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Abstract. Estimation of parameters of random field models from la-
beled training data is crucial for their good performance in many im-
age analysis applications. In this paper, we present an approach for ap-
proximate maximum likelihood parameter learning in discriminative field
models, which is based on approximating true expectations with simple
piecewise constant functions constructed using inference techniques. Gra-
dient ascent with these updates exhibits compelling limit cycle behavior
which is tied closely to the number of errors made during inference. The
performance of various approximations was evaluated with different in-
ference techniques showing that the learned parameters lead to good
classification performance so long as the method used for approximating
the gradient is consistent with the inference mechanism. The proposed
approach is general enough to be used for the training of, e.g., smoothing
parameters of conventional Markov Random Fields (MRFs).

1 Introduction

In language processing, natural image analysis and many other applications, the
input data show significant dependencies, which should be modeled appropri-
ately to achieve good classification. In earlier work [1], we presented the Dis-
criminative Random Field (DRF) model for image analysis, which discrimina-
tively models the conditional distribution of the labels given the observed data
directly as a Gibbs Field. DRFs allow one to relax the assumption of conditional
independence of the observed data, which is invoked commonly in conventional
generative MRF frameworks, and were shown to give better classification results
than MRFs [1]. DRFs were inspired by Conditional Random Field (CRF), which
was proposed by Lafferty et al. [2] and developed to analyze 1D sequence data
for which exact maximum likelihood parameters can be computed efficiently,
e.g., using iterative scaling [2], quasi-Newton methods [3], etc. Unfortunately,
for graphs with loops, which are typical in image analysis, it is generally infeasi-
ble to exactly maximize the likelihood with respect to the parameters. Therefore,
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a critical issue in applying discriminative fields is the design of effective param-
eter learning techniques that can operate on arbitrary graphs. The objective of
this paper is to address this central issue.

In this work, we approximate the gradients of the log likelihood function
directly using the inference techniques. Our experimental results may be sum-
marized by the following two observations: First, parameter learning can be
achieved by approximating the likelihood gradient using the label estimates ob-
tained through methods such as Maximum A Posteriori (MAP) or Maximum
Posterior Marginal (MPM) for the given conditional probability model. Sec-
ond, good classification performance can be achieved by any of these approx-
imations, so long as the method used for inference matches the method used
for approximating the gradient in the parameter learning. We note that this
learning/inference coupling is reasonable because the usual goal in classification
problems is to minimize the number of errors, which is what our gradient ap-
proximation does, even though this may not necessarily maximize the likelihood.
We also present a new experimental comparison of several learning and inference
algorithm combinations for guiding what type of learning approximation should
be adopted for a given choice of inference method.

2 Discriminative Random Field (DRF)

In this section, we review the formulation of discriminative fields. Although the
formulation is general to arbitrary graphs with multiple class labels [4], we will
discuss the problem of learning in the context of binary classification on 2D image
lattices. Let y be the observed data from an input image, where y = {yi}i∈S , yi

is the data from ith site, and S is the set of sites. Let the corresponding labels
be given by x = {xi}i∈S where xi ∈ {−1, 1}. The DRF formulation combines
local discriminative models to capture the class associations at individual sites
with the interactions in the neighboring sites as:

P (x|y) =
1

Z
exp




∑

i∈S

log P ′(xi|y) +
∑

i∈S

∑

j∈Ni

log P ′′(xi, xj |y)



 , (1)

where Z is the partition function (normalizing constant). Note that both the
unary potential, log P ′(xi|y), and the pairwise potential, log P ′′(xi, xj |y), de-
pend explicitly on all the observations y. Unlike conventional generative MRFs,
where the pairwise potential is a data-independent prior over the labels, the
pairwise potential in DRFs depend on data y and thus allow data-dependent
interactions among the labels. Hence, DRFs capture much richer contexts in
images. For instance, while the pairwise potential in MRF priors can model
smoothness of the labels, DRFs can modulate this smoothness by using local
image context, e.g., the smoothness can be deactivated at edges in the image.

