the pseudo-marginals converge to erroneous values, provided that the ranking

of the labels implied by the pseudo-marginals is the same as that implied by the

true marginals. This makes MMA more robust to errors in the estimate of marginals

when pseudo-marginals tend to give poor estimates of the true marginals, e.g., in the

presence of strong attractions or repulsion between nodes [108].



82 CHAPTER 4. APPROXIMATE PARAMETER LEARNING

Secondly, this discretization accelerates parameter learning since we only need to

run BP for enough iterations to stabilize the ranking of the labels, not the exact

evaluations of the pseudo-marginals. The former is a coarse (low-resolution) compu-

tation, but the latter is a fine (high-resolution) computation. Empirically we noticed

that most of the changes in the relative ranking of marginals generally occur in first

few iterations. This partly explains faster learning through MMA in comparison to

PMA as shown in Table 4.1.

Thirdly, while learning the parameters using gradient ascent, MMA gives rise to

oscillatory non-convergent behavior. Similar to SPA, this usually requires far fewer

iterations of gradient ascent, as typically the limit-cyclic behavior in MMA implies

that we can stop the gradient ascent iterations after one or two such ‘cycles’ to obtain

sufficiently accurate estimate of the parameters.

An interesting observation is that the MAP inference is very poor with MMA

parameters and the same is true for MPM inference with SPA parameters. This

further enforces the idea that learning/inference coupling is rooted in minimizing

the classification error for a learning/inference pair, rather than maximizing the true

likelihood.

As a by-product of this comparison, we find that MPM inference is more robust

to the parameters returned by other techniques than MAP which gives significantly

worse results with parameters other than SPA and PMA. In addition, the PL and

CD parameters generally give bad estimates while ICM does poor inference due to

the problem of label initialization. Another thing to note is that even though MPM

inference gives least pixelwise classification error for bimodal noise on both training

as well as test set (Table 4.1 and Table 4.2), the overall quality of results seems better

for MAP inference in comparison to the MPM inference, as seen in the last two

rows of Figure 4.2. Perhaps, this is because MPM inference finds the best labeling

corresponding to sitewise zero-one loss function in comparison to the MAP inference,

which is optimal for global zero-one loss function.
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4.6 Discussion

4.6.1 Dynamics of SPA- and MMA-based learning

What is the origin of the complex dynamics of our proposed parameter learning

methods (Figure 4.1)? In SPA and MMA we replace the expectations 〈xi〉θ;y and

〈xixj〉θ;y in the true likelihood gradient with approximations fi(θ;y) and gij(θ;y) =

fi(θ;y)fj(θ;y) obtained from MAP and MPM label estimates. These estimates are

necessarily discrete values in the set {−1,+1}, and therefore fi(θ;y) and gij(θ;y) are

piecewise constant functions of the parameter θ ∈ Θ. In other words, the discrete

label estimates induce a partition {Θk} of parameter space Θ into a disjoint union

∪kΘk where fi(θ;y) and gij(θ;y) are constant within each cell Θk. By substitution,

the approximate gradient J(θ) is also piecewise constant for the same partition {Θk}

of Θ.

As a consequence, integral curves through vector field J(θ) will be piecewise lin-

ear, with “kinks” at the boundaries between cells, say between Θk and Θk′. Our

approximate gradient ascent with its finite step size will therefore result in a sequence

of parameters along piecewise linear trajectories.

One cannot generally expect these trajectories to terminate, as that would require

J(θ) to be identically zero for all θ in some cell Θk. To understand why, consider the

double sum in Eq. (4.4) as a product 1
2
H(x − f ) of the matrix H = [hi(y

m)] with

vector x−f , where x = [xm
i ] and f = [fi(θ;y

m)]. Now, J(θ) = 0 requires that x−f

be in the nullspace of H . Because both training labels and the label estimates are

discrete, the components xm
i − fi(θ;y

m) of x − f will be one of the integers -2,0, or

+2. But the class of real matrices H which have an integer vector in their nullspace

has measure zero, and therefore the possibility that (x − f ) ∈ nullspaceH is both

unlikely and unstable. Generally, therefore, the approximate gradient ascent using

SPA or MMA will not stop.

In the simpler case of true gradient ascent, for a sufficiently small step size η, the

parameter updates converge (without stopping) in a neighborhood of a stationary

point of the gradient vector field where the gradient is zero. Why does this ascent

converge? Because this gradient vector field is smooth and thus the gradients along

the ascent become arbitrarily small near the stationary point, automatically slowing

the ascent.
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Although our approximate gradients J(θ) may become small in the vicinity of the

true maximum likelihood solution, they cannot become arbitrarily small because they

are quantized, and therefore the trajectories never slow down beyond some nonzero

lower bound. Indeed, our empirical results show a quasi-cyclical behavior of the pa-

rameter trajectories. Similar behavior, called limit cycles, is common in digital control

and signal processing, and arises from quantizing states and coefficients in continuous

dynamical systems. Such limit cycles have been observed with small oscillations after

a single initial transient or with quasi-periodic transients followed by small oscilla-

tions. The small oscillation case corresponds to a parameter trajectory passing in a

tight loop through nearby portions of abutting cells, say Θk,Θk′, and Θk′′ , which all

have small approximate gradients. But there is no guarantee that cells with small and

large approximate gradients will not be adjacent. Thus the observed “wild” transient

behavior in Figure 4.1 can arise from several adjacent cells with small approximate

gradient linked by cells with large approximate gradient: most of the time is spent in

the cells with small approximate gradient, but rapid change occurs in cells with large

gradient. To summarize, discretization can account for these limit cycle dynamics.

4.6.2 The role of classification errors in parameter learning

Given these limit cycle dynamics, how can one choose the best parameter along the

trajectory? Approximate gradients alone may be misleading, as there may be large

approximate gradients nearer to the optimal solution than some small approximate

gradients. In true gradient ascent, one may use the likelihood itself as “yard stick”

for choosing the best parameter, e.g., at the maximal likelihood observed on the

trajectory. The likelihood is also useful in diagnosing pathological dynamics from

too large a step size, e.g., if the likelihood decreased significantly. From a dynamical

systems perspective, the likelihood exists because the gradient is, by construction,

integrable.

Instead we have only approximate gradients, which may not be integrable: they

may not be the actual gradients of any function. In other words, there may be no

approximate likelihood for our approximate gradient!

To overcome this lack of an approximate likelihood, we guide our choice of parame-

ter using the number of classification errors, a widely-employed performance criterion

in parameter learning.2 But what inference algorithm should one use to measure these

2Ideally, one would like to minimize the generalization error, i.e., expected error on the test set.
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classification errors? In keeping with the coupling of parameter learning and inference

first discussed in Section 4.2.2, we compute the number of errors N θ
E at parameter

estimate θ using the inference method used in the gradient approximation Eq. (4.6),

i.e., N θ
E = (1/2)

∑
m

∑
i∈S |xi − fi(θ)| = (1/2)‖x − f‖, where ‖ · ‖ is the L1 norm.

Formally, this choice is motivated by the following simple bound.

Lemma 1. ‖J(θ)‖ ≤ cN θ
E, for some c > 0.

In other words, the number of errors provides an upper bound on the approximate

gradient. Note that matching the inference method used in both the number of errors

and the approximate gradient is required in the following proof of the lemma.

Proof. Recall that J(θ) = (J1(θ),J2(θ)). Using the form of J1(θ) in Eq. (4.4),

‖J1(θ)‖ ≤ RN θ
E , where R = max

i,m
‖hi(y

m)‖.

Now, define the pairwise error N θ
P as,

N θ
P := (1/2)

∑

m

∑

i∈S

∑

j∈Ni

|xixj − fi(θ;y
m)fj(θ;y

m)|.

Using the form of J2(θ) in Eq. (4.5) with gij(θ;y
m) = fi(θ;y

m)fj(θ;y
m), it is easy

to see that,

‖J2(θ)‖ ≤ 2QNθ
P , where Q = max

ijm
‖µij(y

m)‖.

This implies that ‖J2(θ)‖ ≤ 2QdNθ
E, sinceN θ

P ≤ dNθ
E, where d is the maximum degree

of the graph, i.e., d = maxi |Ni|. Combining these results, we have the required result,

‖J(θ)‖ = ‖J1(θ)‖+ ‖J2(θ)‖ ≤ (R+ 2Qd)N θ
E.

This bound is useful in two ways. First, if ‖J(θ)‖ is large, then N θ
E is also large

This is a combination of the training error and the complexity of the learned classifier [139]. This
is to make sure that overfitting does not occur while training. In our results shown in Table 4.1
and Table 4.2, both training as well as (independent) test data show similar trends for different
learning-inference pairs. This indicates that overfitting was not a problem in our experiments.
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as verified in the plots in Figure 4.1. Second, if at some θ, N θ
E is small, ‖J(θ)‖ will

also be small. Thus, for a suitably small step size η, the parameter change will also

be small. This would mean that one will stay in a low error zone for a long period as

seen in Figure 4.1.

Indeed, given the importance we put in the number of classification errors, one

might ask whether minimizing N θ
E itself should be used as a starting point for deriving

parameter learning algorithms. Unfortunately, since the number of errors is piecewise

constant in the parameters, its gradient is zero except on a set of measure zero. The

number of errors is therefore useless to derive a gradient-based learning algorithm as

known from the perceptron learning literature [31].

4.6.3 Related Work

The problem of learning the parameters of loopy discriminative graphs has been ad-

dressed before under different paradigms. In the non-probabilistic setting, Taskar et

al. [134] learn the model parameters by maximizing the margin. Lecun and Huang

[92] have described the sufficient conditions for the training of energy-based (unnor-

malized) graphical models. In our previous work [81], we proposed the use of penalized

pseudo-likelihood that gives reasonable estimates of the parameters. However, this

needs hand-tuning of the regularizing constant. Finally, taking the Bayesian view,

Qi et al.[118] have argued for integrating the parameters while predicting the labels

on a test input instead of using a point estimate of the parameters using maximum

likelihood. But integrating the parameters is generally a difficult task.

4.7 Summary

In this chapter we presented an approach for learning the parameters of discrimina-

tive field models that uses inference to approximate the gradients used in maximum

likelihood learning. We showed that the proposed approximations lead to a limit cycle

convergence behavior of the learning procedures. Further, the learned parameters lead

to good classification performance so long as the method used for approximating the

gradient is consistent with the inference mechanism. We also provided an experimen-

tal comparison of commonly used learning and inference techniques for discriminative

fields. For MAP inference, SPA based learning was found to be most accurate as well
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as efficient. Similarly, for MPM inference, PMA and MMA performed best. Although

we restricted ourselves to binary fields in this chapter, we have already used max-

imum marginal approximation to successfully learn more than 3000 parameters for

multiclass DRFs, described in the next chapter, applied to object detection [82]. In

the future, we would like to evaluate the performance of the proposed approximate

parameter learning procedures with conventional MRFs.
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Chapter 5

Multiclass Discriminative Fields

5.1 Introduction

So far, we have discussed the binary discriminative fields in Chapter 3, where the label

at each site was restricted to be binary. There, we showed that conditional Markov

models can provide a principled way of handling many shortcomings in the existing

MRF models. Further, we described efficient parameter learning techniques in binary

fields in Chapter 4. However, to address more complex real-world vision tasks using

the discriminative field framework, we need to extend the current framework to handle

mutliclass labelings problems.

There are several applications in computer vision that require the nodes in the

graph to take multiple class labels. For example, in semantic scene segmentation task

shown in Figure 1.4 (a), the aim it to assign each pixel into one many classes such as

sky, water, grass etc. In the case of image denoising applied to a 256 gray-level image,

each pixel may take up to 256 labels. In the part-based paradigm of object detection,

usually there are more than two characteristic parts that make the full object, and

the goal is to label each generic part in the scene as a specific part of the object or

background.

It turns out that the extension of binary DRFs to the multiclass case is relatively

straightforward. We describe the basic formulation, parameter learning and inference

in these models in the following sections. We motivate this formulation in the context

of parts-based object detection task. One interesting implication of this application

is that the topology of the induced graphs is not fixed to be the same for all images,

89
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since in object detection task, sites are not restricted to a regular 2D lattice.

5.2 Multiclass Formulation

In the parts-based paradigm of object detection, given generic parts in the image, our

aim is to label each part as a ’specific’ part of the object or as a ’background’ part.

For example, as shown in Figure 5.1 (a) in page 99, we want to detect the phone in

the image by detecting its parts. If we are given generic patches in the scene, shown

in white squares in Figure 5.1 (b), the goal is to labels each such patch as certain part

of the object or background. We will call each patch an image site. Let the observed

data from an input image be given by y = {yi}i∈S, where yi is the data from ith

site, yi ∈ <
c, and S is the set of all the image sites (i.e. parts). The corresponding

labels at the image sites are given by x = {xi}i∈S, where xi ∈ {1, . . . , C} and C is

the number of classes. By convention, the first (C − 1) labels correspond to specific

object parts and the Cth label corresponds to the background class.

