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Abstract
Learning-based binary hashing has become a
powerful paradigm for fast search and retrieval
in massive databases. However, due to the re-
quirement of discrete outputs for the hash func-
tions, learning such functions is known to be
very challenging. In addition, the objective func-
tions adopted by existing hashing techniques are
mostly chosen heuristically. In this paper, we
propose a novel generative approach to learn
hash functions through Minimum Description
Length principle such that the learned hash codes
maximally compress the dataset and can also
be used to regenerate the inputs. We also de-
velop an efficient learning algorithm based on the
stochastic distributional gradient, which avoids
the notorious difficulty caused by binary output
constraints, to jointly optimize the parameters
of the hash function and the associated genera-
tive model. Extensive experiments on a variety
of large-scale datasets show that the proposed
method achieves better retrieval results than the
existing state-of-the-art methods.

1. Introduction
Search for similar items in web-scale datasets is a funda-
mental step in a number of applications, especially in im-
age and document retrieval. Formally, given a reference
dataset X = {x

i

}N
i=1 with x 2 X ⇢ Rd, we want to re-

trieve similar items from X for a given query y according
to some similarity measure sim(x, y). When the negative
Euclidean distance is used, i.e., sim(x, y) = �kx � yk2,
this corresponds to L2 Nearest Neighbor Search (L2NNS)
problem; when the inner product is used, i.e., sim(x, y) =
x>y, it becomes a Maximum Inner Product Search (MIPS)
problem. In this work, we focus on L2NNS for simplicity,
however our method handles MIPS problems as well, as
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shown in the supplementary material D. Brute-force linear
search is expensive for large datasets. To alleviate the time
and storage bottlenecks, two research directions have been
studied extensively: (1) partition the dataset so that only
a subset of data points is searched; (2) represent the data
as codes so that similarity computation can be carried out
more efficiently. The former often resorts to search-tree or
bucket-based lookup; while the latter relies on binary hash-
ing or quantization. These two groups of techniques are
orthogonal and are typically employed together in practice.

In this work, we focus on speeding up search via binary
hashing. Hashing for similarity search was popularized by
influential works such as Locality Sensitive Hashing (Indyk
and Motwani, 1998; Gionis et al., 1999; Charikar , 2002).
The crux of binary hashing is to utilize a hash function,
f(·) : X ! {0, 1}l, which maps the original samples in
X 2 Rd to l-bit binary vectors h 2 {0, 1}l while preserv-
ing the similarity measure, e.g., Euclidean distance or in-
ner product. Search with such binary representations can
be efficiently conducted using Hamming distance compu-
tation, which is supported via POPCNT on modern CPUs
and GPUs. Quantization based techniques (Babenko and
Lempitsky, 2014; Jegou et al., 2011; Zhang et al., 2014b)
have been shown to give stronger empirical results but
tend to be less efficient than Hamming search over binary
codes (Douze et al., 2015; He et al., 2013).

Data-dependent hash functions are well-known to perform
better than randomized ones (Wang et al., 2014). Learn-
ing hash functions or binary codes has been discussed in
several papers, including spectral hashing (Weiss et al.,
2009), semi-supervised hashing (Wang et al., 2010), iter-
ative quantization (Gong and Lazebnik, 2011), and oth-
ers (Liu et al., 2011; Gong et al., 2013; Yu et al., 2014; Shen
et al., 2015; Guo et al., 2016). The main idea behind these
works is to optimize some objective function that captures
the preferred properties of the hash function in a supervised
or unsupervised fashion.

Even though these methods have shown promising perfor-
mance in several applications, they suffer from two main
drawbacks: (1) the objective functions are often heuristi-
cally constructed without a principled characterization of
goodness of hash codes, and (2) when optimizing, the bi-
nary constraints are crudely handled through some relax-
ation, leading to inferior results (Liu et al., 2014). In this
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work, we introduce Stochastic Generative Hashing (SGH)
to address these two key issues. We propose a gener-
ative model which captures both the encoding of binary
codes h from input x and the decoding of input x from
h. This provides a principled hash learning framework,
where the hash function is learned by Minimum Descrip-
tion Length (MDL) principle. Therefore, its generated
codes can compress the dataset maximally. Such a gen-
erative model also enables us to optimize distributions over
discrete hash codes without the necessity to handle discrete
variables. Furthermore, we introduce a novel distributional
stochastic gradient descent method which exploits distribu-
tional derivatives and generates higher quality hash codes.
Prior work on binary autoencoders (Carreira-Perpinán and
Raziperchikolaei, 2015) also takes a generative view of
hashing but still uses relaxation of binary constraints when
optimizing the parameters, leading to inferior performance
as shown in the experiment section. We also show that bi-
nary autoencoders can be seen as a special case of our for-
mulation. In this work, we mainly focus on the unsuper-
vised setting1.