In (1), P ′(xi|y) and P ′′(xi, xj |y) are arbitrary unary and pairwise discrim-
inative classifiers. This view gives us the flexibility to choose domain-specific
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discriminative classifiers suitable for specific tasks. In this paper, as in our
previous work [1], we use a logistic link to give the local class posterior, i.e.,
P ′(xi|y) = σ(xiw

T hi(y)), where σ(t) = 1/(1 + e−t). Here w is a parameter
vector, and hi(y) is a sitewise feature vector. Similarly, to model P ′′(xi, xj |y)
we use a pairwise logistic classifier, which can be written in a simplified form
as, P ′′(xi, xj |y) = xixjv

T µij(y). Here v is a parameter vector, and µij(y) is a
pairwise feature vector. Note that these choices of discriminative classifiers lead
to forms of unary and pairwise potentials that are linear in parameters, similar
to the CRFs given in [2]. Therefore, this particular DRF form can be seen as
a 2D extension of 1D CRFs. Again, the loops in these 2D graphs require more
elaborate parameter learning methods, which is the main concern of this paper.
It is interesting to note that by ignoring the dependence of the pairwise potential
on the observed data y, we obtain the conventional MRF smoothing potential,
βxixj , also known as the Ising model.

3 Parameter learning approaches

We take a supervised training approach to learning the parameters of the DRF
model. The data required are the observed training images and their corre-
sponding ground-truth labeling (e.g., known segmentation). In this work we fo-
cus on the standard maximum likelihood approach to learning the parameters.
In the case of DRFs, this implies maximization of the conditional likelihood,
log P (x|y, θ)1.

3.1 Maximum likelihood parameter learning

Let θ be the set of unknown DRF parameters, where θ = {w, v}. Given M i.i.d.
labeled training images, the maximum likelihood estimates of the parameters
are given by maximizing the log-likelihood l(θ) =

∑M

m=1
log P (xm|ym, θ), i.e.,

θ̂=argmax
θ

M∑

m=1





∑

i∈Sm

log σ(xm
i wT hi(y

m))+
∑

i∈Sm

∑

j∈Ni

xm
i xm

j vT µij(y
m)−logZm




 ,

(2)

where the partition function for the mth image is,

Zm =
∑

x

exp





∑

i∈Sm

log σ(xiw
T hi(y

m)) +
∑

i∈Sm

∑

j∈Ni

xixjv
T µij(y

m)




 .

1 Under the Bayesian view, maximum likelihood learning generally refers to the max-
imization of the joint distribution, P (x, y; θ) = P (y|x; θ)P (x; θ), where P (x; θ) is
an explicit prior in a generative model.
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Note that Zm is a function of the parameters θ and the observed data ym.
For learning the parameters using gradient ascent, the derivatives of the log-
likelihood are

∂l(θ)

∂w
=

1

2

∑

m

∑

i∈Sm

(xm
i − 〈xi〉θ;ym)hi(y

m), (3)

∂l(θ)

∂v
=

∑

m

∑

i∈Sm

∑

j∈Ni

(xm
i xm

j − 〈xixj〉θ;ym)µij(y
m). (4)

Here 〈·〉θ;ym denotes expectation with P (x|ym, θ). Ignoring µij(y
m), gradient

ascent with (4) is exactly the learning problem for the smoothing parameter of
the Ising model.

Generally the expectations in (3) and (4) cannot be computed analytically
due to the combinatorial size of the label space. Sampling procedures such as
Markov Chain Monte Carlo (MCMC) can be used to approximate the true ex-
pectations. Unfortunately, MCMC techniques have two main problems: a long
‘burn-in’ period (which makes them slow) and high variance in estimates [5].
Recently data-driven MCMC procedures have been proposed to address the
problem of slow computation [6]. An alternative approach to avoid the above
MCMC drawbacks, Contrastive Divergence (CD), was proposed by Hinton [5].
In CD, only a single MCMC move is made from the current empirical distribu-
tion of the data (P 0) leading to new distribution (P 1), thus eliminating the need

for running the chain beyond burn-in. According to CD, 〈xi〉θ;y ≈ 〈xi〉
P 1

θ;y and

〈xixj〉θ;y ≈ 〈xixj〉
P 1

θ;y. Even though CD is computationally simple and yields

estimates with low variance, the bias in estimates can be a problem [7], which
was also verified in our experiments in Section 6. However, this approximation
of expectation using a single sample inspired the different approximations we
propose in this work, as shown in the next section.