We start this formulation by first restating the form of full conditional distribution

in discriminative fields described in Chapter 3. We consider only up to pairwise cliques

in the graph. Thus, the distribution over the labels x given the observations y can

be written as,

p(x|y)=
1

Z
exp

(
∑

i∈S

A(xi,y)+
∑

i∈S

∑

j∈Ni

I(xi, xj ,y)

)

. (5.1)

First we look at the modeling of the association potential. Following the form

of the association potential for binary DRFs given in Eq. (3.8) and the associated

arguments of Section 3.2.1, the association potential can be easily generalized to the

multiclass case as,

A(xi,y) =

C∑

k=1

δ(xi = k) logP ′(xi = k|y), (5.2)

where δ(xi = k) is 1 if xi = k and 0 otherwise. Let f i(y) be a feature vector at

each site i. To extend the local discriminative classifier to induce a nonlinear decision

boundary in the feature space, a transformed feature vector at each site i is defined as,

hi(y) = [1, φ1(f i(y)), . . . , φR(f i(y))]T where φr(.) are arbitrary nonlinear functions.
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The first element of the transformed vector is kept at 1 to accommodate the bias

parameter. Note that, in the case of object detection, the vector hi(y) encodes the

appearance based features of the ith site (or part). To model P ′(xi = k|y), in this

work we will simply use the multiclass version of the logistic form we chose for the

binary DRFs as described in Chapter 3 (Section 3.2.1). This leads to the softmax

function in the multiclass case where,

P ′(xi = k|y) =






exp(wT
khi(y))

1+
PC−1

l=1 exp(wT
l
hi(y))

if k < C

1

1+
PC−1

l=1 exp(wT
l
hi(y))

if k = C.

(5.3)

Here, wk are the model parameters for k = 1 . . . C−1. For a C class classification

problem, one needs only C − 1 independent hyperplanes, which may lie in a high

dimensional (kernel-projected) space inducing a non-linear decision boundary in the

original feature space. Note that this choice of P ′(xi = k|y) leads to the unary

potential which is linear in features similar to the CRFs given in [86] with a subtle

difference that the parameters wk, for k = C, are set to 0. Also, the form in Eq. (5.3)

uses kernel functions to design the unary potential unlike the original CRFs in [86].

Note that other domain-specific choices of P (xi = k|y) are also possible as recently

explored in [119]. In the application of object detection, the association potential

discriminatively models the individual appearance of each part in the image.

The interaction potential in DRFs predicts how the labels at two sites interact

given the observations. Generalizing the interaction potential given for binary DRFs

in Chapter 3 (Section 3.2.2 ), interaction potential for multiclass DRFs can be written

as,

I(xi, xj ,y) =

C∑

k=1

C∑

l=1

vT
klµij(y)δ(xi = k)δ(xj = l). (5.4)

Here, µij(y) is the pairwise relational vector for a site pair (i, j), and vkl are

the model parameters. Note that in the case of object detection, the vector µij(y)

encodes the pairwise features required for forcing geometric and possibly photometric

consistency in the pair of parts. For undirected graphs, the site pairs are unordered

sets implying that vkl = vlk for k, l = 1 . . . C. The from of interaction potential given

in Eq. (5.4) is a generalization of the Potts model used commonly in computer vision
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problems such as image segmentation and restoration [94]. The standard Potts model

can be recovered from Eq. (5.4) if vkl = 0 when k 6= l, and all the elements of the

vector vkl are set to zero except the bias term. A more specific but popular form

of Potts model is achieved if the bias terms for all the vectors vkk ∀ k are also fixed

to be the same. Similar to the interaction potential of the binary DRF, multiclass

interaction potential can be seen as a pairwise discriminative model which partitions

the pairwise relational feature space (induced by the features µij(y)) in C(C + 1)/2

regions.

It is important to note that, to enforce the geometric consistency relationship

between parts, the interaction between part labels has to use observed data (e.g.

the location of patches). Since, in discriminative fields, the pairwise potential I is

a function of observed data, these fields provide a principled way to represent re-

lations between parts by using a random-field framework. In contrast, in the con-

ventional generative MRFs, the conditional distribution over labels is modeled as

P (x|y) ∝ p(x,y) = p(y|x)P (x), where P (x) is used for modeling the label interac-

tion. Since P (x) does not allow the use of data y while modeling label interactions,

conventional forms of MRFs cannot model the geometric consistency simultaneously

with appearance. In the following sections we describe how one can learn the param-

eters and do inference in multiclass DRFs.

5.3 Parameter Learning

Similar to the binary case, here also we resort to maximum likelihood parameter

learning. Let θ be the set of DRF parameters where θ = {{wk}k=1...C−1, {vkl}k,l=1...C}.

Given M i.i.d. labeled training images, the maximum likelihood estimates of the

parameters are given by maximizing the log-likelihood,

l(θ) =

M∑

m=1

logP (xm|ym, θ).

To extend the parameter learning for multiclass DRFs, i.e. xi ∈ {1, . . . C}, the

derivatives of the association and the interaction potentials are given as,

∂A(xm
i ,y

m)

∂wk

= {δ(xm
i = k)− P ′(xi = k|ym)}hi(y

m),
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∂I(xm
i , x

m
j ,y

m)

∂vkl

=
{
δ(xm

i = k)δ(xm
j = l)

}
µij(y

m).

To learn the parameters using gradient ascent, the derivative of the log-likelihood,

after some algebraic manipulations, can be written as,

∂l(θ)

∂wk
=
∑

m

∑

i∈Sm

(
δ(xm

i =k)−〈δ(xi =k)〉
)
hi(y

m), (5.5)

∂l(θ)

∂vkl
=
∑

m

∑

i∈Sm

∑

j∈Ni

(
δ(xm

i =k)δ(xm
j = l)−〈δ(xi =k)δ(xj = l)〉

)
µij(y

m), (5.6)

where 〈.〉 denotes expectation with respect to the distribution P (x|ym, θ). Generally

the expectation in (5.5) and (5.6) cannot be computed analytically even for moder-

ately sized problems due to the combinatorial number of elements in the configura-

tion space of labels x. Following the discussion in Chapter 4, the expectations can

be replaced by pseudo-marginals obtained from Belief Propagation (BP) leading to

Pseudo-Marginal Approximation (PMA). Another approach based on Saddle Point

Approximation (Section 4.3.3) is difficult to implement since the global maximum

cannot be computed using graph min-cut in the multiclass case. Recently, Boykov et

al. [18] have proposed promising algorithms, e.g., Alpha-Expansion to obtain good

approximations of the global maximum for multiclass labeling problems. We leave

further exploration of the behavior of such algorithms with SPA-based parameter

learning as a future work. However, we can use the Maximum Marginal Approxima-

tion (MMA), which uses thresholded pseudo-marginals to approximate the expecta-

tions (Section 4.3.4). MMA may be preferred in comparison to PMA, due to more

robustness to pseudo-marginals if they are poor estimates of the true marginals, and

faster computations. According to MMA, if

x̃i
m = arg max

xi

logP (xi|y
m, θ), (5.7)

then the derivatives are given by,

∂l(θ)

∂wk

=
∑

m

∑

i∈S

(
δ(xm

i =k)−δ(x̃m
i =k)

)
hi(y

m), (5.8)
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∂l(θ)

∂vkl
=
∑

m

∑

i∈S

∑

j∈Ni

(
δ(xm

i =k)δ(xm
j = l)−δ(x̃m

i =k)δ(x̃m
j = l)

)
µij(y

m). (5.9)

These approximations were used for learning several thousand parameters in the

object detection tests described in Section 5.5.

5.4 Inference

As argued in Section 4.5, using the same approximation for parameter learning and

inference tends to minimize the classification error. Since we use MMA for param-

eter learning, in this work we will focus on obtaining sitewise maximum marginal

(MPM) estimates of the labels at each node. However, for graphs containing cycles,

exact marginal estimates cannot be guaranteed using Belief Propagation (BP) [113].

The loopy version of BP has been shown to return reasonably good estimates for a

variety of problems [45]. The sum-product version of BP remains the most popular

way of computing the sitewise and pairwise marginals1. In loopy BP, messages are

passed between each node and its neighboring nodes iteratively until convergence (if

possible). The message passing updates of BP for multiclass DRFs can be given as,

Let φi(xi) = exp (A(xi,y)) and ψij(xi, xj) = exp (I(xi, xj,y)) ,

mji(xi) = α
∑

xj

φj(xj)ψij(xi, xj)
∏

k∈Nj\i

mkj(xj) (5.10)

where α is the normalizer, mji(.) is the message from node j to node i and \ is

set exclusion operator. Finally, the marginal probability (or belief) at each node is

computed as,

bi(xi) = κφi(xi)
∏

j∈Ni

mji(xi) (5.11)

The convergence of loopy BP updates is not guaranteed and oscillations may

occur [108]. Many convergent alternatives have been proposed to BP, e.g. CCCP

1One can use the max-product version of loopy Belief Propagation to find the MAP estimates.
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procedures from Yuille [158] and Belief Optimization from Welling and Teh [148].

One can extend the BP algorithm to a more generic algorithm called Generalized

Belief Propagation (GBP) by replacing the Bethe Free Energy approximation by

Kikuchi Free Energy [157]. GBP has been shown to be more accurate than BP

but it is usually slower due to the presence of bigger cliques in the approximation.

Regarding the appropriateness of BP, when pairwise potentials are either repulsive

(i.e. potentials that prefer the neighboring nodes to take different labels) or mixed

(both attractive and repulsive potentials) then BP seems to have more problems with

convergence and usually returns bad estimates [142]. Several alternatives to BP have

been proposed in the literature, e.g. Expectation Propagation (EP) [106] and Tree-

Based Reparameterization (TRP) [142][74], which yield better results than BP under

various circumstances. In this work, we primarily use BP to obtain MPM estimates

of the labels and leave the exploration of other techniques as a future work.

5.5 Object Detection Task

Object detection has been a long standing problem in computer vision. Even though

several promising approaches have been proposed in the literature, generic category-

level object detection under complex variations in appearances, object deformations

and occlusions is still a challenging problem. The proposed multiclass framework

has three key advantages: First, during classification, it probabilistically enforces the

appearance of individual parts and geometric consistency between parts simultane-

ously, thus making the classification robust to ambiguities and deformations. Second,

the part appearances as well as the relations between parts are modeled using local

discriminative models, thus avoiding the need of learning generative models which

may be hard to learn for complex data. Last, the final classification is obtained using

efficient inference over graphs carried out using existing techniques without requiring

exhaustive search in the solution space.

The main approaches to solve the object detection problem can be divided broadly

into two categories. Finding an object in the scene either by scanning a window

over the entire image (possibly at different orientations and scales), or by detecting

different parts of the object. Several detection techniques attempt to detect the

object as a ’whole’ by applying a classifier to a window scanned over the image

[124][128][140][98] [107]. Even though these approaches have been successfully applied
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to detect faces and cars etc., they tend to have problems when objects are occluded,

or when they undergo significant deformations or articulations. As will be explained

later, these issues can be handled naturally in the multiclass DRF framework without

needing any extra modeling or computational effort.

The ’parts-based’ approach to object detection is based on the idea of identifying

’characteristic’ parts of the object in the image. The parts-based techniques that first

detect the object parts purely on the basis of their appearance and then refine these

part detections using geometric reasoning [98][96][57] may yield inaccurate results if

the appearance of the parts in images is noisy or ambiguous. So, it is desirable to have

techniques that detect the parts not only on the basis of their individual appearance

but also by enforcing geometric relationship of the parts simultaneously. This can be

achieved by interpreting the part detection as a labeling problem in which labels (i.e.

parts) of the object are dependent on other labels. Thus, this problem can be viewed

as a classification problem in a random field framework. This idea forms the basis of

this work.

A number of researchers have proposed graph-based techniques to model shape

and appearance of objects simultaneously [33][24][146][35]. In [33][24], the authors

assume a tree-structured graph over the object parts and look for the best possible

match in the image. However, restricting the graph to a tree is generally not enough

to capture the structure of the object. In addition, the tree-structured object models

are unable to handle occlusions. There exist other parts-based techniques which view

the detection problem as an explicit search over the image parts [146][35][32]. A

graph is formed over the object parts which allows one to model appearance and

relations between the parts simultaneously. But the final classification is carried out

by searching the solution space which is O(NP ) problem where N is the number of

total parts in the image, and P is the number of object parts. For computational

tractability, N and P are restricted to be small (typical choice is 20 forN and 5 for P ).

On the other hand, our DRF-based approach defines a graph over the image sites and

detection task is seen as labeling individual image parts. At classification time, this

has a computational complexity of O(NP 2) which allows efficient inference even if N

is in hundreds as we will show later in experimental results. In [36], the authors have

recently suggested a modified star model to overcome the computational complexity

O(NP ) of their previous model [35]. The new model has a complexity of O(N2P ), but

it needs one of the parts in the image, called ’landmark’ part, to be always present

in the image. In fact, this model is essentially the same as the tree-structured model
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presented in [33], and it inherits all the drawbacks of that model.

The graph based techniques usually assume only a single instance of the object in

the scene [33][24][35]. To detect multiple instances of objects in the scene, either the

number of instances should be known a-priori, or a threshold needs to be applied to

the candidate scores. On the other hand, the DRF based framework allows detection

of multiple instances naturally without needing any such information. Finally, all

the graph based techniques of object detection operate exclusively in a generative

framework in which a lot of resources may be spent on modeling the generative models

for complex part appearances and part relations which are not particularly relevant to

final classification task. Moreover, learning realistic class density models may become

even harder when the training data is limited. To the best of our knowledge this work

presents the first graphical model based approach to object detection that models the

part appearances and their geometric relations in a discriminative framework. This

effect is unique to the DRF framework (in a random field setting) since DRFs allow

the use of observed data in pairwise potentials also.