2. Stochastic Generative Hashing
We start by first formalizing the two key issues that moti-
vate the development of the proposed algorithm.

Generative view. Given an input x 2 Rd, most hash-
ing works in the literature emphasize modeling the for-
ward process of generating binary codes from input, i.e.,
h(x) 2 {0, 1}l, to ensure that the generated hash codes pre-
serve the local neighborhood structure in the original space.
Few works focus on modeling the reverse process of gen-
erating input from binary codes, so that the reconstructed
input has small reconstruction error. In fact, the generative
view provides a natural learning objective for hashing. Fol-
lowing this intuition, we model the process of generating x
from h, p(x|h), and derive the corresponding hash function
q(h|x) from the generative process. Our approach is not
tied to any specific choice of p(x|h) but can adapt to any
generative model appropriate for the domain. In this work,
we show that even using a simple generative model (Sec-
tion 2.1) already achieves the state-of-the-art performance.

Binary constraints. The other issue arises from dealing
with binary constraints. One popular approach is to relax
the constraints from {0, 1} (Weiss et al., 2009), but this
often leads to a large optimality gap between the relaxed
and non-relaxed objectives. Another approach is to enforce
the model parameterization to have a particular structure
so that when applying alternating optimization, the algo-
rithm can alternate between updating the parameters and

1The proposed algorithm can be extended to supervised/semi-
supervised setting easily as described in the supplementary mate-
rial E.

binarization efficiently. For example, (Gong and Lazebnik,
2011; Gong et al., 2012) imposed an orthogonality con-
straint on the projection matrix, while (Yu et al., 2014) pro-
posed to use circulant constraints, and (Zhang et al., 2014a)
introduced Kronecker Product structure. Although such
constraints alleviate the difficulty with optimization, they
substantially reduce the model flexibility. In contrast, we
avoid such constraints and propose to optimize the distri-
butions over the binary variables to avoid directly working
with binary variables. This is attained by resorting to the
stochastic neuron reparametrization (Section 2.4), which
allows us to back-propagate through the layers of weights
using the stochsastic gradient estimator.

Unlike (Carreira-Perpinán and Raziperchikolaei, 2015)
which relies on solving expensive integer programs, our
model is end-to-end trainable using distributional stochas-
tic gradient descent (Section 3). Our algorithm requires
no iterative steps unlike iterative quantization (ITQ) (Gong
and Lazebnik, 2011). The training procedure is much more
efficient with guaranteed convergence compared to alter-
nating optimization for ITQ.

In the following sections, we first introduce the generative
hashing model p(x|h) in Section 2.1. Then, we describe the
corresponding process of generating hash codes given input
x, q(h|x) in Section 2.2. Finally, we describe the train-
ing procedure based on the Minimum Description Length
(MDL) principle and the stochastic neuron reparametriza-
tion in Sections 2.3 and 2.4. We also introduce the distri-
butional stochastic gradient descent algorithm in Section 3.

2.1. Generative model p(x|h)
Unlike most works which start with the hash function h(x),
we first introduce a generative model that defines the like-
lihood of generating input x given its binary code h, i.e.,
p(x|h). It is also referred as a decoding function. The cor-
responding hash codes are derived from an encoding func-
tion q(h|x), described in Section 2.2.

We use a simple Gaussian distribution to model the gener-
ation of x given h:

p(x, h)=p(x|h)p(h),where p(x|h)=N (Uh,⇢2I) (1)
and U = {u

i

}l
i=1, ui

2 Rd is a codebook with l code-
words. The prior p(h) ⇠ B(✓) =

Q
l

i=1 ✓
h

i

i

(1 � ✓
i

)

1�h

i

is modeled as the multivariate Bernoulli distribution on the
hash codes, where ✓ = [✓

i

]

l

i=1 2 [0, 1]l. Intuitively, this
is an additive model which reconstructs x by summing the
selected columns of U given h, with a Bernoulli prior on
the distribution of hash codes. The joint distribution can be
written as:
p(x, h) / exp (

1
2⇢2

�
x>x+ h>U>Uh� 2x>Uh

�
| {z }

kx�U

>
hk2

2

�(log

✓

1�✓

)