3.2 Coupling parameter learning and inference

The approximations defined in the previous section replace the exact gradient
of (3) and (4) by J(θ) = (J1(θ), J2(θ)), where

J1(θ) =
1

2

∑

m

∑

i∈Sm

(xm
i − fi(θ; y

m))hi(y
m), (5)

J2(θ) =
∑

m

∑

i∈Sm

∑

j∈Ni

(xm
i xm

j − gij(θ; y
m))µij(y

m), (6)

and fi and gij are functions that approximate the true expectations in the gra-
dient. Several approaches have been proposed that compute fi and gij using
pseudo-marginals [8][9]. In this work, we propose to directly construct fi and gij

using label estimates obtained through MAP and MPM inference at the current
parameter estimates (Section 4.2 and 4.3).
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Will the gradient ascent of the likelihood with such approximate gradients
still converge? The answer is that, while the approximate gradient ascent is
not strictly convergent in general, it is weakly convergent in that it oscillates
within a set of good parameters, or converges to a good parameter with isolated
large deviations, as shown experimentally in Section 5. But why should the
parameters learned using a particular choice of approximating functions yield
good classification performance? Informally, if we use for parameter learning the
same approximating function fi that was obtained from inference (e.g., a MAP
label estimate), then, given input training labels {xm

i },

Nθ
E =

1

2

∑

m

∑

i∈Sm

|xm
i − fi(θ; y

m))| (7)

can be interpreted as the number of errors in classification. Comparing (7)
with (5) shows that the approximated gradient is directly related to the number
of errors, so long as the same approximation is used in both parameter learning
and inference. We provide more details in Section 7.1.

4 Candidate approximations

We first review the form of fi and gij based on pseudo-marginals, and then in-
troduce two approximations directly based on two different inference algorithms
for estimating the labels: Maximum A Posteriori (MAP), and Maximum Pos-
terior Marginal (MPM). Given our focus on binary DRFs, approximate MAP
estimates were obtained using the min-cut/max-flow algorithms as explained in
[1], and the MPM estimates were obtained using the sum-product version of
loopy Belief Propagation (BP) [10]. The approximations described below are
designed to match these two classes of inference techniques.

4.1 Pseudo-Marginal Approximation (PMA)

It is easy to see that if we had true marginal distributions Pi(xi|y, θ) at each
site i and Pij(xi, xj |y, θ) at each pair of sites i and j ∈ Ni, we could compute
exact expectations using

〈xi〉θ;y =
∑

xi

xiPi(xi|y, θ) and 〈xixj〉θ;y =
∑

xi,xj

xixjPij(xi, xj |y, θ).

Since computing exact marginal distributions is in general infeasible, a standard
approach is to replace the actual marginals by pseudo-marginals [9]. Here, we
again used loopy BP to get these marginals. Since loopy BP assumes a tree
approximation of the graph [10], it is expected to produce better approximations
of these marginals than mean-field, which assumes the nodes in the graph to be
disconnected. McCallum et al. [9] use a similar approximation, where pseudo-
marginals estimated using Tree-based Reparametrization (TRP) were used for
parameter learning in Factorial CRFs.
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4.2 Learning with MAP inference: Saddle Point Approximation
(SPA)

Here, we propose a very simple approximation inspired by CD [5], but uses MAP
label estimates. It is based on approximating the partition function Z with the
Saddle Point Approximation (SPA) [11]. According to SPA, Z is approximated
such that the summation over all the label configurations x in Z is replaced by
the largest term in the sum, which occurs at the most probable label configura-
tion2. In other words, if x̂ = argmax

x
P (x|y, θ), then the SPA implies,

Z ≈ exp





∑

i∈S

log σ(x̂iw
T hi(y)) +

∑

i∈S

∑

j∈Ni

x̂ix̂jv
T µij(y)




 .