5.5.1 Experiments

We conducted experiments with object detection on synthetic data to verify the ap-

plicability of our multiclass formulation of the DRFs to object detection. We took

the part-based approach to object detection in which at first some salient parts2 are

found in an input image. Then, on the basis of appearance and configuration of these

parts, the parts that belong to the object are filtered from the non-object or back-

ground parts. These experiments were constructed to validate specific properties of

the approach, such as the ability to discriminate object from background, to detect

multiple instances, robustness to occlusion, and to learn deformation models.

To extend the DRF framework to this application, each part of the object is la-

beled as a separate class while all the parts that do not belong to the object are

labeled as background class. Suppose the object has C−1 parts. Then the object

detection problem can be seen as a C class classification problem where all the back-

ground parts are assigned to the Cth class. The shape of the object, which may be

deformable, defines the statistical pairwise geometric relationship between the parts

that belong to the object. But the pairs that have either one or both the parts from

2The term part will be used in this thesis to represent a patch in the image extracted using some
generic interest point and region detector.
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the background are geometrically unconstrained. We call such pairs as ’background

pairs’. As discussed in Section 5.2, the interaction potential partitions the space of

pairs by using the hyperplanes in pairwise feature space. To separate the background

pairs from the object pairs using a single hyperplane we must have vkl = vb if k = C

or l = C or both. Further, without loss of generality vb can be set to 0, since to par-

tition a C class problem we need to learn only C − 1 independent hyperplanes. The

main advantage of the DRF framework is that it allows modeling of the appearance

of each part (through association potential) and the geometric relationship of part

pairs (through interaction potential) simultaneously in a random field setting. This

is important for developing a robust object detection framework that can allow trade

off between part appearances and their geometrical relationship in a principled man-

ner. For real-world applications, using first appearances and then enforcing geometric

constraints is usually misleading due to noise or statistical variations in images.

In the first set of experiments, the aim was to,

1. illustrate the detection framework under DRFs using a rigid object,

2. verify the performance under object occlusions, and

3. validate the capability of the framework to deal with multiple objects in the

scene.

In these experiments, the task was to detect a rigid object i.e., a phone in a

cluttered scene (Fig. 5.1 (a)). Synthetic training and test data sets were generated

by taking a mask of the phone and embedding its affine distortions in 300 random

office backgrounds. ±10% percent variation was allowed in scale and shear. For each

training image, interest points were detected using the Harris corner detector 3 and a

patch of size 25× 25 pixels around each interest point was called a part as shown in

Fig. 5.1 (b). A graph was generated using these patches as nodes as shown in Fig. 5.1

(c). All patches within a specified radius (135 pixels in this case) from a patch were

called neighbors of that patch. Note that the resulting graph is no longer a regular

grid lattice and that each node in the graph will usually have different number of

neighbors. In this work, we assumed a uniform distribution over the graph structures

which leads to ’averaging’ over all the graphs in the training images. We intend to

3One may use other more powerful interest point (and interest region) detectors that are invariant
to affine deformations of the object [96][66][104].
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(a) (b)

(c) (d)

Figure 5.1: Detection of a rigid object (phone) in a cluttered scene. (a) Input image.
(b) Patches extracted from the input image. (c) Graph joining patches with their
neighbors. (d) Detection results. Patches that are classified as object parts are
shown highlighted.

explore in the future if better distributions could be learned over the graph structure

itself.

The appearance based features used in the association potential, f i(y), were com-

puted based on the gradient orientation histograms weighted by the gradient mag-

nitude and quadratic transformations were used to compute hi(y). The pairwise

features, µij(y), were just the distances between the part centers. In the future,

some more features e.g., joint appearance may also be added. For this problem,

the number of classes, C, was fixed to 17 based on the object part-detector output

while training. The model had overall 3230 parameters which were learned success-

fully using the Maximum Marginal Approximation (MMA), which uses thresholded
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Figure 5.2: Some more examples of the phone detection with different affine trans-
formations of the object in varying backgrounds. Left: Input images along with the
extracted patches. Right: Highlighted patches that are labeled as phone parts.
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pseudo-marginal estimates obtained using BP as described in Section 5.3. The asso-

ciation parameters wk were initialized from the softmax classifier parameters, while

the interaction parameters vkl were initialized at 0. At test time, BP was used to

infer the optimal labeling of the parts. In Fig. 5.1 (d) all the parts that were labeled

as any of the object parts are shown highlighted. To generate the final object hy-

pothesis, one may use a simple postprocessing step (e.g., location based clustering)

to filter any isolated false positives. Training took about 50 iterations and two hours,

while the average time taken for inference was 1.35 sec per image on a 2GHz machine.

Some more examples of the phone detection with different affine transformations of

the object in varying backgrounds are shown in Figure 5.2.

To demonstrate the effect of occlusion, we synthetically blocked the right half of

the phone and the DRF detection results are shown in the left image in Fig. 5.3. To

verify multiple instance detection under this framework, two affine distorted versions

of the phone were embedded randomly in the scene and the corresponding detection

results are shown in the right image in Fig. 5.3. Note that no information about the

number of objects in the scene was known, and the same learned model described in

the previous paragraph was used for detection in both experiments.

Figure 5.3: Toy examples constructed to demonstrate detection with occlusion (left),
and with multiple object instances in the scene (right) using the same learned model.

In the second set of synthetic experiments, we explored the answers to two ques-

tions regarding the DRF model applied to object detection:

1. Can it learn all the deformations of a deformable object in a single model?

2. Can it automatically learn to trade off the appearance with the geometric con-
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(a) (b)

(c) (d)

Figure 5.4: Detection of a deformable object (teddy) in a synthetic scene in which the
object patches are inserted as background patches to confuse the appearance based
detection. (a) Input image. (b) Interest points extracted from input image. (c)
Graph joining patches with their neighbors. (d) Detection results. Patches that are
classified as object parts are shown highlighted. Note that DRF was able to ignore the
background patches even though their local appearances are the same as the object
patches.
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object background
object 0 4287

background 0 13136

object background
object 4258 29

background 30 13106

(a) Softmax (b) DRF

Figure 5.5: Confusion matrices for all the patches in the test set using different
techniques. The softmax classifier uses just the appearance of each patch while the
DRF model uses both appearance and the geometric configuration between patches
to classify different patches. Note that for all the affine and articulated deformations
in the object, only a single DRF was learned to account for all these variations.

straints between parts in presence of ambiguities?

For these experiments, we chose an articulated toy object shown in (Figure 5.4) in

which different joints of the object could be deformed independently. We generated

training and test sets by embedding affine transformations of different deformed ver-

sions of the object in synthetic backgrounds. To confuse the appearance, we randomly

inserted the object patches in the background (Figure 5.4 (a)). Clearly, if appearance

alone were used to classify the parts, everything would be classified as background.

This is because there are many more background patches than the object patches

in the training set and a discriminative classifier will try to reduce the classification

error by simply assigning all the object patches to the background class. However,

the geometric relationship along with the appearance should be able to restrict the

choice of parts being from the object. This is exactly what is exploited by the DRF

as shown by the result in Figure 5.4 (d). Some more results on different deforma-

tions of the object are given in Figure 5.6 and Figure 5.7. In Figure 5.5 we show the

confusion matrices displaying patchwise detection results on the test set using the

multiclass softmax classifier and the DRF model. Clearly, the softmax classifier that

uses only appearance classified all the patches as background while the DRF classifies

the background and the object patches with very high accuracy. Note that for all

the affine and articulated deformations in the object, only a single DRF was learned

to account for all these variations. The training needed about 50 iterations and less

than one hour while the testing took on an average 0.24 sec to process each image on

a 2 GHz machine.
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5.6 Summary

In this chapter, we presented an extension of binary DRFs to multiclass labeling tasks.

Further, we showed the application of these fields on parts-based object detection.

This application is particularly interesting as the graphs induced in this case can

be of arbitrary topology instead of being restricted to 2D rectangular grids. The

parameters of the field are learned using efficient maximum marginal approximations

and inference is carried out using loopy belief propagation. The proposed formulation

allows simultaneous discriminative modeling of the appearance of individual parts as

well as the geometric relations among them. The conventional Markov Random Field

(MRF) formulations cannot be used for this purpose because they do not allow the

use of data while modeling interaction between labels, which is crucial for enforcing

geometric consistencies between parts. The proposed technique can handle object

deformations, occlusions and multiple-instance detection in a single trained model

with no added computational efforts. We demonstrated the efficacy of this approach

through controlled experiments on rigid and deformable synthetic toy objects. Clearly,

the next important step is to apply this framework to the real-world detection tasks

and compare its performance with the existing techniques. This has been left as a

topic of future exploration. Scale invariance can be achieved in this framework by

choosing scale invariant unary and pairwise features, or by using the cliques of size

three or more in the model.
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Figure 5.6: Synthetic deformable object detection experiments to verify the ad-
vantages of simultaneous modeling of appearance and spatial interactions between
patches. Left column: Various deformations of the object. Right column: Corre-
sponding DRF detection results.
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Figure 5.7: Some more example deformations of the synthetic deformable object.
Left column: Various deformations of the object. Right column: Corresponding DRF
detection results.



Chapter 6

Hierarchical Discriminative Fields

6.1 Introduction

So far, we have discussed spatial interactions in natural images at pixel, block or

patch level for binary or multiclass classification problems. However, the problem of

detecting and classifying bigger regions and objects in images is a challenging task

due to ambiguities in the appearance of visual data. The use of spatial context at

a larger scale can help alleviate this problem significantly. For example, in Figure

6.1, the sky and the water subregions may locally look very similar but their relative

spatial configuration removes the ambiguity regarding their identity.

There are different levels of context one would like to use to improve classification

accuracy. For instance, for pixelwise image labeling problem, the local smoothness of

pixel labels will be a local context. On the other hand, global context will refer to

the fact that the image regions follow probable configurations e.g., sky tends to occur

above water or vegetation (Figure 6.1). We denote this type of global context by

region-region interaction. Similarly, for the problem of parts-based object detection,

local context will be the geometric relationship among parts of an object while the

relative spatial configurations of different objects will provide the global contextual

information. This type of global context is denoted by object-object interaction. As

shown in Figure 6.1, the keyboard and the mouse may be very hard to detect because

of their impoverished appearance but the relative configuration of monitor, keyboard

and mouse helps disambiguate the detection. Similarly, car detection is much easier

given the configuration of building and road (Figure 6.1). In this case, the global

107
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Figure 6.1: Example images demonstrating that scene context is important in dif-
ferent domains to achieve good classification even though the local appearance is
impoverished. From left: first and second - scene labeling (region-region interaction),
third - object-region interaction, fourth - object-object interaction.

context is provided by object-region interaction.

In the past, global context has been advocated for the problems of pixelwise image

labeling [131][56]. On the other hand, several techniques have been proposed that use

context for object detection in images [137][39][20][136][120]. All these techniques are

either specifically tuned for a certain application domain or use context only at a

specific level. In this work we present a framework that provides a unified approach

to incorporate the local as well as the global context of any of the three types in a

single model.

In [131], Singhal et al. presented an approach for labeling each region in the scene

where an input image is first processed by a number of individual material detectors

(e.g., Neural Network based sky detector). These detectors give rise to belief maps

indicating the likelihood of a region being a certain material. Based on the fusion of all

individual belief maps, the original image is segmented into regions that are supposed

to be homogeneous. This segmentation map along with the combined materials belief

map is passed to the spatial context-based belief refinement module. The refinement

process starts with a seed region (with the largest belief) and proceeds sequentially

where each time a new region is picked (depending on its belief ranking) and a label

is assigned given the labels of the previous regions. This approach has two main

problems. First, since the segmentation map is fixed, the technique will give wrong

results if the segmentation is erroneous. Second, since the region refinement takes

place in a sequential fashion, this approach will give spurious results if the previously

labeled regions were assigned wrong labels.

Markov Random Fields (MRFs) provide a sound theoretical approach to model

contextual interactions among different components simultaneously [49]. However, a
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variety of applications require image observations to model such interactions. For ex-

ample, different natural regions in a scene, or parts of an object are related through ge-

ometric constraints. Traditional MRFs do not allow the use of observed data to model

interactions between labels. The conditional fields provide a principled approach to

incorporate these data-dependent interactions. In our hierarchical approach, each

layer is modeled as a DRF. Another advantage of DRFs over the traditional MRFs

is that they use a discriminative approach for classification rather than spending the

efforts in modeling the generation of the observed data.

Based on conditional fields, He et al. [56] presented an approach for labeling image

pixels into a predefined set of class labels. The model is a product combination of

individual models, each providing labeling information about different aspects of the

image: a pixelwise discriminative classifier (Neural Network in this case) that looks

at local image statistics, regional label features that look at local label patterns,

and global label features that look at large, coarse label patterns. The classifier

is learned separately from the label features. One problem with this approach is

that the effective clique in the induced field is of the size of input image, making it

computationally intractable to do learning or inference in such model. The authors

use contrastive divergence to do approximate learning in this model, and inference

is carried out using Gibbs sampling. Another key limitation of this approach is that

it is specifically designed for pixelwise image labeling problems and it cannot handle

other applications such as contextual object detection within the same framework.

Fink and Perona suggested Mutual Boosting to incorporate contextual informa-

tion to augment object detection [39]. Also, Torralba et al. [136] have combined

boosting with CRFs to learn the graph structure and its potentials for contextual ob-

ject detection. However, neither technique provides a guiding framework for handling

different levels of context for different applications in the same model.