>
h ) (2)
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This generative model can be seen as a restricted form of
general Markov Random Fields in the sense that the pa-
rameters for modeling correlation between latent variables
h and correlation between x and h are shared. However,
it is more flexible compared to Gaussian Restricted Boltz-
mann machines (Krizhevsky, 2009; Marc’Aurelio and Ge-
offrey, 2010) due to an extra quadratic term for modeling
correlation between latent variables. We first show that this
generative model preserves local neighborhood structure of
the x when the Frobenius norm of U is bounded.
Proposition 1 If kUk

F

is bounded, then the Gaussian re-
construction error, kx�Uh

x

k2 is a surrogate for Euclidean
neighborhood preservation.
Proof Given two points x, y 2 Rd, their Euclidean dis-
tance is bounded by

kx� yk2
= k(x� U>h

x

)� (y � U>h
y

) + (U>h
x

� U>h
y

)k2
6 kx� U>h

x

k2 + ky � U>h
y

k2 + kU>
(h

x

� h
y

)k2
6 kx� U>h

x

k2 + ky � U>h
y

k2 + kUk
F

kh
x

� h
y

k2
where h

x

and h
y

denote the binary latent variables corre-
sponding to x and y, respectively. Therefore, we have
kx�yk2�kUk

F

kh
x

�h
y

k2 6 kx�U>h
x

k2+ky�U>h
y

k2
which means minimizing the Gaussian reconstruction er-
ror, i.e., � log p(x|h), will lead to Euclidean neighborhood
preservation.

A similar argument can be made with respect to MIPS
neighborhood preservation as shown in the supplemen-
tary material D. Note that the choice of p(x|h) is not
unique, and any generative model that leads to neighbor-
hood preservation can be used here. In fact, one can even
use more sophisticated models with multiple layers and
nonlinear functions. In our experiments, we find complex
generative models tend to perform similarly to the Gaus-
sian model on datasets such as SIFT-1M and GIST-1M.
Therefore, we use the Gaussian model for simplicity.

2.2. Encoding model q(h|x)
Even with the simple Gaussian model (1), computing the
posterior p(h|x) =

p(x,h)
p(x) is not tractable, and finding

the MAP solution of the posterior involves solving an ex-
pensive integer programming subproblem. Inspired by
the recent work on variational auto-encoder (Kingma and
Welling, 2013; Mnih and Gregor, 2014; Gregor et al.,
2014), we propose to bypass these difficulties by param-
eterizing the encoding function as

q(h|x) =
lY

k=1

q(h
k

= 1|x)hkq(h
k

= 0|x)1�h

k , (3)

to approximate the exact posterior p(h|x). With the linear
parametrization, h = [h

k

]

l

k=1 ⇠ B(�(W>x)) with W =

[w
k

]

l

k=1. At the training step, a hash code is obtained by
sampling from B(�(W>x)). At the inference step, it is

still possible to sample h. More directly, the MAP solution
of the encoding function (3) is readily given by

h(x) = argmax

h

q(h|x) = sign(W>x) + 1

2

This involves only a linear projection followed by a sign
operation, which is common in the hashing literature.
Computing h(x) in our model thus has the same amount
of computation as ITQ (Gong and Lazebnik, 2011), except
without the orthogonality constraints.

2.3. Training Objective
Since our goal is to reconstruct x using the least informa-
tion in binary codes, we train the variational auto-encoder
using the Minimal Description Length (MDL) principle,
which finds the best parameters that maximally compress
the training data. The MDL principle seeks to minimize
the expected amount of information to communicate x:

L(x) =
X

h

q(h|x)(L(h) + L(x|h))

where L(h) = � log p(h) + log q(h|x) is the descrip-
tion length of the hashed representation h and L(x|h) =

� log p(x|h) is the description length of x having already
communicated h in (Hinton and Van Camp, 1993; Hinton
and Zemel, 1994; Mnih and Gregor, 2014). By summing
over all training examples x, we obtain the following train-
ing objective, which we wish to minimize with respect to
the parameters of p(x|h) and q(h|x):

min

⇥={W,U,�,⇢}
H(⇥) :=

X

x

L(x;⇥)

= �
X

x

X

h

q(h|x)(log p(x, h)� log q(h|x)), (4)

where U, ⇢ and � := log

✓

1�✓

are parameters of the gen-
erative model p(x, h) as defined in (1), and W comes
from the encoding function q(h|x) defined in (3). This
objective is sometimes called Helmholtz (variational) free
energy (Williams, 1980; Zellner, 1988; Dai et al., 2016).
When the true posterior p(h|x) falls into the family of (3),
q(h|x) becomes the true posterior p(h|x), which leads to
the shortest description length to represent x.