This leads to a very simple approximation to the expectation, i.e., 〈xi〉θ;y ≈
x̂i. Observe that this approximation would be exact if x were Gaussian. If we
further assume mean-field decoupling, i.e., 〈xixj〉θ;y = 〈xi〉θ;y 〈xj〉θ;y, it also

follows that 〈xixj〉θ;y ≈ x̂ix̂j . It is interesting to note that with the saddle point

approximation of Z, the gradient ascent updates are similar to the perceptron-
learning type updates used in [12] and [13] in nonprobabilistic settings.

4.3 Learning with MPM inference: Maximum Marginal
Approximation (MMA)

This is the second approximation based on BP inference in which Maximum
Posterior Marginal (MPM) label estimates are used for approximating the ex-
pectations. Following the arguments of SPA-based parameter learning in the
previous section, one can make a similar approximation of Z such that all the
mass of Z is assumed to be concentrated on the maximum marginal configu-
ration, x̃i = argmax

xi

Pi(xi|y, θ). The expectations in this case can be written

as 〈xi〉θ;y ≈ x̃i and 〈xixj〉θ;y ≈ x̃ix̃j . Clearly, in the binary case, maximum

marginals are just the thresholded sitewise marginals. Thus, MMA can be inter-
preted as a discrete approximation of PMA. We experimented with both MMA
and SPA in order to gain a better understanding of the consequences of dis-
cretization (see Section 5 and 7.1).

5 Experimental observations: parameter learning

To analyze the convergence behavior of various parameter learning procedures
described in the previous section, we learned a DRF model for a binary image
denoising application. The aim was to obtain true labels from corrupted binary
images. A binary image (leftmost image in the top row of Figure 2) of size 64×64
pixels was corrupted by two types of noise: Gaussian noise and Bimodal (mixture

2 Seen from the Boltzmann distribution point of view, for the distribution P (x|y, θ),
this will happen at the zero-temperature limit.
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of two Gaussians) noise. For each noise model, 10 noisy images were used as the
training set for learning the parameters. The unary and pairwise features were
defined as: hi(y) = [1, Ii]

T and µij(y) = [1, |Ii − Ij |]
T respectively, where Ii and

Ij are the pixel intensities at site i and site j. The details of the noise parameters
for this dataset are given in [1]. Here, the parameter vectors w and v were both
two-element vectors, i.e., w = [w0 w1]

T , and v = [v0 v1]
T .

In all the experiments, parameters were initialized from random values and
updates were based on gradient ascent. The step size η was fixed to a small
value (10−5). Fig. 1 shows, for each approximation, plots of the approximated
gradients and the parameters at each iteration for a typical run with bimodal
noise. For brevity we show plots only for parameters w0 and w1. The other
parameters behaved similarly. The last row in Figure 1 shows the number of
training errors (Nθ

E) made at the current estimate of the parameters using the
same inference technique on which a particular gradient approximation is based.

Since the log likelihood in (2) is a convex function of parameters, the final
parameter values at convergence will be independent of their initialization in the
true gradient ascent. For the PMA based learning, this desirable behavior was
seen (Fig. 1 (a)).

For SPA and MMA based learning, an interesting behavior emerges since
both of them make discrete approximations of the true expectations. It was
found that both SPA and MMA show two different stereotypical patterns of
limit cycle convergence depending on the parameter initialization (see Section
7.1). For SPA, in the first case (Figure 1 (b)), the approximated gradients for
all the parameters show oscillatory behavior. Initially there are large oscillations
in gradients which later settle down to a low gradient zone. The gradients re-
main in this zone for a relatively long duration before showing large oscillations
with changing sign again. Note that this will not occur for the gradient ascent
with true gradients if suitably small η is chosen. One possibility of damping
the oscillations is by annealing η according to a decrementing schedule for η.
However such ad-hoc procedures of forcing convergence lead to bias in the final
parameters. In the oscillatory case, one can choose any of the parameter selec-
tion heuristics commonly used in perceptron learning where convergence is also
not guaranteed, e.g., the voted perceptron [14] [13]. In this work we simply used
majority vote parameter setting, i.e., the parameters for which the training error
was minimum.