In computer vision, various forms of hierarchical models have been suggested under

both undirected [68][103] as well as directed [16][34] graph paradigms. However,

these models have been restricted to simple local contextual information such as

label smoothing to obtain good segmentation. They do not use any high level global

context. In addition, all the previous hierarchical models were based on MRFs. To the

best of our knowledge, this work presents the first attempt on modeling a hierarchy

of conditional fields1.

1A shorter version of this chapter will appear in IEEE International Conference on Computer
Vision (ICCV), 2005 [83].
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Figure 6.2: A simple illustration of the two-layer hierarchical field for contextual
classification. Squares and circles represent sites at the two layers. Only one node
along with its neighbors is shown for each layer for clarity. Layer 1 models short-
range interactions while layer 2 long range dependencies in images. The true labels x
are obtained from the top layer by a simple replication mapping Γ(.). Note that the
partition shown in the top layer is not necessarily a partition on the image.

6.2 Hierarchical Framework

In this work, we are interested in modeling interactions in images at two different

levels. Thus, we propose a two-layer hierarchical field model as shown in Figure 6.2.

Note that, in any of the two layers, the induced graph’s topology is not restricted to

regular 2D grid locations. In this model, each layer is a separate discriminative field.

The first layer models short range interactions among the sites such as label smooth-

ing for pixelwise labeling, or geometric consistency among parts of an object. The

second layer models the long range interactions between groups of sites correspond-

ing to different coherent regions or objects. Thus, this layer can take into account

interactions between different objects (monitor/keyboard) or regions (sky/water).

The two layers of the hierarchy are coupled with directed links. A node in layer

1 may represent a single pixel or a patch while a node in layer 2 represents a larger

homogeneous region or a whole object. Each node in the two layers is connected

to its neighbors through undirected links. In addition, each node in layer 2 is also

connected to multiple nodes in layer 1 through directed links. In the present work we

restrict each node in layer 1 to be connected to only one node in the layer above. As

noted by Hinton et al. [59], with respect to hierarchical MRFs, the use of directed

links between the two layers, instead of the undirected ones, avoids the intractability
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of dealing with a large partition function. Each layer being a discriminative field, any

node in layer 1 can potentially use arbitrary features from the whole image to compute

its bias. The top layer uses the output of layer 1 as input through the directed links.

6.2.1 Basic Formulation

Let the observed data from an input image be given by y = {yi}i∈S, where yi is the

data from ith site, yi ∈ <
c, and S is the set of all the image sites. We are interested

in finding the labels, x = {xi}i∈S, where xi ∈ L and |L| is the number of classes. For

image labeling, a site is a pixel and a class may be sky, grass etc., while for contextual

object detection, a site is a patch and a class may refer to objects e.g., keyboard or

mouse. The set of sites in layer 1 is S(1) such that S(1) = S, while that in layer 2 is

denoted by S(2). The nodes in layer 2 induce a partition over the set S(1) such that a

subset of nodes in layer 1 correspond to one node in layer 2. Formally, a partition h is

defined as h : S(1) → S(2) such that, if S
(1)
r is a subset of nodes in layer 1 corresponding

to node r ∈ S(2), then S(1) =
⋃
r

S
(1)
r and S

(1)
r ∩S

(1)
s = φ ∀ r, s ∈ S(2). Let the space of

all partitions be denoted as H. This partition should not be confused with an image

partition, since it is defined over the sites in S(1), which may not correspond to the

image pixels (e.g., in object detection, where sites are random image patches). Let the

labels on the sites in the two layers be given by x(1) ={x(1)
i }i∈S(1) and x(2) ={x(2)

r }r∈S(2),

where x
(1)
i ∈ L

(1) and x
(2)
r ∈ L(2), where L(2) = L. The nodes in layer 1 may take

pseudo-labels that are different from the final desired labels. For instance, in object

detection, a node at layer 1 may be labeled as ’a certain part’ of an object rather

than the object itself. In fact, the labels at this layer can be seen as noisy versions of

the true desired labels .

Given an image y, we are interested in obtaining the discriminative distribution

P (x|y) over the true labels. Given y, let us define a space of valid partitions, Hv, such

that ∀ h ∈ Hv, xi = x
(2)
r ∀ i ∈ S(1)

r , where r = h(i). This implies that multiple nodes

in layer 1 form a hypothesis about a single homogeneous region or an object in layer

2. An example illustrating the idea of valid partitions is given in Figure 6.3. Further,

we define a replication mapping, Γ(.) , which takes any value (discrete or continuous)

on node r and assigns it to all the nodes in S
(1)
r . Thus, given a partition h ∈ Hv,

and the corresponding labels x(2), the labels x can be obtained simply by replication.

This implies, P (x|y) ≡ P (x(2)|h,y) if h ∈ Hv . However, given an observed image

y, the constraint h ∈ Hv is too restrictive. Instead, we define a distribution, P (h|y),
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Figure 6.3: An example illustrating the idea of valid partition space,Hv. The partition
shown in the left image represents a valid partition because each region contains all
the sites (pixels in this case) from a single class. Since it is not true for the partition
shown in the right image, it is not a valid partition. Clearly, it is highly improbable
that a random partition will be a valid partition.

that prefers partitions in Hv over all possible partitions, and,

P (x|y) ∼=
∑

h∈H

P (x(2)|h,y)P (h|y)

=
∑

h∈H

∑

x(1)

P (x(2)|h,x(1))P (h|x(1))P (x(1)|y), (6.1)

where both P (x(1)|y) and P (x(2)|h,x(1)) are modeled as discriminative fields which

will be explained in Sections 6.2.2 and 6.2.3. In Eq. (6.1), computing the sum over

all the possible configurations of x(1) is a NP-hard problem. One naive way to reduce

complexity is to do inference in layer 1 until equilibrium is reached and then using

this configuration x̂(1) as input to the next layer, i.e., P (x(1)|y) = δ(x(1) − x̂(1)).

However, by doing this, one loses the power of modeling the uncertainty associ-

ated with the labels in layer 1, which was included explicitly in Eq. (6.1) through

P (x(1)|y). In principle, one can use Monte Carlo sampling or a variational approach

to approximate the sum in Eq. (6.1), but they may be computationally expensive.

In this work, instead, we wanted to examine what could be achieved by making a

very simplifying assumption, where along with the equilibrium configuration, we also

propagate the uncertainty associated with it to the next layer. We use the site-

wise maximum marginal configuration as x̂(1). Let the marginals at each site i be
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bi(x
(1)
i ) =

∑
x(1)\x

(1)
i

P (x(1)|y), and b(x(1)) = {bi(x
(1)
i )}i∈S(1). The belief set, b(x(1))

is propagated as an input to the next layer. Note that the configuration x̂(1) can be

obtained directly from b(x(1)) by taking its sitewise maximum configuration. Thus,

in the future, we will omit explicit conditioning on x̂(1). Now, we can write,

P (x|y) ≈
∑

h∈H

P (x(2)|h, b(x(1)))P (h|b(x(1))). (6.2)

Note that both terms in the summation implicitly include the transition probabil-

ities P (x
(2)
r |x̂

(1)
i ). For the first term, these are absorbed in the unary potential of

the discriminative field in layer 2 as explained in Section 6.2.3. Section 6.2.4 will

describe a simple design choice for P (h|b(x(1))). We first describe the modeling of

the discriminative field in layer 1.

6.2.2 Discriminative Field - Layer 1

The conditional distribution of the labels given the observed data, i.e., P (x(1)|y) is

directly modeled as a multiclass DRF described in Chapter 5, Eq. (5.1). According

to this, the unary potential can be written as,

A(1)(x
(1)
i ,y) =

∑

k∈L(1)

δ(x
(1)
i = k) logP ′(x

(1)
i = k|y), (6.3)

where δ(x
(1)
i =k) is 1 if x

(1)
i = k and 0 otherwise, and P ′(x

(1)
i = k|y) is an arbitrary

domain-specific discriminative classifier. This form of unary potential gives us the

desired flexibility to integrate different applications preferring different types of local

classifiers in a single framework. Let hi(y) be a feature vector (possibly in a kernel-

projected space), that encodes appearance based features for the ith site (a pixel, a

patch or an object). To model P ′(x
(1)
i = k|y), in this work we use a softmax function

as in Eq. (5.3) as,

P ′(x
(1)
i = k|y) =






exp(wT
k
hi(y))

1+
P|L(1)|−1

l=1 exp(wT
l
hi(y))

if k < |L(1)|

1

1+
P|L(1)|−1

l=1 exp(wT
l
hi(y))

if k = |L(1)|

,
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where, wk are the model parameters for k = 1 . . . |L(1)| − 1. For a |L(1)| class classifi-

cation problem, one needs only |L(1)| − 1 independent hyperplanes.

The pairwise potential predicts how the labels at any two neighboring sites should

interact given the observations. The interaction potential in defined similar to Eq.

(5.4) as,

I(1)(x
(1)
i , x

(1)
j ,y) =

∑

k,l∈L(1)

vT
klµij(y)δ(x

(1)
i = k)δ(x

(1)
j = l), (6.4)

where, µij(y) is the pairwise feature vector, and vkl are the model parameters. For

example, in the case of object detection, the vector µij(y) encodes the pairwise fea-

tures required for modeling geometric and possibly photometric consistency of a pair

of parts. On the other hand, in the pixelwise image labeling application, the sitewise

label smoothing can be achieved by forcing µij(y) to be 1.

6.2.3 Discriminative Field - Layer 2

The formulation of the discriminative field for layer 2 can be obtained in the same

way as described in the previous section by changing the observations to b(x(1)), the

set of sites to S(2), and the label set to L(2). The main difference lies in the form of

the unary potential. Each node r ∈ S(2) in this layer receives beliefs as input from

the nodes contained in set S
(1)
r from the layer below. Taking into consideration the

transition probabilities on the directed links between node r and all the nodes in S
(1)
r ,

the unary potential can be written as,

A(2)(x(2)
r , b(x(1))) =

∑

k∈L(2)

{
δ(x(2)

r = k)

(
logP ′(x(2)

r = k|b(x(1))) +
1

|S(1)
r |

∑

i∈S
(1)
r

logP (x(2)
r = k|x̂(1)

i )
)}
. (6.5)

Here, the first term in parentheses on the right hand side involves local classifier

P ′(.), which is again modeled as a softmax function. It takes features as input, which

are constructed using the beliefs b(x(1)) at layer 1. The second term arises due to the

directed connections between each node r ∈ S(2) in layer 2 to all the nodes in the set
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S
(1)
r in layer 1. The effect of this term can be understood by switching the first term

off along with the interaction potential. This will lead to the intuitive reasoning of as-

signing node r that label which maximizes the joint transition probability (computed

by assuming each site in S
(1)
r to be independent) given a label configuration, i.e., x̂(1)

at layer 1. The term, |S(1)
r | acts as a normalizer that takes into account the different

cardinalities of sets S
(1)
r . In the interaction potential for this layer, the features µij(.)

are designed such that they capture relative configurations of two regions or objects.

6.2.4 Modeling Partitioning

The distribution P (h|b(x(1))) should be designed such that it gives high weight to a

partition h ∈ Hv, given the belief set from layer 1. Since a good partition should drive

all the nodes in a set S
(1)
r to take the same true labels, the conditional distribution

over the partitions is modeled as,

P (h|b(x(1))) ∝
{ ∏

r∈S(2)

[
max

x
(2)
r ∈L(2)

∏

i∈S
(1)
r

∑

x
(1)
i ∈L(1)

(
bi(x

(1)
i )P (x(2)

r |x
(1)
i )
)]1/|S

(1)
r |}1/|S(2)|

.

(6.6)

The term in the product over i is the probability that the node r in layer 2,

connected to site i in layer 1, will take label x
(2)
r . The maximum operator ensures

that the maximum possible value of this probability is used for any x
(2)
r . Finally, the

product of these maximum probabilities for all the sites in layer 2 gives a reasonable

estimate of the homogeneity of a given partition. Here, |S(1)
r | and |S(2)| compensate

for the differences in the number of nodes in set S
(1)
r and the overall number of nodes

induced by the partition respectively.

6.3 Parameter Learning and Inference

The set of parameters Θ, to be learned in the hierarchical model, includes the param-

eters of the discriminative fields at layer 1 and layer 2, and the transition probability

matrices P (x
(2)
r |x̂

(1)
i ). The field parameters for each layer are the parameters of the

unary and pairwise potentials i.e., θ(α) =
{
w

(α)
k ,v

(α)
kl

}α=1,2

∀k,l
.

Given M i.i.d. labeled training images, the maximum likelihood estimates of the
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parameters are given by maximizing the log-likelihood L(Θ) =
∑M

m=1 logP (xm|ym,Θ),

where the conditional distribution in the sum for each image m is given by Eq. (6.1).

Since this likelihood is hard to evaluate, following the assumption made in Section

6.2.1, we use a sequential learning approach in which, first the parameters of layer

1 are estimated separately. Fixing these estimates, the parameters of the next layer

and the transition matrices are estimated by maximizing the likelihood for the con-

ditional distribution given in Eq. (6.2). Although suboptimal, the drawbacks of the

sequential approach are somewhat moderated by the fact that the partition functions

for the fields in the two layers are decoupled due to the directed connections.

Starting with parameter learning in layer 1, since the labels at this layer are not

known, we assign pseudo-labels x(1) on S using the true labels x. In the image labeling

applications, since the nodes at both the layers take the labels from the same set, one

can assume the pseudo-labels to be the same as the true labels. For object detection,

where the labels at layer 1 are part identifiers rather than being object identifiers,

one possible way to generate the pseudo-labels will be to use soft clustering on the

object parts and assign a part label to each node as in [82]. It is clear that the labels

generated in this way are going to be noisy. That is where the hierarchical model

becomes more relevant, where the top layer refines the label estimates from the layer

below and the directed connections incorporate the transition probabilities from the

noisy labels to the true labels.