We emphasize that this objective no longer includes bi-
nary variables h as parameters and therefore avoids op-
timizing with discrete variables directly. This paves the
way for continuous optimization methods such as stochas-
tic gradient descent (SGD) to be applied in training. As
far as we are aware, this is the first time such a procedure
has been used in the problem of unsupervised learning to
hash. Our methodology serves as a viable alternative to the
relaxation-based approaches commonly used in the past.

2.4. Reparametrization via Stochastic Neuron

Using the training objective of (4), we can directly com-
pute the gradients w.r.t. parameters of p(x|h). However, we
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cannot compute the stochastic gradients w.r.t. W because
it depends on the stochastic binary variables h. In order to
back-propagate through stochastic nodes of h, two possible
solutions have been proposed. First, the reparametrization
trick (Kingma and Welling, 2013) which works by intro-
ducing auxiliary noise variables in the model. However, it
is difficult to apply when the stochastic variables are dis-
crete, as is the case for h in our model. On the other hand,
the gradient estimators based on REINFORCE trick (Ben-
gio et al., 2013) suffer from high variance. Although some
variance reduction remedies have been proposed (Mnih and
Gregor, 2014; Gu et al., 2015), they are either biased or re-
quire complicated extra computation in practice.

In next section, we first provide an unbiased estimator
of the gradient w.r.t. W derived based on distributional
derivative, and then, we derive a simple and efficient ap-
proximator. Before we derive the estimator, we first intro-
duce the stochastic neuron for reparametrizing Bernoulli
distribution. A stochastic neuron reparameterizes each
Bernoulli variable h

k

(z) with z 2 (0, 1). Introducing ran-
dom variables ⇠ ⇠ U(0, 1), the stochastic neuron is defined
as

˜h(z, ⇠) :=

(
1 if z > ⇠

0 if z < ⇠
. (5)

Because P(˜h(z, ⇠) = 1) = z, we have ˜h(z, ⇠) ⇠ B(z). We
use the stochastic neuron (5) to reparameterize our binary
variables h by replacing [h

k

]

l

k=1(x) ⇠ B(�(w>
k

x)) with
[

˜h
k

(�(w>
k

x), ⇠
k

)]

l

k=1. Note that ˜h now behaves determin-
istically given ⇠. This gives us the reparameterized version
of our original training objective (4):

˜H(⇥) =

X

x

˜H(⇥;x) :=
X

x

E
⇠

h
`(˜h, x)

i
, (6)

where `(˜h, x) := � log p(x, ˜h(�(W>x), ⇠)) +

log q(˜h(�(W>x), ⇠)|x) with ⇠ ⇠ U(0, 1). With such
a reformulation, the new objective can now be optimized
by exploiting the distributional stochastic gradient descent,
which will be explained in the next section.

3. Distributional Stochastic Gradient Descent
For the objective in (6), given a point x randomly sampled
from {x

i

}N
i=1, the stochastic gradient br

U,�,⇢

˜H(⇥;x) can
be easily computed in the standard way. However, with the
reparameterization, the function ˜H(⇥;x) is no longer dif-
ferentiable with respect to W due to the discontinuity of
the stochastic neuron ˜h(z, ⇠). Namely, the SGD algorithm
is not readily applicable. To overcome this difficulty, we
will adopt the notion of distributional derivative for gener-
alized functions or distributions (Grubb, 2008).

3.1. Distributional derivative of Stochastic Neuron

Let ⌦ ⇢ Rd be an open set. Denote C1
0 (⌦) as the space of

the functions that are infinitely differentiable with compact

Algorithm 1 Distributional-SGD
Input: {x

i

}N
i=1

1: Initialize ⇥0 = {W,U,�, ⇢} randomly.
2: for i = 1, . . . , t do
3: Sample x

i

uniformly from {x
i

}N
i=1.

4: Sample ⇠
i

⇠ U([0, 1]l).
5: Compute stochastic gradients br⇥

˜H(⇥

i

;x
i

) or
b̃r⇥

˜H(⇥

i

;x
i

), defined in (8) and (10), respectively.
6: Update parameters as

⇥

i+1 = ⇥

i

� �
i

br⇥
˜H(⇥

i

;x
i

), or

⇥

i+1 = ⇥

i

� �
i

b̃r⇥
˜H(⇥

i

;x
i

), respectively.
7: end for

support in ⌦. Let D0
(⌦) be the space of continuous linear

functionals on C1
0 (⌦), which can be considered as the dual

space. The elements in space D0
(⌦) are often called gen-

eral distributions. We emphasize this definition of distri-
butions is more general than that of traditional probability
distributions.
Definition 2 (Distributional derivative) (Grubb, 2008)
Let u 2 D0

(⌦), then a distribution v is called the distri-
butional derivative of u, denoted as v = Du, if it satisfiesZ

⌦
v�dx = �

Z

⌦
u@�dx, 8� 2 C1

0 (⌦).