The second kind of SPA behavior is seen in Figure 1 (c), where after ini-
tial oscillations, the gradients do not show ‘periodic’ large oscillations again but
maintain microscopic oscillations within low gradient zones (not visible in the
figure due to the scale of the plots). MMA-based learning behaved similar to the
SPA-based learning indicating that these behaviors are related to the discrete,
piecewise constant approximation of the actual expectations. An oscillating gra-
dients case for MMA is shown in Figure 1 (d). In Section 7.1 we will discuss
these limit cycle behaviors of SPA- and MMA-based learning procedures.

Finally, note that the number of errors for all approximations is small when-
ever gradient magnitudes are small, which indicates that all the three techniques
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(a) PMA (b) SPA-1 (c) SPA-2 (d) MMA

Fig. 1. Plots of DRF parameter (w0) updates (top row), and the approximate gradient
(second row) for different approximations. PMA shows a converging behavior while
SPA shows oscillations which may be large-scale (SPA-1) or small-scale (SPA-2). MMA
shows similar behavior as SPA. Rows 3 and 4 show the analogous plots for parameter
w1. The last row shows number of errors at each parameter update. The errors are low
when the gradient magnitudes are small.
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Original image

Image with
bimodal noise

Independent pixel
label estimate

(Logistic)

MAP inference
with PL learning

MPM inference
with PL learning

MAP inference
with CD learning

MPM inference
with CD learning

Fig. 2. Image denoising results on synthetic images with existing parameter learning
methods (MAP: Maximum A Posteriori, MPM: Maximum Posterior Marginal, PL:
Pseudo-Likelihood, CD: Contrastive Divergence). Both PL and CD yield poor estimates
of the parameters.



10 Sanjiv Kumar et al.

Original image

MAP inference
with MMA

learning

MPM inference
with SPA
learning

MAP inference
with SPA
learning

MPM inference
with MMA

learning

Fig. 3. Image denoising results on the noisy images shown in Figure 2 (MAP: Maximum
A Posteriori, MPM: Maximum Posterior Marginal, SPA: Saddle Point Approximation,
MMA: Maximum Marginal Approximation.) When inference algorithm is mismatched
to the parameter learning method, the results are poor (rows 2 and 3). For example,
oversmoothing is observed for MAP inference with MMA learning. MPM inference
yields undersmoothed results with SPA learning. The results are good whenever the
parameter learning is matched with the inference procedure (rows 4 and 5), i.e., MAP
inference with SPA learning (both use min-cut) or MPM inference with MMA learning
(both use BP).
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tend to achieve parameter values that minimize the errors for that particular in-
ference. This is especially interesting in the case of SPA and MMA because of
the nature of the approximations. We will compare the performance of the pa-
rameter learning procedures with different inference techniques on a separate
test set in Section 6.

6 Experimental observations: inference

The aim of these experiments was to compare the performance of different pa-
rameter learning procedures for a fixed inference procedure. For each noise model
introduced in Section 5, a test set of 200 noisy images was generated using 50
noisy images each from four ground truth images shown in top row of Figure
2. For comparison, we also obtain the local MAP solution using Iterated Con-
ditional Modes (ICM) [15] which has been shown to be robust to incorrect pa-
rameter settings. In addition, we also compare results with parameters learned
through pseudo-Likelihood (PL), which uses a factored approximation of the
partition function, Z, for tractability [1]. All results were computed on a 2.8
GHz CPU with code written in Matlab and C.

Figure 2 shows the denoising performance on four typical test images cor-
rupted by the ‘bimodal’ noise. The parameters were first learned using existing
techniques, i.e., pseudo-likelihood and contrastive divergence. It is clear from the
figure that both the techniques give poor results with MAP or MPM inference.
The MAP inference with the matched learning technique, i.e., SPA, yields good
results as shown in Figure 3. The same is true for MPM inference with MMA
learning.