To learn the parameters of the discriminative field in layer 1 using gradient ascent,

the derivative of the log-likelihood from the distribution P (x(1)|y, θ(1)) can be written

as,

∂l(θ(1))

∂w
(1)
k

=
∑

m

∑

i∈S(1)

(
δ(x

(1)m
i = k)−

〈
δ(x

(1)
i = k)

〉)
hi(y

m), (6.7)

∂l(θ(1))

∂v
(1)
kl

=
∑

m

∑

i∈S(1)

∑

j∈Ni

(
δ(x

(1)m
i = k)δ(x

(1)m
j = l)

−
〈
δ(x

(1)
i = k)δ(x

(1)
j = l)

〉)
µij(y

m), (6.8)

where 〈.〉 denotes expectation with respect to the distribution P (x(1)|ym, θ(1)). Gen-

erally the expectation in Eq. (6.7) and Eq. (6.8) cannot be computed exactly due to

the exponential number of configurations of x(1). In this work, for layer 1, we esti-
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mate expectations using the pseudo-marginals returned by loopy Belief Propagation

(BP) [45] as done in the PMA approximation described in Chapter 4. However, as

will be discussed in Section 6.4.1, we found that for layer 2, the Maximum Marginal

Approximation (MMA) yields better performance, where thresholded beliefs are used

to estimate the required expectations (Section 4.3.4).

The transition probability matrices were assumed to be the same for all the di-

rected links in the graph to avoid overfitting. The entries in this matrix were estimated

using the normalized expected counts of transition from x̂
(1)
i to x

(2)
r , which are known

at the training time. Note that the counts are computed using the refined label

estimates x̂
(1)
i obtained directly from b(x(1)).

Given b(x(1)) and P (x
(2)
r |x̂

(1)
i ), the field parameters of layer 2 i.e., θ(2) were ob-

tained by maximizing the lower bound on the log likelihood of Eq. (6.2),

l′(θ(2)) ≥
∑

m

∑

h

P (h|b(x(1)m)) logP (x(2)m|h, b(x(1)m), θ(2)) (6.9)

The derivatives of the above lower bound also have similar forms as in Eq. (6.7)

and Eq. (6.8) except that the gradients are now the expectations with respect to

P (h|b(x(1)). In addition, the gradient for the unary parameters w
(2)
k at a site r will

have the features scaled by the product of transition probabilities for all the nodes

in S
(1)
r . To deal with the problem of summing over h, in principle, one can use full

MCMC sampling. However, by using a data-driven heuristic described in Section

6.4, samples from high probability regions of P (h|b(x(1)) can be obtained using local

search. Usually, the resulting partitions will not be restricted to the valid space Hv.

In that case, the training label at node r in layer 2 is obtained by using a majority

vote of labels at the nodes in S
(1)
r .

For inference, in this work we used the sum-product version of loopy BP to find the

maximum marginal (MPM) estimates of the labels on the image sites. BP was chosen

to find marginals following the argument of learning-inference coupling presented in

Chapter 4, since BP was also used to approximate the expectations while learning

the parameters. The desired label estimates for each node i in set S can be obtained

as,

x̂i = arg max
k

∑

h,r:i∈S
(1)
r

Pr(x
(2)
r = k|h, b(x(1)))P (h|b(x(1))), (6.10)
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where the sum is carried out over all h by picking the site r : i ∈ S(1)
r for each h, and

Pr(.) is the marginal for site r in layer 2 estimated using loopy BP. Note that the

final label at each site is obtained by averaging the beliefs at that site for different

partitions, weighted by the goodness of each partition.

6.4 Experiments and Discussion

We conducted experiments to test the capability of the proposed hierarchical ap-

proach to incorporate three different types of contextual interactions i.e., region-

region, object-region and object-object, as described in Section 6.1. Four datasets for

two different applications (image labeling and contextual object detection) were used

for testing. For the object detection experiments, the aim was to investigate if the

performance of the existing classifiers could be improved by feeding their outputs in

the hierarchical model.

6.4.1 Region-Region Interactions

The first set of experiments was conducted on the ’Beach’ dataset from [85], which

contains a collection of consumer photographs. The goal was to assign each image

pixel one of the 6 class labels: {sky, water, sand, skin, grass, other}. This dataset

is particularly challenging due to wide within-class variance in the appearance of the

data due to drastic illumination conditions (see Figure 6.5 or [85] for more images).

Another characteristic of this dataset which makes it difficult is that, for most of the

images, a significant area belongs to none of the semantic classes (i.e., falls under the

other category). Traditionally it has been hard to model this category because any

pixel in this category can virtually have unconstrained appearance. Finally, since this

dataset contains beach images, there is significant mixing of the water and the sand

regions in them, making it hard to separate these two classes. The dataset contained

123 images, each of size 124× 218 pixels. This set was randomly split into a training

set of 48 images and a test set of 75 images.

The layer 1 of the proposed hierarchical model implemented the smoothness of

pixel labels as the local context. Hence, the sites in layer 1 were the image pixels and

the neighborhood was defined to be the 4-nearest neighbors on a grid. Similar to [85],

three HSV color features and two texture features, based on the eigenvalues of the
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Figure 6.4: An illustration of global interactions of different types in layer 2. Each
circle denotes a node corresponding to a region or object. Left: Region-Region inter-
actions. Middle: Object-Region interactions. Right: Object-Object interactions.

second moment matrix, gave a 5 dimensional unary feature vector. Further, we used

a quadratic kernel to obtain a 21 dimensional feature vector hi. To implement label

smoothing, the pairwise feature vector µij was set to 1, resulting in a Potts model i.e.,

vkl = 0 if k 6= l. The parameters of layer 1 i.e., θ(1) = {w(1)
k ,v

(1)
kk }∀k were all learned

simultaneously using the maximum likelihood procedure described Section 6.3. The

training time was about 10 min on a 2.8 GHz Pentium class processor.

Before proceeding to layer 2, we describe how we do local sampling of partition

h in a high probability region of P (h|b(x(1))). As explained in Section 6.2.4, good

partitions are those that promote homogeneous labeling within a region. So, given the

beliefs from layer 1, first a binary map is generated for each class by thresholding the

pixelwise beliefs at a small value. Then, a partition is obtained by simply intersecting

these binary maps for all the classes, i.e., by dividing bigger regions into smaller ones

whenever there is an overlap between regions from any two maps. By varying the

threshold for generating the binary maps, one can have the desired number of samples.

We observed that even less than 5 samples were sufficient to give good results. This

was because the beliefs from layer 1 are smoothed due to message passing between

the nodes in this layer while implementing the local context.

The layer 2 encodes interactions among different regions given the beliefs at layer

1 and a partition. Each region of the partition is a site in layer 2. An example

illustration of the interactions in layer 2 is shown in Figure 6.4, left image. Note

that the sites are not placed in a regular grid as in layer 1. For this dataset, the

number of sites at layer 2 varied from 13 to 49 for different images. Since we want

every region in the scene to influence every other region, each node in the graph was
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connected to every other node. The computations over these complete graphs are

still efficient because of the small number of nodes in the graph. The unary feature

vector for each node r consists of normalized product of beliefs from all the sites i in

S
(1)
r and the normalized centroid location of the region r. This gives an 8 dimensional

feature vector. Further, quadratic transforms were used to obtain a 44 dim vector

hi. Similar to [131], we use pairwise features between regions to be binary indicator

attributes. These were: a region is above, beside or enclosed within another region.

The PMA based learning did not perform well on this layer. This may be either due

to message passing on a complete graph, or strong attractive or repulsive potentials

on the induced graph in layer 2, leading to erroneous estimates of the marginals. On

the other hand, we found that MMA performed well on this layer. This is possible

since MMA is not affected by the errors in the estimates of the true marginals if

the ranking of the marginals remains unaltered (refer to Section 4.5). The maximum

likelihood learning with MMA approximation took about 5 minutes.

A few example results from the test set are shown in Figure 6.5. The softmax

classifier (second column, Figure 6.5) does not perform well because it classifies each

pixel independently without considering interactions in the labels. There are two

main problems with the softmax classification. First, several large regions in images

are assigned wrong labels e.g., sand regions have been assigned label water (rows 1,

2 and 6 from top) or vice versa (bottom row). There is also substantial confusion in

water and sky regions (rows 3, 4, 7 from top), and sand and sky regions (row 5 from

top). These errors are not surprising if we rely just on the local appearance of the

image pixels. Second, the labels are not smooth due to small ’pixelated’ label errors

giving the resulting classification a dithered appearance. The smoothness of labels

can be achieved (third column, Figure 6.5) by implementing smoothing interaction

potential in the first layer of the hierarchical model. However, the errors in the larger

regions are not eliminated. But, when the full hierarchical model is applied where the

second layer enforces the spatial configuration of the regions, most of the errors are

eliminated. There are several images that contain pixels which do not belong to any

of the semantic classes (e.g., clothing, chairs, houses etc. in top two rows). It is worth

noting that good accuracy is obtained even for these pixels, which have traditionally

been hard to model because of large within class variations. The pixelwise beliefs

for the final output of the hierarchical model are shown in the right most column of

Figure 6.5.

Table 6.1 gives a quantitative comparison of the results on the test set. The use
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Table 6.1: Pixelwise classification accuracy (%) for scene labeling on two different
datasets. Final results of the hierarchical approach are shown in bold. The column
’Others’ gives the results for the techniques proposed by other researchers.

Datasets Softmax Layer1 Full MRF Others

Beach 62.3 63.8 74.0 61.5 64.0 [85]
Sowerby 85.4 85.8 89.3 81.8 89.5 [56]

Table 6.2: Confusion matrix for the full hierarchical model on the Beach test dataset.
Each entry represents the classification rate in percentage of all the pixels in the test
set. Rows indicate the true class. The right most column shows the fraction (in %)
of all the pixels from the test set corresponding to each class.

sky water sand skin grass other % of each class
in the test set

sky 23.12 2.30 0.68 0.01 0.01 1.33 27.45
water 2.00 28.60 3.38 0.11 0.46 2.43 36.98
sand 0.87 2.10 9.91 0.18 0.02 2.13 15.21
skin 0.00 0.00 0.04 0.34 0.00 0.68 1.06

grass 0.06 0.45 0.16 0.01 3.12 1.07 4.87
other 0.77 2.36 1.69 0.58 0.23 8.80 14.43
Total 100.00

of the local context (label smoothing) improves the accuracy slightly (’Layer 1’ in

Table 6.1) over the softmax which uses no context. However, the main use of the

local context is to propagate improved beliefs and partitions to layer 2. The full

hierarchical model (’Full’ in Table 6.1) performs significantly better than the others2.

The confusion matrix showing the detailed performance of the full hierarchical model

on different classes is given in Table 6.2. The time taken for inference was about 6

sec for each image. For the MRF, results were obtained using the Potts model.

Next, the hierarchical model was applied to the standard Sowerby dataset. The

dataset contained 104 images (64×96 pixels). The training and the test set contained

60 and 44 images respectively. As used by [56], the CIE Lab color features and oriented

DoG filters based texture features gave a 30 dim feature vector that was used as input

2We implemented the technique proposed in [85] to get the results shown in the table as that
work reported only qualitative results.
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Input image Softmax classifier Layer 1 output Final result Belief map
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Figure 6.5: Pixelwise classification results on the Beach dataset using context based on
region-region interactions. ’Layer 1 output’ shows the result of implementing label interac-
tions through layer 1 only. Label smoothing is achieved but many large regions are labeled
wrong in this output. ’Final result’ shows the final classification using both the layers in the
hierarchical model which eliminates most of the errors. ’Belief map’, shows the pixelwise
belief for the final output. Higher intensity indicates higher confidence.
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Table 6.3: Confusion matrix for the full hierarchical model on the Sowerby test
dataset. Each entry represents the classification rate in percentage of all the pix-
els in the test set. Rows indicate the true class. The right most column shows the
fraction (in %) of all the pixels from the test set corresponding to each class. ’veg’ -
vegetation, ’rd mark’ - road marking, ’rd surf’ - road surface, ’bldg’ - buildings.

sky veg rd mark rd surf bldg st obj car % of each class
in the test set

sky 11.93 0.44 0.00 0.22 0.00 0.00 0.00 12.59
veg 0.99 35.72 0.00 1.19 0.57 0.00 0.00 38.47

rd mark 0.01 0.01 0.04 0.14 0.00 0.00 0.00 0.20
rd surf 0.02 0.98 0.01 40.41 0.04 0.00 0.00 41.46

bldg 0.13 4.62 0.00 0.38 0.95 0.00 0.00 6.08
st obj 0.01 0.33 0.00 0.06 0.02 0.02 0.00 0.44

car 0.02 0.42 0.00 0.30 0.01 0.00 0.01 0.76
Total 100.00

to layer 1. The rest of the features, parameter learning and inference were the same

as for our implementation on the Beach dataset. Figure 6.6 shows a few typical test

results. Note that road markings in images in row 4 and 7 from top are preserved

in the final result even though layer 1 tends to smooth it out. The quantitative

comparisons are given in Table 6.1. Note that we achieve almost the same accuracy as

reported in [56] even though their technique is specifically tuned for the image labeling

problems, while our approach is more general, integrating different applications in a

single framework.3. The confusion matrix showing the detailed performance of the

full hierarchical model on different classes is given in Table 6.3.