It is straightforward to verify that for given ⇠, the func-
tion ˜h(z, ⇠) 2 D0

(⌦) and moreover, D
z

˜h(z, ⇠) = �
⇠

(z),
which is exactly the Dirac-� function. Based on the defi-
nition of distributional derivatives and chain rules, we are
able to compute the distributional derivative of the function
˜H(⇥;x), which is provided in the following lemma.

Lemma 3 For a given sample x, the distributional deriva-
tive of function ˜H(⇥;x) w.r.t. W is given by
D

W

˜H(⇥;x) = (7)

E
⇠

h
�

h̃

`(˜h(�(W>x), ⇠))�(W>x) • (1� �(W>x))x>
i

where • denotes point-wise product and �

h̃

`(˜h) denotes
the finite difference defined as

h
�

h̃

`(˜h)
i

k

= `(˜h1
k

)�`(˜h0
k

),

where [

˜hi

k

]

l

=

˜h
l

if k 6= l, otherwise [

˜hi

k

]

l

= i, i 2 {0, 1}.
We can therefore combine distributional derivative estima-
tors (7) with stochastic gradient descent algorithm (see e.g.,
(Nemirovski et al., 2009) and its variants (Kingma and Ba,
2014; Bottou et al., 2016)), which we designate as Distribu-
tional SGD. The detail is presented in Algorithm 1, where
we denote
br⇥

˜H(⇥

i

;x
i

) =

h
bD
W

˜H(⇥

i

;x
i

), br
U,�,⇢

˜H(⇥

i

;x
i

)

i
(8)

as the unbiased stochastic estimator of the gradient at ⇥
i

constructed by sample x
i

, ⇠
i

. Compared to the existing
algorithms for learning to hash which require substantial
effort on optimizing over binary variables, e.g., (Carreira-
Perpinán and Raziperchikolaei, 2015), the proposed distri-
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butional SGD is much simpler and also amenable to online
settings (Huang et al., 2013; Leng et al., 2015).

In general, the distributional derivative estimator (7) re-
quires two forward passes of the model for each dimen-
sion. To further accelerate the computation, we approxi-
mate the distributional derivative D

W

˜H(⇥;x) by exploit-
ing the mean value theorem and Taylor expansion by
˜D
W

˜H(⇥;x) := (9)

E
⇠

h
r

h̃

`(˜h(�(W>x), ⇠))�(W>x) • (1� �(W>x))x>
i
,

which can be computed for each dimension in one pass.
Then, we can exploit this estimator
b̃r⇥

˜H(⇥

i

;x
i

) =

h b̃D
W

˜H(⇥

i

;x
i

), br
U,�,⇢

˜H(⇥

i

;x
i

)

i
(10)

in Algorithm 1. Interestingly, the approximate stochas-
tic gradient estimator of the stochastic neuron we estab-
lished through the distributional derivative coincides with
the heuristic “pseudo-gradient” constructed (Raiko et al.,
2014). Please refer to the supplementary material A for
details for the derivation of the approximate gradient esti-
mator (9).

3.2. Convergence of Distributional SGD

One caveat here is that due to the potential discrepancy
of the distributional derivative and the traditional gradient,
whether the distributional derivative is still a descent direc-
tion and whether the SGD algorithm integrated with dis-
tributional derivative converges or not remains unclear in
general. However, for our learning to hash problem, one
can easily show that the distributional derivative in (7) is
indeed the true gradient.

Proposition 4 The distributional derivative D
W

˜H(⇥;x)
is equivalent to the traditional gradient r

W

H(⇥;x).

Proof First of all, by definition, we have ˜H(⇥;x) =

H(⇥;x). One can easily verify that under mild condition,
both D

W

˜H(⇥;x) and r
W

H(⇥;x) are continuous and 1-
norm bounded. Hence, it suffices to show that for any dis-
tribution u 2 C1

(⌦) and Du,ru 2 L1(⌦), Du = ru. For
any � 2 C1

0 (⌦), by definition of the distributional deriva-
tive, we have

R
⌦ Du�dx = � R

⌦ u@�dx. On the other
hand, we always have

R
⌦ ru�dx = � R

u@�dx. Hence,R
⌦(Du�ru)�dx = 0 for all � 2 C1

0 (⌦). By the Du Bois-
Reymond’s lemma (see Lemma 3.2 in (Grubb, 2008)), we
have Du = ru.