The overall pixelwise errors on the test set are given in Table 1. There are
three key observations. Firstly, MAP inference works best with SPA parameters
(both use min-cut [16]), and MPM works best with PMA and MMA parameters
(all use BP), empirically verifying the claim of learning/inference coupling. Sec-
ondly, for MAP inference, SPA based learning is also the most efficient approach.
The SPA learning is more than 14 times faster than the next most accurate
method, PMA. Lastly, MMA is able to learn reasonable parameters for MPM
inference (both use BP), at almost half the training time for PMA at the cost
of slight decrease in performance from PMA. Note that both PMA and MMA
use BP at the learning stage and slightly better results of PMA may be because
PMA returns a single converged estimate of the parameters while in MMA one
has to heuristically pick the best set of parameters. Better performance may
be expected if a better heuristic is used instead of picking the majority voted
parameters.

Three main observations help understand the differences between PMA and
MMA. Firstly, since MMA is simply a discretized version of PMA, MMA will
remain exact even if the pseudo-marginals converge to erroneous values, provided
that the ranking of the labels implied by the pseudo-marginals is the same as
that implied by the true marginals. This makes MMA more robust to errors in
the estimate of marginals when pseudo-marginals tend to give poor estimates
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Table 1. Pixelwise classification errors (%) on 200 test images (64 × 64 pixels each).
The rows show different parameter learning procedures and the columns show different
inference techniques used for two different noise models. See text for more.

Gaussian noise Bimodal noise Learning time
Inference methods MAP MPM ICM MAP MPM ICM (Sec)

PMA 2.73 2.51 3.91 6.45 5.48 17.39 1183.13
Parameter SPA 2.49 7.64 3.98 5.82 19.19 14.88 81.52
Learning MMA 34.34 2.96 4.11 26.53 5.70 16.00 635.78
Methods PL 3.82 3.10 3.89 17.69 7.31 22.22 299.75

CD 3.78 2.82 4.09 8.88 6.29 8.92 206.93

Inference time (Sec) 5.52 90.04 5.20 5.96 113.84 5.20

of the true marginals, e.g., in the presence of strong attractions or repulsion
between nodes [17].

Secondly, this discretization accelerates parameter learning since we only
need to run BP for enough iterations to stabilize the ranking of the labels,
not the exact evaluations of the pseudo-marginals. The former is a coarse (low-
resolution) computation, while the latter is a fine (high-resolution) computa-
tion. Empirically we noticed that most of the changes in the relative ranking of
marginals generally occur in the first few iterations. This partly explains faster
learning through MMA in comparison to PMA as shown in Table 1.

Thirdly, while learning the parameters using gradient ascent, MMA gives
rise to oscillatory non-convergent behavior. Similar to SPA, this usually requires
far fewer iterations of gradient ascent, as typically the limit-cyclic behavior in
MMA implies that we can stop the gradient ascent iterations after one or two
such ‘cycles’ to obtain sufficiently accurate estimate of the parameters.

An interesting observation is that the MAP inference is very poor with MMA
parameters and the same is true for MPM inference with SPA parameters. This
further enforces the idea that learning/inference coupling is rooted in minimizing
the classification error for a learning/inference pair, rather than maximizing the
true likelihood.

As a by-product of this comparison, we find that MPM inference is more
robust to the parameters returned by other techniques than MAP which gives
significantly worse results with parameters other than SPA and PMA. In addi-
tion, the PL and CD parameters generally give bad estimates while ICM does
poor inference due to the problem of label initialization.

7 Discussion

7.1 Dynamics of SPA- and MMA-based learning

What is the origin of the complex dynamics of our proposed parameter learn-
ing methods (Figure 1)? In SPA and MMA we replace the expectations 〈xi〉θ;y
and 〈xixj〉θ;y in the true likelihood gradient with approximations fi(θ; y) and
gij(θ; y) = fi(θ; y)fj(θ; y) obtained from MAP and MPM label estimates. These
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estimates are necessarily discrete values in the set {−1, +1}, and therefore fi(θ; y)
and gij(θ; y) are piecewise constant functions of the parameter θ ∈ Θ. In other
words, the discrete label estimates induce a partition {Θk} of parameter space
Θ into a disjoint union ∪kΘk where fi(θ; y) and gij(θ; y) are constant within
each cell Θk. By substitution, the approximate gradient J(θ) is also piecewise
constant for the same partition {Θk} of Θ.