6.4.2 Object-Region Interactions

We conducted the next set of experiments on a building/road/car dataset from [136].4

The aim was to detect objects (cars) and regions (building and road) in the images.

The dataset contained 31 images, each of size less than 100×100 pixels. The size and

pose of the object (car) was roughly the same in all the images. As shown in Figure

6.7, the local appearance of cars is impoverished due to low resolution, making the

3Direct comparison with [131] could not be made because their dataset is not available in the
public domain

4Only a partial dataset was available in the public domain.
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Input image Softmax classifier Layer 1 output Final result Belief map
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Figure 6.6: Pixelwise classification results on the Sowerby dataset using context based
on region-region interactions. ’Layer 1 output’ shows the result of implementing label
interactions through layer 1 only. ’Final result’ shows the final classification using both the
layers in the hierarchical model. ’Belief map’, shows the pixelwise belief for the final output.
Higher intensity indicates higher confidence. Note that road markings are preserved in the
final result in rows 4 and 7 from top.
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car detection hard using stand-alone detectors. In addition, high variability in the

appearance of the building data also makes it difficult to disambiguate them from

roads just on the basis of intensity and texture features. However, the relationships

among the object (car) and the two regions (building and road) provide strong context

to improve the detection of all the three entities simultaneously.

For object detection, layer 1 models the relationship among parts of an object.

Ideally, in layer 1 one can implement a DRF on object parts similar to the approach

explained in Chapter 5. However, to investigate if our framework can be used for

improving the performance of a standard boosting-based detector, we use the detector

output in layer 1. Rectangular patches centered at the locations that have a score

above a threshold are designated as sites for both layer 1 and 2. The threshold is

chosen to be small enough to make the false negatives relatively rare. Of course, it will

increase the false positives considerably. So, the real question is: can our framework

handle a large number of false positives?

In the hierarchical model, the set of sites S(1) in layer 1 contains all the image

pixels and the object patches. The neighborhood structure for the pixels was 4 nearest

neighbors. Since each object patch represents a possible hypothesis about the full

object, there is no interaction among these patches in layer 1. The set of sites in layer

2, S(2), consists of image regions and the same object patches as in layer 1. Note

that the sites in S(2) induce a partition on the nodes in S(1). The label sets L(1) and

L(2) for the sites in the two layers were the same as {building, road} for pixels and

regions, and {car, background} for the patches. It is interesting to note that, in this

application, we have a mixture of two different type of site systems within the same

graph, where each system has its own label set. This does not pose any additional

computational burden as it can be dealt within the same framework.

The features used by layers 1 and 2 for image pixels and regions were the same

as described for the Sowerby dataset in the previous section. The output of the

object detector was used as a feature for a patch in layer 2. All the nodes in layer

2 were connected with each other inducing a complete graph. The pairwise features

between the object patches and the regions in layer 2 were simply the difference in

the coordinates of the centroids of a region and a patch. An example illustration of

the interactions in layer 2 is shown in Figure 6.4, middle image.

In all the experiments we used a Gentle Boosting based state-of-art detector as

a base detector, similar to Torralba et al. [136]. Different versions of boosting algo-
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rithms such as Discrete and Real AdaBoost, proposed by Freund and Schapire [44],

have been used extensively in computer vision. Gentle boosting is a procedure of

fitting an additive logistic regression model by minimizing the exponential loss func-

tion [46]. It is similar to Real AdaBoost except that the exact optimization of Real

AdaBoost is replaced by the Newton steps, which makes Gentle Boost numerically

more stable.

The classification results for a few typical examples from the test set are given in

Figure 6.7. The detection of building and road is very error-prone when no context

is used in the softmax classification (column ’Bld/road(NC)’). This is because the

pixelwise intensity and texture features are usually not sufficient to separate buildings

from roads. But when context is used, the model is able to separate both these

regions accurately, since buildings tend to occur above roads. Car detection using

the boosting-based detector gives many false positives due to poor appearance of the

cars. Simultaneous use of context between car, roads and buildings eliminates most of

these false positives. The classification accuracy of building and road detection goes

up from 70.66% to 98.05% as shown in the confusion matrices for the two regions in

Figure 6.8. Also, the ROC curve (Figure 6.8, left) for the car detection shows that

the number of false positives is reduced considerably compared to the base detector.

6.4.3 Object-Object Interactions

The final set of experiments was conducted on the monitor/keyboard/mouse dataset

from [136], which contained 164 images of size less than 100× 100 pixels each. The

dataset was randomly split in half to generate the training and the test sets. The

main challenge in the dataset was the detection of the keyboard and the mouse,

which spanned only a few pixels in the images. In this section, we show that by

taking interactions among the three objects, one can decrease the false alarms in

detection significantly.

For each object, we use a detector which was also trained using gentle boosting as

the base detector. Since the size of the mouse in the input images was very small (on

average about 8× 5 pixels), the boosting based detector could not be trained for the

mouse. Instead, we implemented a simple template matching detector by learning

a correlation template from the training images. A patch at a location where the

output of any of the three detectors is higher than a threshold, represents a site in

S(1). The set of sites S(2) in layer 2, was the same as in layer 1 , indicating a trivial
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Input image Bld/road(NC) Detector score Car(NC) Bld/road(WC) Car(WC)

Figure 6.7: Detection results for buildings, road and car using context based on
object-region interactions. ’Bld’ - Building, NC - No Context, WC - With Context.
Detector score shows the output of a standard boosting-based detector. Black indi-
cates ’road’ and white ’buildings’. Green and red indicate true detections and false
alarms respectively.
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Figure 6.8: Left: The ROC curves for contextual car detection compared to a boosting
based detector. Right: Confusion matrices (as % of overall pixels) for building and
road detection. Rows contain the ground truth. No context implies the output of the
Softmax classifier.

partition. The label set for the sites in S(1) and S(2) was {monitor, keyboard, mouse,

background}. Since layer 1 uses the output of a standard object detector, interactions

among sites take place only at layer 2. An example illustration of the interactions in

this layer is shown in Figure 6.4, right image.

The unary features at layer 2 consisted of the score from each detector yielding a 3

dimensional feature vector. The difference of coordinates of the patch centers resulted

in a 2 dimensional pairwise feature vector. Each node was connected to every other

node in this layer. Figure 6.9 shows a typical result from the test set. It is clear

that the false alarms were reduced considerably in comparison to the base detector.

The use of context did not change the results for the monitor, since the base detector

itself was able to give good performance. This is reasonable because one hopes that

context will be more useful when the local appearance of an object is more ambiguous.

The ROC curves for the keyboard and the mouse detection are compared with the

corresponding base detectors in Figure 6.10. For the mouse detection, even though

our approach was able to reduce the false positives significantly, the number of false

alarms per image is still high. This is understandable because the size of mouse was

very small in all the images. One can hope for context to improve detection only if

there is at least ’bare-minimum’ appearance based evidence for that object in images.
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Input image Monitor (NC) Keyboard (NC) Mouse (NC)

Mouse (WC) Keyboard (WC) Mouse (WC)

Figure 6.9: Detection results for monitor, keyboard and mouse using context based on
object-object interactions. NC - No Context, WC - With Context. Monitor detection
was good with the base detector itself due to less appearance ambiguity. Note the
impoverished appearances of the keyboard and the mouse. Green and red indicate
true detections and false alarms respectively.
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Figure 6.10: The ROC curves for the detection of keyboard (left) and mouse (right).
Relatively high false alarm rates for the mouse were due to very small size of mouse
(about 8× 5 pixels) in the input images.
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6.5 Summary

In this chapter, we have presented a two-layer hierarchical formulation to exploit dif-

ferent levels of contextual information in images for robust classification. Each layer

is modeled as a discriminative field that allows one to capture arbitrary observation-

dependent label interactions. The proposed framework has two main advantages.

First, it encodes both the short-range interactions (e.g., pixelwise label smoothing) as

well as the long-range interactions (e.g., relative configurations of objects or regions)

in a tractable manner. Second, the formulation is general enough to be applied to

different domains ranging from pixelwise image labeling to contextual object detec-

tion. The parameters of the model are learned using a sequential maximum-likelihood

approximation. The benefits of the proposed framework, in spite of a few simplify-

ing assumptions, were demonstrated on four different datasets for image labeling and

contextual object detection tasks..

In the future, it will be interesting to explore the use of variational approximations

to relax some of the assumptions made in this work, and also to develop efficient ways

of learning the parameters of the two layers simultaneously. Finally, it is worthwhile

to explore the issue of possible addition of other layers in the hierarchy, which could

encode more complex relations between different scenes in a video, leading to event

or activity recognition.



Chapter 7

Conclusions and Future Work

7.1 Contributions

In this thesis, we have addressed the problem of incorporating different types of con-

text in computer vision for robust classification of image components including pixels,

regions or objects. Towards this, the thesis makes the following key contributions:

• Introduces new probabilistic graphical models in computer vision that allow

the use of local discriminative classifiers to incorporate contextual interactions

among image components. In particular, this thesis introduces for the first

time Conditional Random Field (CRF) [86] based models in computer vision.

The use of arbitrary discriminative classifiers for the structured data opens a

new channel, alternative to the traditional use of generative classifiers in MRF

formulations for images.

• Develops models to capture complex spatial dependencies in labels as well as

the observed data simultaneously in a principled manner on 2D lattices with

cycles. A principal outcome of such models is the freedom to model interactions

among labels using the observed data, which was not possible in the conven-

tional MRFs. This is the main factor that allows the discriminative fields to

incorporate different types of image context within the same framework.

• Provides fast and robust parameter learning procedures which are applicable

even to the conventional MRF models. In addition, this thesis gives an empir-

ical comparison between different learning and inference techniques indicating

131



132 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

coupling of learning and inference mechanisms. This observation is of direct

practical use as a guide to which parameter learning procedure one should use

given a certain inference technique.

• Proposes a new hierarchical field formulation to model different types of contexts

in images simultaneously within the same framework. The context may vary

from short-range interactions between pixels to long-range interactions between

objects or regions. This is the first work that presents the idea of a hierarchy

of CRF-based 2D fields.

• Demonstrates the application of the proposed models on several challenging

computer vision tasks such as contextual object detection, semantic scene seg-

mentation, texture recognition and image denoising seamlessly within a single

framework.

7.2 Key Observations

In this thesis, we explored various models for incorporating contextual interactions

in the classification of image components. Further, we observed the performance of

these models on several computer vision tasks. On the basis of the theoretical and

the experimental observations made in this thesis, we summarize the key insights as

follows.

In addition to the local statistics of a component to be labeled in an image,

pooling evidence from all the contextual sources (e.g., neighboring pixels, regions

and/or objects) is critical to build an efficient and reliable scene recognition system

in the future. This reaffirms the view taken by early scene understanding researchers

in computer vision.

Even though the tree-structured causal models provide the advantage of exact

parameter learning and inference using very efficient techniques, there are several

problems such as non-stationarity, label-bias and restricted modeling power that un-

dermines their capacity to incorporate generic context in natural images.

Among the noncausal models, traditional generative MRF formulations are too

restrictive to model the rich interactions in data and labels required for a variety

of classification tasks in computer vision. In particular, MRFs do not allow data-

dependent label interactions that are critical for many vision applications such as
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parts-based object detection.

The discriminative fields overcome most of the limitations posed by the traditional

MRF frameworks by allowing arbitrary interactions in the observed image data, and

data-dependent interactions in the labels. The experimental results conducted on

hundreds of real-world as well as synthetic images verify the power of these fields

on several applications spanning low-level image denoising to high-level contextual

object detection. In addition, the experimental comparisons also indicate that the

use of discriminative classifiers is more beneficial than the generative ones in several

application domains.

Efficient and robust parameter learning in discriminative fields is possible by ex-

ploiting inference to approximate the gradients used in maximum likelihood learning.

Further, the learned parameters lead to good classification performance so long as the

method used for approximating the gradient is consistent with the inference mecha-

nism.

For robust classification, both the short-range context (e.g., pixelwise label smooth-

ing) as well as the long-range context (e.g., relative configurations of objects or re-

gions) in images must be exploited. This can be achieved by modeling context at

different levels through a hierarchy of ’flat’ discriminative fields. Even suboptimal

learning and inference can give substantial improvements in the classification accu-

racy.

7.3 Limitations and Future Extensions

There are several limitations of the models presented in this thesis. We divide the

future work into two parts to address these limitations as well as to explore further

model extensions. The first part, described in this section, discusses some specific

issues worth exploring to enhance the power of these models, while the second part

(Section 7.4) poses some broad open questions.

Robust parameter learning. By far, the most important challenge in making

the discriminative fields applicable to a wide range of classification tasks in computer

vision is robust and efficient parameter learning in these fields. We have described

several methods of learning parameters in this thesis. However, there are several

issues that need further investigation.
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One interesting question that emerges from our discussion on using discrete ap-

proximations of true expectations in Section 4.3 is: Will any arbitrary choice of a

discriminative classifier to design the field potentials give rise to the perceptron-type

behavior or it is true only for the potentials that are linear in features? This issue

needs further experimental evaluation.

In this thesis, we took the maximum-likelihood view of learning the model pa-

rameters. One possible drawback of this view is model overfitting, especially in the

presence of limited training data. This may lead to poor generalization performance

on the unseen test data. In the future, it is worth experimenting with regularized

maximum likelihood, a commonly used procedure in machine learning to alleviate

this problem. In this, the growth of the parameters is penalized using a shrinkage

prior (e.g., a zero mean Gaussian) over the parameters.