Consequently, the distributional SGD algorithm enjoys the
same convergence property as the traditional SGD algo-
rithm. Applying theorem 2.1 in (Ghadimi and Lan, 2013),
we arrive at

Theorem 5 Under the assumption that H is L-Lipschitz
smooth and the variance of the stochastic distributional
gradient (8) is bounded by �2 in the distributional SGD,
for the solution ⇥

R

sampled from the trajectory {⇥
i

}t
i=1

with probability P (R = i) =

2�
i

�L�

2
iP

t

i=1 2�
i

�L�

2
i

where �
i

⇠
O �

1/
p
t
�
, we have

E
���r⇥H̃(⇥R)

���
2
�
⇠ O

✓
1p
t

◆
.

We emphasize that although the estimator proposed in (7)
and the REINFORCE gradient estimator are both unbiased,
the latter is known to suffer from high variance. Hence, our
algorithm is expected to converge faster even without extra
variance reduction techniques, e.g., (Gregor et al., 2014; Gu
et al., 2015).

In fact, even with the approximate gradient estimators (9),
the proposed distributional SGD is also converging in terms
of first-order conditions. For the detailed proof of theo-
rem 5 and the convergence with approximate distributional
derivative, please refer to the supplementary material B.

4. Connections
The proposed stochastic generative hashing is a general
framework. In this section, we reveal the connection to
several existing algorithms.

Iterative Quantization (ITQ). If we fix some ⇢ > 0, and
U = WR where W is formed by eigenvectors of the co-
variance matrix and R is an orthogonal matrix, we have
U>U = I . If we assume the joint distribution as

p(x, h) / N (WRh, ⇢2I)B(✓),
and parametrize q(h|x

i

) = �
b

i

(h), then from the objective
in (4) and ignoring the irrelevant terms, we obtain the opti-
mization

min

R,b

NX

i=1

kx
i

�WRb
i

k2, (11)

which is exactly the objective of iterative quantiza-
tion (Gong and Lazebnik, 2011).

Binary Autoencoder (BA). If we use the deterministic lin-
ear encoding function, i.e., q(h|x) = � 1+sign(W>

x)
2

(h), and
prefix some ⇢ > 0, and ignore the irrelevant terms, the op-
timization (4) reduces to

min

U,W

NX

i=1

���x
i

� Uh
���
2
, s.t. h =

1 + sign(W>x)

2

, (12)

which is the objective of a binary autoencoder (Carreira-
Perpinán and Raziperchikolaei, 2015).

In BA, the encoding procedure is deterministic, therefore,
the entropy term E

q(h|x) [log q(h|x)] = 0. In fact, the en-
tropy term, if non-zero, performs like a regularization and
helps to avoid wasting bits. Moreover, without the stochas-
ticity, the optimization (12) becomes extremely difficult
due to the binary constraints. While for the proposed algo-
rithm, we exploit the stochasticity to bypass such difficulty
in optimization. The stochasticity enables us to accelerate
the optimization as shown in section 5.3.
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5. Experiments
In this section, we evaluate the performance of the pro-
posed distributional SGD on commonly used datasets in
hashing. Due to the efficiency consideration, we conduct
the experiments mainly with the approximate gradient es-
timator (9). We evaluate the model and algorithm from
several aspects to demonstrate the power of the proposed
SGH: (1) Reconstruction loss. To demonstrate the flexibil-
ity of generative modeling, we compare the L2 reconstruc-
tion error to that of ITQ (Gong and Lazebnik, 2011), show-
ing the benefits of modeling without the orthogonality con-
straints. (2) Nearest neighbor retrieval. We show Recall
K@N plots on standard large scale nearest neighbor search
benchmark datasets of MNIST, SIFT-1M, GIST-1M and
SIFT-1B, for all of which we achieve state-of-the-art
among binary hashing methods. (3) Convergence of the
distributional SGD. We evaluate the reconstruction error
showing that the proposed algorithm indeed converges, ver-
ifying the theorems. (4) Training time. The existing gen-
erative works require a significant amount of time for train-
ing the model. In contrast, our SGD algorithm is very fast
to train both in terms of number of examples needed and the
wall time. (5) Reconstruction visualization. Due to the
generative nature of our model, we can regenerate the orig-
inal input with very few bits. On MNIST and CIFAR10,
we qualitatively illustrate the templates that correspond to
each bit and the resulting reconstruction.