As a consequence, integral curves through vector field J(θ) will be piecewise
linear, with “kinks” at the boundaries between cells, say between Θk and Θk′ .
Our approximate gradient ascent with its finite step size will therefore result in
a sequence of parameters along piecewise linear trajectories.

One cannot generally expect these trajectories to terminate, as that would
require J(θ) to be identically zero for all θ in some cell Θk. To understand
why, consider the double sum in (5) as a product 1

2
H(x − f) of the matrix

H = [hi(y
m)] with vector x − f , where x = [xm

i ] and f = [fi(θ; y
m)]. Now,

J(θ) = 0 requires that x − f be in the nullspace of H . Because both training
labels and the label estimates are discrete, the components xm

i − fi(θ; y
m) of

x − f will be one of the integers -2,0, or +2. But the subset of real matrices H
that have an integer vector in their nullspace has measure zero, and therefore the
possibility that (x − f) ∈ nullspaceH is both unlikely and unstable. Generally,
therefore, the approximate gradient ascent using SPA or MMA will not stop.

In the simpler case of true gradient ascent, for a sufficiently small step size
η, the parameter updates converge (without stopping) in a neighborhood of a
stationary point of the gradient vector field where the gradient is zero. Why does
this ascent converge? Because this gradient vector field is smooth and thus the
gradients along the ascent become arbitrarily small near the stationary point,
automatically slowing the ascent.

Although our approximate gradients J(θ) may become small in the vicinity
of the true maximum likelihood solution, they cannot become arbitrarily small
because they are quantized, and therefore the trajectories never slow down be-
yond some nonzero lower bound. Indeed, our empirical results show a quasi-
cyclical behavior of the parameter trajectories. Similar behavior, called limit
cycles, is common in digital control systems and signal processing, and arises
from quantizing states and coefficients in continuous dynamical systems. Such
limit cycles have been observed with small oscillations after a single initial tran-
sient or with quasi-periodic transients followed by small oscillations. The small
oscillation case corresponds to a parameter trajectory passing in a tight loop
through nearby portions of abutting cells, say Θk, Θk′ , and Θk′′ , which all have
small approximate gradients. But there is no guarantee that cells with small
and large approximate gradients will not be adjacent. Thus the observed “wild”
transient behavior in Figure 1 can arise from several adjacent cells with small
approximate gradient linked by cells with large approximate gradient: most of
the time is spent in the cells with small approximate gradient, but rapid change
occurs in cells with large gradient. To summarize, discretization can account for
these limit cycle dynamics.
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7.2 The role of classification errors in parameter learning

Given these limit cycle dynamics, how may one choose the best parameter along
the trajectory? Approximate gradients alone may be misleading, as there may be
large approximate gradients nearer to the optimal solution than some small ap-
proximate gradients. In true gradient ascent, one may use the likelihood itself as
“yard stick” for choosing the best parameter, e.g., at the maximal likelihood ob-
served on the trajectory. The likelihood is also useful in diagnosing pathological
dynamics from too large a step size, e.g., if the likelihood decreased significantly.
From a dynamical systems perspective, the likelihood exists because the gradient
is, by construction, integrable.

Instead we have only approximate gradients, which may not be integrable:
they may not be the actual gradient of any function. In other words, there may
be no approximate likelihood for our approximate gradient!

To overcome this lack of an approximate likelihood, we guide our choice of
parameter using the number of classification errors, a widely-employed perfor-
mance criterion in parameter learning.3 But what inference algorithm should one
use to measure these classification errors? In keeping with the coupling of param-
eter learning and inference first discussed in Section 3.2, we compute the number
of errors Nθ

E at parameter estimate θ using the inference method used in the gra-
dient approximation (7), i.e., Nθ

E = (1/2)
∑

m

∑
i∈S |xi − fi(θ)| = (1/2)‖x− f‖,

where ‖ · ‖ is the L1 norm. Formally, this choice is motivated by the following
simple bound.