Another important direction to pursue will be to take a full Bayesian view similar

to Qi et al.[118], where all the model parameters are integrated while predicting the

class labels, instead of computing the point estimate of the parameters as in maximum

likelihood learning. Of course, integrating the parameters in discriminative fields is

generally a difficult task, requiring several model approximations.

Kernel classification. Kernels have been used extensively in machine learning to

yield powerful classifiers. In this work, we showed the use of simple polynomial

kernels in designing the clique potentials in the discriminative fields. One of the

further enhancements will be to extend the framework to general kernel mappings to

increase the classification accuracy. However, since the number of parameters for a

general kernel mapping is on the order of the number of data points, one will need

some method to induce sparseness to avoid overfitting [135][38]. Recently, several

researchers have proposed learning with general kernels on CRF-type of models e.g.,

max-margin learning by Taskar et al. [134], and a greedy selection approach by

Lafferty et al. [87]. Investigation of other techniques based on the extensions of

sparse priors [135][38] will be of interest.

Improved learning in the hierarchical framework. In this work, we used simpli-

fying assumptions for parameter learning and inference in the hierarchical framework.

In the future, it is essential to explore the use of variational approximations to learn

the parameters of the two layers simultaneously. Also, experimentally it will inter-

esting to compare what practical gains are made by employing more computationally

complex techniques.
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Non-homogeneous and anisotropic fields. In this thesis, we assume the dis-

criminative fields to be homogeneous and isotropic. Homogeneity indicates that the

functional form and the parameters of the potentials are not dependent on the im-

age location. On the other hand, isotropy indicates that all the neighbors of a site

are treated equally irrespective of the location of the neighbor with respect to the

site. Relaxing the conditions of homogeneity and isotropy may be useful for several

vision applications. However, the number of parameters will grow rapidly, and large

amounts of training data will be required to learn the parameters reliably. Of course,

depending on the application, a partial relaxation of these assumptions may be useful.

Arbitrary graph topology. In this thesis, we presented applications such as object

detection and semantic segmentation, where the induced graphs had arbitrary topol-

ogy instead of being fixed as a rectangular grid. For simplicity, we assumed a uniform

distribution over all the graph structures. It will be worth examining the possibility

of learning a distribution over these structures.

Higher order cliques. One interesting direction would be to enhance the DRF

framework to incorporate more than pairwise interactions (i.e., cliques of three nodes

or more). This will be useful in dealing with large affine or scale variations in ob-

jects leading to the goal of generic object detection. The potentials of these bigger

cliques can be modeled such that the potentials remain invariant to scale or affine

transformations.

Effects of imbalance in training data. In several cases, discriminative classifiers

may generalize badly when the number of training data from different classes is very

different [1]. This problem is known as imbalanced training data problem. For exam-

ple, in object detection problems, the number of object patches in training images is

much lower than the background patches. The data imbalance problem becomes more

serious when the data from different classes has high degree of overlap in the feature

space. In our experiments with the DRFs, data imbalance was not found to have any

limiting influence. However, examining this issue by using controlled examples will

lead to a better understanding of its effects in discriminative fields.

Unsupervised or semisupervised learning. Fully labeled training data is usually

more expensive than unlabeled or partially labeled data. As the scope of computer

vision expands to handle more complex objects and scenes, it will be increasingly

hard to get enough fully labeled training samples. Thus, the development of unsuper-

vised or semisupervised learning methods in these models is important for their wide
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applicability. Recently, attempts have been made in this direction for the application

of object detection [35][120].

Extended experiments on large datasets. Clearly, the testing of object detection

formulation on semi-synthetic examples is not satisfying enough. It will be desirable

to do extensive testing of these models on large real-world object detection datasets

containing object deformations and occlusions, and to compare their performance

with the existing techniques.

In the hierarchical formulation, it will be worth exploring the issue of possible

addition of other layers in the hierarchy, which could encode more complex relations

between different scenes in a video, leading to event or activity recognition.

Evaluation with MRF models. Finally, evaluating the performance of the pa-

rameter learning procedures presented in this thesis on conventional MRF models

will have great potential. If found suitable, they will provide efficient alternative

conditional techniques for learning parameters in MRFs.

7.4 Open Issues

Feature extraction. One valid criticism of the discriminative field models is that

they do not eliminate the need for carefully crafted application-dependent features.

Although there has been some work in selecting important generic features from a

large pool of features [100][117], one still needs to engineer the low-level image fea-

tures to get good results. To make these random field models applicable to generic

real-world tasks, it is unavoidable to incorporate methods for automatically extract-

ing features from the raw image data. In convolutional neural networks this is done

by feeding raw pixel data in the bottom most layer of the model [90][89]. An in-

teresting future direction would be to see if similar ideas can be incorporated in the

discriminative field models that will reduce the effects of arbitrary preprocessing step

of feature extraction.

Uncertainty vs complexity. Turning back to the early work on context based

object and scene recognition in ’70s and ’80s, the main flaw of those techniques was

excessive reliance on ad-hoc rules-based reasoning. This makes it hard to compensate

for uncertainties and ambiguities inherent to visual data. The models proposed in this

thesis mostly overcome that problem but the complexity of these models can grow

quickly as evident from the two-layer hierarchical formulation explained in Chapter 6.
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As more and more layers are added to extract information at different semantic levels

in a scene (e.g., recognition of the whole scene), or in a video (activity recognition

over multiple scenes), the complexity of these models is bound to grow rapidly. Thus,

in the spectrum of techniques for modeling context, on one end we have techniques

that are computationally simple but lack flexibility, and on the other end, techniques

that are very flexible but computationally difficult. To build a successful recognition

system in the future, the question worths answering is: Is it possible to find a mixed

strategy that uses the two ends as required to deal with uncertainty while at the same

time being efficient?

Is visual data sufficient? The aim of a generic scene understanding system is to

recognize various components of the scene. Whether it can be done purely using the

visual data depends on the level of semantics at which we want to parse the scene.

For instance, in Figure 7.1, the grass covered wall will be labeled as grass. Actually

the correct semantics would be ’grass covered building’. Can it be learned by using

just the visual data or some other knowledge source needs to be integrated to produce

such deductions?

Figure 7.1: An example of building detection in images. The DRF fails on the grass-
covered walls etc. Should these areas be labeled as grass or building or something
intermediate?
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Appendix A

Man-Made Structure Detection

A.1 Introduction

Automatic detection of man-made structures in ground-level images is useful for scene

understanding, robotic navigation, surveillance, image indexing and retrieval etc. In

addition, this application provides an ideal testbed to compare various classification

techniques because there are significant within class variations in the appearance of

data from man-made structures (structured class). Similarly, the data from back-

ground (nonstructured class) is virtually unconstrained, and there is a large overlap

between these two classes.

Here we focus on the detection of man-made structures that can be characterized

primarily by the presence of linear structures. The detection of such a constrained set

of man-made structures from a single static ground-level image is still a non-trivial

problem due to three main reasons. First, the realistic views of a structured object

captured from a ground-level camera are unconstrained unlike the aerial views, which

complicates the use of predefined models or model-specific properties in detection.

Second, no motion or stereo information is available, precluding the use of geomet-

rical information pertaining to the structure. Finally, the images of natural scenes

contain large amount of clutter, and the edge extraction is very noisy. This makes

the computation of the image primitives such as junctions, angles etc., which rely on

explicit edge or line detection, prone to errors.

Buildings are one possible instance of man-made structures and some of the related

work on structure detection exists for buildings [99][95][76][63][19]. A majority of the
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techniques for building detection from aerial imagery try to generate a hypothesis on

the presence of building roof-tops in the scene [99]. This is usually attained by first

detecting low-level image primitives e.g., edges, lines or junctions, and then grouping

these primitives using either geometric-model based heuristics [95], or a statistical

model e.g., Markov Random Field (MRF) [76]. For the ground-level images, the

detection of roof-tops is not feasible and shadows do not constrain the detection

problem unlike the aerial images.

Perceptual Organization based building detection has been presented in [63] for

image retrieval. In [127] a technique was proposed to learn the parameters of a large

perceptual organization using graph spectral partitioning. However, these techniques

also require the low-level image primitives to be computed explicitly, and to be rela-

tively noise-free. There has been some recent research work regarding the classification

of a whole image as a landscape or an urban scene [111][138]. Oliva and Torralba [111]

obtain a low-dimensional holistic representation of the scene using principal compo-

nents of the power spectra. We found the power spectra based features to be noisy

for our images, which contain a mixture of both the landscape and man-made regions

within the same image. It might be due to the fact that a ’single’ image (or a region

contained in it) may not follow the assumption that the power spectra falls with a

form f−α where f is spatial frequency [88]. Vailaya et al. [138] use the edge coher-

ence histograms over the whole image for the scene classification, using edge pixels

at different orientations. Olmos and Trucco [112] have recently proposed a system

to detect the presence of man-made objects in underwater images using properties of

the contours in the image. The techniques which classify the whole image in a certain

class implicitly assume the image to be exclusively containing either man-made or

natural objects, which is not true for many real-world images.

The techniques described in [34][75] perform classification in outdoor images using

color and texture features, but employ different classification schemes. These papers

report poor performance on the classes containing man-made structures since color

and texture features are not very informative for these classes [138]. In addition,

in comparison to the Sowerby database used by them, we use a more diverse set of

images from the Corel database for training as well as testing.

In this work, we propose to detect man-made structures in a 2D image, located at

medium to long distances from the camera. To visualize the problems with low-level

primitives using edges, an input image and the corresponding edge image obtained

from the Canny edge detector are shown in Figure A.1. It is clear that detection
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(a) Input image (b) Edge image

Figure A.1: A natural image and the corresponding edge image obtained using Canny
edge detector to illustrate that reliable extraction of low-level image primitives, e.g.,
lines, edges or junctions for man-made structure detection is hard in natural images.

based on these primitives is going to be a daunting task for this type of images.

Instead, in the present work we propose a hybrid approach which uses the bottom-

up approach of extracting generic features from the image blocks, followed by the

top-down approach of classifying image blocks based on statistical distribution of the

features learned from the training data.

A.2 Feature Set Description

The choice of appropriate features without relying on ad-hoc heuristics is important

for a generic structure detection system. On the other hand, given a small training

set, task dependent feature extraction becomes unavoidable to efficiently encode the

relevant task information in a limited number of features. There is currently no formal

solution to deriving optimal task-dependent features. In this section, we propose a set

of multiscale features that captures the general statistical properties of the man-made

structures over spatially adjoining sites.

For each site in the image, we compute the features at multiple scales, which

capture intrascale as well as interscale dependencies. The multiscale feature vector at

site m is then given as: fm =
[
{f j

m}
J
j=1, {f

ρ
m}

R
ρ=1

]
where, f j

m is jth intrascale feature

and f ρ
m is ρth interscale feature.
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A.2.1 Intrascale Features

As mentioned earlier, here we focus on those man-made structures which are pri-

marily characterized by straight lines and edges. To capture these characteristics, at

first, the input image is convolved with the derivative of Gaussian filters to yield the

gradient magnitude and orientation at each pixel. Then, for an image site m, the

gradients contained in a window Wc at scale c (c=1, . . . , C) are combined to yield a

histogram over gradient orientations. However, instead of incrementing the counts in

the histogram, we weight each count by the gradient magnitude at that pixel as in

[7]. It should be noted that the weighted histogram is made using the raw gradient

information at every pixel in Wc without any thresholding. Let Eδ be the magnitude

of the histogram at the δth bin, and ∆ be the total number of bins in the histogram.

To alleviate the problem of hard binning of the data, we smoothed the histogram

using kernel smoothing. The smoothed histogram is given as,

E ′
δ =

∑∆
i=1K((δ − i)/h)Ei∑∆

i=1K((δ − i)/h)
, (A.1)

where K is a kernel function with bandwidth h. The kernel K is generally chosen to

be a non-negative, symmetric function.

If the window Wc contains a smooth patch, the gradients will be very small and

the mean magnitude of the histogram over all the bins will also be small. On the

other hand, if Wc contains a textured region, the histogram will have approximately

uniformly distributed bin magnitudes. Finally, if Wc contains a few straight lines

and/or edges embedded in smooth background, as is the case for the structured class,

a few bins will have significant peaks in the histogram in comparison to the other

bins. Let ν0 be the mean magnitude of the histogram such that

ν0 =
1

∆

∆∑

δ=1

E ′
δ.

We aim to capture the average ’spikeness’, of the smoothed histogram as an indi-

cator of the ’structuredness’ of the patch. For this, we propose heaved central-shift

moments for which pth order moment νp is given as,
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νp =

∑∆
δ=1(E

′
δ − ν0)

p+1H(E ′
δ − ν0)∑∆

δ=1(E
′
δ − ν0)H(E ′

δ − ν0)
, (A.2)

where H(x) is the unit step function such that H(x)=1 for x>0, and 0, otherwise.

The moment computation in Eq. (A.2) considers the contribution only from the bins

having magnitude above the mean ν0. Further, each bin value above the mean is

linearly weighted by its distance from the mean so that the peaks far away from the

mean contribute more. The moments ν0 and νp at each scale c form the gradient

magnitude based intrascale features in the multiscale feature vector.