We used several benchmarks datasets, i.e., (1) MNIST
which contains 60,000 digit images of size 28⇥ 28 pixels,
(2) CIFAR-10 which contains 60,000 32⇥ 32 pixel color
images in 10 classes, (3) SIFT-1M and (4) SIFT-1B
which contain 10

6 and 10

9 samples, each of which is a 128
dimensional vector, and (5) GIST-1M which contains 106
samples, each of which is a 960 dimensional vector.

5.1. Reconstruction loss

Because our method has a generative model p(x|h), we can
easily compute the regenerated input x̃ = argmax p(x|h),
and then compute the L2 loss of the regenerated input and
the original x, i.e., kx � x̃k22. ITQ also trains by minimiz-
ing the binary quantization loss, as described in Equation
(2) in (Gong and Lazebnik, 2011), which is essentially L2

reconstruction loss when the magnitude of the feature vec-
tors is compatible with the radius of the binary cube. We
plotted the L2 reconstruction loss of our method and ITQ
on SIFT-1M in Figure 1(a) and on MNIST and GIST-1M
in Figure 4, where the x-axis indicates the number of ex-
amples seen by the training algorithm and the y-axis shows
the average L2 reconstruction loss. The training time com-
parison is listed in Table 1. Our method (SGH) arrives
at a better reconstruction loss with comparable or even
less time compared to ITQ. The lower reconstruction loss
demonstrates our claim that the flexibility of the proposed
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Figure 1: (a) Convergence of reconstruction error with
number of samples seen by SGD, and (b) training time
comparison of BA and SGH on SIFT-1M over the course
of training with varying number of bits.

Table 1: Training time on SIFT-1M in second.
Method 8 bits 16 bits 32 bits 64 bits
SGH 28.32 29.38 37.28 55.03
ITQ 92.82 121.73 173.65 259.13

model afforded by removing the orthogonality constraints
indeed brings extra modeling ability. Note that ITQ is gen-
erally regarded as a technique with fast training among the
existing binary hashing algorithms, and most other algo-
rithms (He et al., 2013; Heo et al., 2012; Carreira-Perpinán
and Raziperchikolaei, 2015) take much more time to train.

5.2. Large scale nearest neighbor retrieval
We compared the stochastic generative hashing on an
L2NNS task with several state-of-the-art unsupervised al-
gorithms, including K-means hashing (KMH) (He et al.,
2013), iterative quantization (ITQ) (Gong and Lazeb-
nik, 2011), spectral hashing (SH) (Weiss et al., 2009),
spherical hashing (SpH) (Heo et al., 2012), binary au-
toencoder (BA) (Carreira-Perpinán and Raziperchikolaei,
2015), and scalable graph hashing (GH) (Jiang and Li,
2015). We demonstrate the performance of our binary
codes by doing standard benchmark experiments of Ap-
proximate Nearest Neighbor (ANN) search by comparing
the retrieval recall. In particular, we compare with other un-
supervised techniques that also generate binary codes. For
each query, linear search in Hamming space is conducted
to find the approximate neighbors.

Following the experimental setting of (He et al., 2013),
we plot the Recall10@N curve for MNIST, SIFT-1M,
GIST-1M, and SIFT-1B datasets under varying number
of bits (16, 32 and 64) in Figure 2. On the SIFT-1B
datasets, we only compared with ITQ since the training cost
of the other competitors is prohibitive. The recall is defined
as the fraction of retrieved true nearest neighbors to the to-
tal number of true nearest neighbors. The Recall10@N is
the recall of 10 ground truth neighbors in the N retrieved
samples. Note that Recall10@N is generally a more chal-
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Figure 2: L2NNS comparison on MNIST, SIFT-1M, and GIST-1M and SIFT-1Bwith the length of binary codes varying
from 16 to 64 bits. We evaluate the performance with Recall 10@M (fraction of top 10 ground truth neighbors in retrieved
M), where M increases up to 1000.

lenging criteria than Recall@N (which is essentially Re-
call1@N), and better characterizes the retrieval results. For
completeness, results of various Recall K@N curves can
be found in the supplementary material which show simi-
lar trend as the Recall10@N curves.

Figure 2 shows that the proposed SGH consistently per-
forms the best across all bit settings and all datasets. The
searching time is the same, because all algorithms use the
same optimized implementation of POPCNT based Ham-
ming distance computation and priority queue. We point
out that many of the baselines need significant parameter
tuning for each experiment to achieve a reasonable recall,
except for ITQ and our method, where we fix hyperparam-
eters for all our experiments and used a batch size of 500
and learning rate of 0.01 with stepsize decay. Our method
is less sensitive to hyperparameters.