Lemma 1. ‖J(θ)‖ ≤ cNθ
E, for some c > 0.

In other words, the number of errors provides an upper bound on the approxi-
mate gradient. Note that matching the inference method used in both the number
of errors and the approximate gradient is required in the following proof of the
lemma.

Proof. Recall that J(θ) = (J1(θ), J2(θ)). Using the form of J1(θ) in (5), ‖J1(θ)‖ ≤
R Nθ

E, where R = maxi,m ‖hi(y
m)‖. Now, define the pairwise error Nθ

P :=
(1/2)

∑
m

∑
i∈S

∑
j∈Ni

|xixj − fi(θ; y
m)fj(θ; y

m)|. Using the form of J2(θ) in

(6) with gij(θ; y
m) = fi(θ; y

m)fj(θ; y
m), it is easy to see that ‖J2(θ)‖ ≤ 2Q Nθ

P ,
where Q = maxijm ‖µij(y

m)‖. This implies that ‖J2(θ)‖ ≤ 2QdNθ
E, since

Nθ
P ≤ dNθ

E , where d is the maximum degree of the graph, i.e., d = maxi |Ni|.
Combining these results, we have ‖J(θ)‖ = ‖J1(θ)‖+ ‖J2(θ)‖ ≤ (R + 2Qd)Nθ

E ,
as required. QED.

This bound is useful in two ways. First, if ‖J(θ)‖ is large, then Nθ
E is also large

as verified in the plots in Figure 1. Second, if at some θ, Nθ
E is small, ‖J(θ)‖

will also be small. Thus, for a suitably small step size η, the parameter change

3 Ideally, one would like to minimize the generalization error, i.e., expected error on
the test set. This is a combination of the training error and the complexity of the
learned classifier.
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will also be small. This would mean that one will stay in a low error zone for a
long period as seen in Figure 1.

Indeed, given the importance we put in the number of classification errors,
one might ask whether minimizing Nθ

E itself should be used as a starting point
for deriving parameter learning algorithms. Unfortunately, since the number of
errors is piecewise constant in the parameters, its gradient is zero except on a set
of measure zero. The number of errors is therefore useless to derive a gradient-
based learning algorithm as known from the perceptron learning literature [18].

7.3 Related Work

The problem of learning the parameters of loopy discriminative graphs has been
addressed before under different paradigms. In a non-probabilistic setting, Taskar
et al. [19] learn the model parameters by maximizing the margin. Lecun and
Huang [20] have described the sufficient conditions for the training of energy-
based (unnormalized) graphical models. In our previous work [1], we proposed
the use of penalized pseudo-likelihood that gives reasonable estimates of the pa-
rameters. However, this needs hand-tuning of the regularizing constant. Finally,
taking the Bayesian view, Qi et al.[21] have argued for integrating the parameters
while predicting the labels on a test input instead of using a point estimate of
the parameters using maximum likelihood. Integrating the parameters, however,
is generally a difficult task.

8 Conclusion and future work

We have presented an approach for learning the parameters of discriminative
field models that uses inference to approximate the gradients used in maximum
likelihood learning. We showed that the proposed approximations lead to a limit
cycle convergence behavior of the learning procedures. Further, the learned pa-
rameters lead to good classification performance so long as the method used for
approximating the gradient is consistent with the inference mechanism. We also
provided an experimental comparison of commonly used learning and inference
techniques for discriminative fields. For MAP inference, SPA based learning was
found to be most accurate as well as efficient. Similarly, for MPM inference,
PMA and MMA performed best. Although we restricted ourselves to binary
fields in this paper, we have already used maximum marginal approximation to
successfully learn more than 3000 parameters for multiclass DRFs applied to ob-
ject detection [4]. We are currently evaluating the performance of the proposed
approximate parameter learning procedures with conventional MRFs.
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