Since the lines and edges belonging to the structured regions generally either

exhibit parallelism or combine to yield different junctions, the relation between the

peaks of the histograms must contain useful information. The peaks of the histogram

are obtained simply by finding the local maxima of the smoothed histogram. Let

δ1 and δ2 be the ordered orientations corresponding to the two highest peaks such

that E ′
δ1
≥ E ′

δ2
. Then, the orientation based intrascale feature βc for each scale c is

computed as βc = | sin(δ1− δ2)|. This measure favors the presence of near right-angle

junctions. The sinusoidal nonlinearity was preferred to the Gaussian function because

sinusoids have much slower fall-off rate from the mean. The sinusoids have been used

earlier in the context of perceptual grouping of prespecified image primitives [76].

We used only the first two peaks in the current work but one can compute more

such features using the remaining peaks of the histogram. In addition to the relative

locations of the peaks, the absolute location of the first peak from each scale was also

used to capture the predominance of the vertical features in the images taken from

upright cameras.

A.2.2 Interscale features

We used only orientation based features as the interscale features. Let {δc
1, δ

c
2, . . . , δ

c
P}

be the ordered set of peaks in the histogram at scale c, where the set elements are

ordered in the descending order of their corresponding magnitudes. The features

between scales i and j, βij
p were computed by comparing the pth corresponding peaks

of their respective histograms i.e., βij
p = | cos 2(δi

p − δ
j
p)|, where i, j = 1, . . . , C. This

measure favors either a continuing edge/line or near right-angle junctions at multiple

scales.
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Figure A.2: Multiscale feature extraction at each block in the input image. At each
block, image gradients are used to obtain gradient orientation histograms at mul-
tiple scales. Moments based features are computed using gradient magnitudes and
orientation based features are computed using the peak gradient orientations.

In Figure A.2 we have shown the overall feature extraction procedure. Here at

each block we first build orientation histograms of image gradients at multiple scales

(three in this case). The vertical axis represents the gradient magnitude (E), and the

horizontal axis represents the gradient orientation (δ). The histogram is smoothed

using a Gaussian kernel. The solid line in a histogram shows the mean magnitude

of the smoothed histogram, and the ’+’ signs indicate the orientation peaks that

are above the mean magnitude. Using the magnitudes we compute the histogram

moments while the peaks are used to compute the orientation based intra- as well as

inter-scale features.

A.3 Experimental Setup

To test the performance of different models proposed in this thesis, we trained and

tested these models on two different datasets drawn randomly from the Corel Photo

Stock. The training set consisted of 108 images while the testing set contained 129
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images, each of size 256×384 pixels. Most of the images in both the datasets contained

both natural objects and man-made structures captured at medium to long distances

from a ground-level camera. A subset of the training images is shown in Figure A.3.

It is clear from the figure that this is a very challenging dataset. There are significant

variations in the scale of the structures varying from very small to large ones. Also, the

illumination in images is poor because of shadows and weather conditions. The pose of

the structures was not restricted and there are significant perspective distortions. The

dataset had several structures which had curved contours. So, simple line detection

is not enough for them. The training set also contained a few negative examples such

as images with horizon or tree trunks, which could give rise to features similar to that

of man-made structures.

The ground truth was generated by hand-labeling each nonoverlapping 16×16

pixels block in each image as a structured or nonstructured block. This kind of coarse

labeling was sufficient for our purpose as we were interested in finding the location of

the structured blocks without explicitly delineating the object boundary. However,

the block quantization introduces noise in the labels of the blocks lying on the object

boundary, since a block containing a small part of the structure could be given either

of the labels. This makes the quantitative evaluation of the results hard and there is no

formal solution to this problem. To circumvent this, we do not count as false positive

a misclassification that is adjacent to a block with ground truth label structured. In

practice, small classification variations at the object boundary do not affect future

processing such as grouping blocks into connected regions or extracting bounding

boxes. The whole training set contained 36, 269 blocks from the nonstructured class,

and 3, 004 blocks from the structured class.

To train different models, a multiscale feature vector was computed for each

nonoverlapping 16×16 pixels block in the training images. The details of the feature

vector were given in Section A.2. One of the reasons for choosing this block size is

related to the fundamental ambiguity in the structure detection task. If the structure

is too far, it will become like ’texture’, and if it is too near, only a small portion (e.g.,

a long edge or a smooth patch from a wall) will occupy almost the whole image. The

lowest and the highest scales for the feature extraction were chosen to constrain this

ambiguity. We are interested in the structures which are not smaller than the lowest

scale, and are not totally smooth or contain only unidirectional edges at the highest

scale. For multiscale feature computation, the number of scales was chosen to be 3,

with the scales changing in regular octaves. The lowest scale was fixed at 16×16
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Figure A.3: Some example images from the training set for the task of man-made
structure detection in natural scenes. This task is difficult as there are significant
variations in the scale of the objects (row 1), illumination conditions (row 2), per-
spective distortions (row 3), and non-linear structures (row 4). Row 5 shows some of
the negative samples that were also used in the training set.
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pixels, and the highest scale at 64×64 pixels. The largest scale implicitly defines the

neighborhood ωm defined in Eq. (2.1) over which the data dependencies are captured.

For each image block, a Gaussian smoothing kernel was used to smooth the

weighted orientation histogram at each scale. The bandwidth of the kernel was chosen

to be 0.7 to restrict the smoothing to two neighboring bins on each side. The moment

features for orders p≥1 were found to be correlated at all the scales. Thus, we chose

only two moment features, ν0 and ν2 at each scale. This yielded twelve intrascale

features from the three scales including two orientation based features for each scale.

For the interscale features, we used only the highest peaks of the histograms at each

scale, yielding two features. Hence, for each image block m, a fourteen component

multiscale feature vector fm was obtained. We used only a limited number of features

due to the lack of sufficient training data to reliably estimate the model parameters.

Each feature was normalized linearly over the training set between zero and one for

numerical reasons.
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Appendix B

Performance of The Causal Models

Here we discuss the qualitative as well as the quantitative performance of the causal

Multi-Scale Random Field (MSRF) model described in Chapter 2. We applied the

model to the problem of detecting man-made structures in natural outdoor scenes.

The proposed detection scheme was trained and tested on two different datasets drawn

randomly from the Corel Photo Stock. The training set consisted of 108 images while

the testing set contained 129 images, each of size 256× 384 pixels. Further details of

the dataset and the features are given in Appendix A.

To learn the parameters of the MSRF model (Θp), a quad-tree was constructed

considering each 16×16 pixels nonoverlapping block in the image to be a node at

the leaf level N . This arrangement resulted in 16×24 nodes at the leaf level and

five levels (N = 5) in the tree. To take into account the 2 : 3 aspect ratio of the

images, we modified the quad-tree as suggested in [34] such that the root node had

six children. Since we had assumed the conditional transition probability to be the

same for each link within a level, we needed to estimate four transition probability

matrices, θnkl, and the prior probability distribution over the root node. For the ML

learning described in Section 2.3, the parameter values were initialized by building

the empirical trees over the image labels in the training images using the max-voting

over the nodes. The training took 8 iterations to converge in 773 s in Matlab 6.5 on

a 1.5 GHz Pentium class machine.

The learned parameters are shown in Figure B.1. The brighter intensity indicates

a higher probability. It can be noted that for finer levels, the diagonal probabilities are

dominant indicating high probabilities of transition to the same class. The transition

matrix between level 1 and level 2 shows a more random transition due to the mixing
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(a) (b) (c) (d) (e)

Figure B.1: The learned parameters for the 2-class, 5-level MSRF model. The brighter
intensity indicates a higher probability. (a) Prior probabilities at the root node (right
block indicates the structured class), (b) through (e) transition probability matrices
for the links between adjacent levels starting from level 1 to level 5 (top left block
indicates the transition from structured to structured class).

of blocks at coarser levels. Finally, the prior probability distribution at the root node

highly favors the root node to be from the nonstructured class. This is reasonable since

most of the images have much lesser structured blocks compared to the nonstructured

blocks. For the GMM based observation model, the number of Gaussians in the

mixture model was selected to be 8 using cross-validation. The mean vectors, full

covariance matrices and the mixing parameters were learned using the standard EM

technique.

B.1 Performance Evaluation

In this section we present a qualitative as well as a quantitative evaluation of the

detection scheme using the MSRF model. First we compare the detection results on

the test images using two different methods: only GMM (i.e., no prior model over

the labels) with maximum likelihood inference, and GMM in addition to MSRF prior

with MPM inference. For convenience, the former will be referred to as the GMM

and the latter as the MSRF model in the rest of the paper. The same set of learned

parameters was used in GMM for both the methods. For an input test image, the

structure detection results from the two methods are given in Figure B.2. The blocks

identified as structured have been shown enclosed within an artificial boundary. It

can be noted that for the same detection rate, the number of false positives have

significantly reduced for the MSRF based detection. The MSRF model tends to

smooth the labels in the image and removes most of the isolated false positives. The

bottom image in Figure B.2 shows the MSRF posterior map over the input image

for the structured class, displaying the posterior marginals for each image block. The
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Figure B.2: The structure detection results for the input image given in Figure A.1 (a).
Top left: Maximum likelihood results using only GMM. Top right: MPM results using
MSRF model. Bottom: The MSRF posterior map displaying the posterior marginals
over the image blocks for the structured class. The brighter intensity indicates a
higher probability.

posterior map exhibits high probability for the structured blocks, and the number of

nonstructured blocks with significant probability is very low. This shows that the

MSRF based technique is making fairly confident predictions.

We compare the above results with the results from two other popular classification

techniques: Support Vector Machine (SVM) and Sparse Classifier (SC). A Bayesian

learning of sparse classifiers was proposed recently by Figueiredo and Jain [38], who

have shown good results on the standard machine learning databases. Both classifiers

used the multiscale feature vectors defined earlier as the data associated with the

image blocks. We implemented a kernel classifier using a symmetric Gaussian kernel

of bandwidth 0.1 for both SVM and SC. The cost parameter for SVM was set to be

1000 from cross-validation. The number of support vectors in SVM were found to

be 2305, while the number of sparse relevance vectors in SC were 66. The detection

results for these two techniques are shown in Figure B.3. The results from SC were

based on the MAP inference. It can be seen that the detection rate in the image is
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(a) (b)

Figure B.3: The structure detection results using (a) SC, (b) SVM. Both techniques
have higher number of false positives in comparison to the MSRF result for a similar
detection rate.

NS S
NS 42976 188
S 1776 4596

NS S
NS 42791 373
S 1776 4596

(a) MSRF (b) GMM

NS S
NS 42587 577
S 1777 4595

NS S
NS 42534 630
S 2004 4368

(c) SC (d) SVM

Figure B.4: Confusion matrices for different techniques. S - structured, and NS -
nonstructured. The detection rate was kept nearly the same for all the techniques.
The rows contain the ground truth while the columns contain the detection results.

fairly good for both the techniques. This demonstrates that the multiscale features

capture relevant data dependencies for the structure detection. However, the number

of false positives for both techniques is significantly higher than that from the MSRF

model. Similar to GMM, SVM and SC do not enforce the smoothness in the labels,

which led to increased false positives. The average time taken in processing an image

of size 256×384 pixels in Matlab 6.5 on a 1.5 GHz Pentium class machine was 2.8 s

for MSRF, 2.3 s for GMM, 2.3 s for SC, and 2.8 s for SVM.

To carry out the quantitative evaluation of our work, we first computed the block

wise classification accuracy over all the test images. We obtained 94.6% classification

accuracy for the 49, 536 blocks contained in 129 test images. However, the classifica-

tion accuracy is not a very informative criterion here as the number of nonstructured
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Figure B.5: ROC curves for MSRF, GMM, and SC techniques

blocks (43, 164) is much higher than the number of structured blocks (6, 372), and

a high classification accuracy can be obtained even by classifying every block to the

nonstructured class. Hence, we computed two-class confusion matrices for each tech-

nique. The confusion matrix for the MSRF model is given in Figure B.4 (a). For

an overall detection rate of 72.13%, the false positive rate was 0.43% or 1.46 false

positives per image. The main reason for a relatively low detection rate is that the

algorithm fails to detect the structured blocks that are part of the smooth roofs or

walls that have no significant gradients even at larger scales. In fact, it is almost

impossible to differentiate these blocks from the smooth blocks contained in natural

regions (e.g., sky, land) using any technique without exploiting other auxiliary infor-

mation such as color. Similarly, too small structures and bad illumination contrast

in natural images also make the detection hard. However, it should be noted that

this is a significant detection rate at the block level given a low false positive rate. In

general we do not require all the blocks of an structured object to be detected since

one could use other postprocessing techniques such as color based region-growing to

detect the missing blocks of an object.

Keeping the same detection rate as from the MSRF model, we obtain confusion

matrices for the GMM and SC. Since SVM does not output probabilities, we varied the

cost parameter to obtain the closest possible detection rate. The confusion matrices

are given in Figure B.4. The average false positives per image for the GMM, SC and

SVM are 2.89, 4.47, and 4.88 respectively. The best among these three gives almost
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twice false positives per image in comparison to the MSRF model. The results from

SVM and SC are quite similar with SC having a slight advantage, since the SVM

detection rate is 68.55% in comparison to 72.13% of SC for comparable false positives.

For a more complete comparison of the detection performance of the MSRF, GMM,

and SC techniques, the corresponding ROC curves are shown in Figure B.5. The

MSRF model performs better than the other two techniques. The GMM performs

better than the SC most of the times for our test set. For the regions of low false

positive per image (less than 2), the performance of MSRF model is significantly

better than the other two techniques.



Appendix C

Optical Illusion

Figure C.1: Are there any differences in the two images shown above? See the next
page for more.
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Figure C.2: Correct orientation is important even for human visual understanding!
This example is from Bach [6].
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