5.3. Empirical study of Distributional SGD
We demonstrate the convergence of the Adam (Kingma
and Ba, 2014) with distributional derivative numerically on
SIFT-1M, GIST-1M and MINST from 8 bits to 64 bits.
The convergence curves on SIFT-1M are shown in Fig-
ure 1 (a). The results on GIST-1M and MNIST are similar

and shown in Figure 4 in supplementary material C. Obvi-
ously, the proposed algorithm converges quickly, no matter
how many bits are used. It is reasonable that with more
bits, the model fits the data better and the reconstruction
error can be reduced further.

In line with the expectation, our distributional SGD trains
much faster since it bypasses integer programming. We
benchmark the actual time taken to train our method to
convergence and compare that to binary autoencoder hash-
ing (BA) (Carreira-Perpinán and Raziperchikolaei, 2015)
on SIFT-1M, GIST-1M and MINST. We illustrate the per-
formance on SIFT-1M in Figure 1(b) . The results on
GIST-1M and MNIST datasets follow a similar trend as
shown in the supplementary material C. Empirically, BA
takes significantly more time to train on all bit settings
due to the expensive cost for solving integer programming
subproblem. Our experiments were run on AMD 2.4GHz
Opteron CPUs⇥4 and 32G memory. Our implementation
of stochastic generative hashing as well as the whole train-
ing procedure was done in TensorFlow. We have released
our code on GitHub2. For the competing methods, we di-

2https://github.com/doubling/Stochastic Generative Hashing
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(a) Templates and re-generated images on MNIST

(b) Templates and re-generated images on CIFAR-10

Figure 3: Illustration of MNIST and CIFAR-10 templates (left) and regenerated images (right) from different methods
with 64 hidden binary variables. In MNIST, the four rows and their number of bits used to encode them are, from the top:
(1) original image, 28⇥ 28⇥ 8 = 6272 bits; (2) PCA with 64 components 64⇥ 32 = 2048 bits; (3) SGH, 64 bits; (4) ITQ,
64 bits. In CIFAR : (1) original image, 30⇥ 30⇥ 24 = 21600 bits; (2) PCA with 64 components 64⇥ 32 = 2048 bits; (3)
SGH, 64 bits; (4) ITQ, 64 bits. The SGH reconstruction tends to be much better than that of ITQ, and is on par with PCA
which uses 32 times more bits!

rectly used the code released by the authors.

5.4. Visualization of reconstruction

One important aspect of utilizing a generative model for a
hash function is that one can generate the input from its
hash code. When the inputs are images, this corresponds
to image generation, which allows us to visually inspect
what the hash bits encode, as well as the differences in the
original and generated images.

In our experiments on MNIST and CIFAR-10, we first vi-
sualize the “template” which corresponds to each hash bit,
i.e., each column of the decoding dictionary U . This gives
an interesting insight into what each hash bit represents.
Unlike PCA components, where the top few look like aver-
aged images and the rest are high frequency noise, each of
our image template encodes distinct information and looks
much like filter banks of convolution neural networks. Em-
pirically, each template also looks quite different and en-
codes somewhat meaningful information, indicating that no
bits are wasted or duplicated. Note that we obtain this rep-
resentation as a by-product, without explicitly setting up
the model with supervised information, similar to the case
in convolution neural nets.

We also compare the reconstruction ability of SGH with
the that of ITQ and real valued PCA in Figure 3. For ITQ
and SGH, we use a 64-bit hash code. For PCA, we kept 64
components, which amounts to 64⇥ 32 = 2048 bits. Visu-
ally comparing with SGH, ITQ reconstructed images look
much less recognizable on MNIST and much more blurry
on CIFAR-10. Compared to PCA, SGH achieves similar

visual quality while using a significantly lower (32⇥ less)
number of bits!

6. Conclusion
In this paper, we have proposed a novel generative ap-
proach to learn binary hash functions. We have justified
from a theoretical angle that the proposed algorithm is
able to provide a good hash function that preserves Eu-
clidean neighborhoods, while achieving fast learning and
retrieval. Extensive experimental results justify the flexi-
bility of our model, especially in reconstructing the input
from the hash codes. Comparisons with approximate near-
est neighbor search over several benchmarks demonstrate
the advantage of the proposed algorithm empirically. We
emphasize that the proposed generative hashing is a gen-
eral framework which can be extended to semi-supervised
settings and other learning to hash scenarios as detailed in
the supplementary material. Moreover, the proposed distri-
butional SGD with the unbiased gradient estimator and its
approximator can be applied to general integer program-
ming problems, which may be of independent interest.
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