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Abstract

In this paper, we present an approach for approximate mamifikeli-
hood parameter learning in discriminative field models,chhs based
on approximating true expectations with simple piecewsstant func-
tions constructed using inference techniques. Gradiec¢raswith
these updates shows interesting weak-convergence behduiah is tied
closely to the number of errors made during inference. Thitopeance
of various approximations was evaluated with differeneishce tech-
niques showing that the learned parameters lead to goosifaation
performance so long as the method used for approximatingréaient
is consistent with the inference mechanism. The proposptbaph is
general enough to be used for conditional training of cotiveal MRFs.

1 Introduction

In language processing, natural image analysis etc., tha data shows significant depen-
dencies, which should be modeled appropriately to achieee glassification. In earlier
work [1], we presented the Discriminative Random Field (PRedel for image analysis,
which is a type of Conditional Random Field (CRF) proposed.afferty et al. [2]. These
fields discriminatively model the conditional distributiof the labels given the observed
data directly as a Markov Random Field (MRF) and were shovgive better results than
the conventional MRFs [1]. The CRFs were developed in thdectrof analyzing 1D
sequence data for which exact maximum likelihood paranesening is feasible using ef-
ficient techniques, e.g. iterative scaling [2], quasi-Nawmethods [3] etc. However, when
the graphs contain loops, it is not feasible to exactly méénthe likelihood with respect
to the parameters. Therefore, a critical issue for the uisoative fields to be practical is
the design of effective parameter learning techniquesdaiatoperate on arbitrary graphs
without needing any hand-tuned control parameters [1]. difjective of this paper is to
address this central question.

Through our analysis and experiments, we hope to draw tloeelgsions: Firstparam-
eter learningcan be achieved by approximating the likelihood gradieimgishe label
estimates obtained through methods such as Maximum A Rosi@iAP) or Maximum
Posterior Marginal (MPM) given the conditional probalyilinodel. Second, good classi-
fication performance can be achieved by any of the choicepmaimation, so long as
the method used for inference matches the method used fomapyating the gradient in



the parameter learning. We further show that tearning/inference dualitys rooted in
the fact that, in any classification problem, the goal is taimize the number of errors,
which is what our gradient approximation does, which maynemtessarily maximize the
likelihood. Finally, we present aexplicit comparisorbetween several choices for which
currently there exists no formal comparison on what typeafriing approximation should
be adopted for a given choice of inference method.

1.1 Discriminative fields

In this section, we review the formulation of discriminatiffelds. Although the formula-
tion is general to arbitrary graphs with multiple class lalj], we will discuss the problem
of learning in the context of binary classification on 2D iradgttices. Lety be the ob-
served data from an input image, where= {y,},.¢. y, is the data from*” site, andS is
the set of sites. Let the corresponding labels be given by{z; },_; wherez; € {-1,1}.
The DRF formulation combines local discriminative modesapture the class associa-
tions at individual sites with the interactions in the ndighing sites as:

P(xly)= —eXp > log P(wily)+Y | > wiwjv  py(y )

€S 1€S JEN;

whereZ is the partition functionp are the model parameters, aagd (y) are the pairwise
relational feature vectors. Note that both terms depentioitkpon all the observationg.
Here,P’(z;|y) is the local class posterior returned by an arbitrary disicrative classifier.
This gives the flexibility to choose domain-specific disdriative classifiers suitable for
specific task domains. In this paper, as in our previous wbfkWe use a logistic link to
give the local class posterior, i.6?’(z;|y) = o(x;wTh;(y)) whereo(t) = 1/1+e~t.
Here,w are the model parameters, ahgy) are the sitewise feature vectors. Note that
this choice leads to a form of unary potential which is lineaparameters similar to the
CRFs givenin [2]. So, this particular DRF form can be seen23 axtension of 1D CRFs.

2 Parameter learning approaches
2.1 Maximum likelihood parameter learning

Let # be the set of DRF parameters whére= {w,v}. Given M i.i.d. labeled training
images, the maximum likelihood estimates of the parametergiven by maximizing the

Iog-likelihoodl(@) =M log P(x™[y™,0)ie.,

argmax log o(z]"w y"™)+ el ol (y™) —log 2™y (2)
J J
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Where Z™ is the partition function for then'” image, which is given agZ™ =

> exp {Ziesm log o (2w hi(y™ )+ com D jen, Tijv" pij(y™) } Note thatz™
is a function of the parametefisand the observed datg™. To learn the parameters using
gradient ascent, the derivatives of the log-likelihood barwritten as,

_ % S @ - @) hi(y™) 3)
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Here(.) denotes expectation witR(xz|y™, #). lgnoring x;;, gradient ascent with (4) re-

sembles the learning problem in Boltzmann machines witthalhodes being observed at
the training stage and computing the expectations can lmeasethe 'free’ phase.




Generally the expectations in (3) and (4) cannot be compartedy/tically due to the com-
binatorial size of the label space. Sampling procedwas,Markov Chain Monte Carlo
(MCMC), can be used to approximate the true expectation, B@MC techniques have
two main problems, i.e. long 'burn-in’ period which maketslow, and high variance in
estimates [5]. To avoid MCMC drawbacks, Contrastive Diegice (CD) was proposed by
Hinton [5]. In CD, only a single MCMC move is made from the ant empirical distribu-
tion of the data P) leading to new distribution®!), thus eliminating the need of running
the chain beyond burn-in. According to th{s;) ~ (z;) p: and(z;z;) ~ (z;x;) .. Even
though CD is computationally simple and yields estimateth Waw variance, the bias in
estimates can be a problem [6], which was also verified in mpeéments in Section 6.
However, this approximation of expectation using singlagle forms the basis for differ-
ent approximations we use in this work, as shown in the nestice

2.2 Coupled parameter learning/inference approaches

The approximations defined in the previous section replaeexact gradient of (3) and (4)
by expressions of the form:

%:%Z > (@ = fi@)hi(y™), (5)
m ieSm
ala(f) =X > D @l =g () (y™). (6)
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Here, f; andg;; are functions that approximate the true expectations igthdient. Several
approaches have been proposed that comfjudadg;; using pseudo-marginals [7][8]. In
this work, we propose to directly constrygtandy;; using label estimates obtained through
inference at the current parameter estimates as explairgeition 3.2 and 3.3.

The first question is whether replacing the gradient by suchpproximation leads to a
convergent parameter learning procedure. The answertjsathée the learning procedure
is not strictly convergent in general, it is weakly convergm that it oscillates within a
set of good parameters, or converges to a good parameteisolitited large deviations, as
shown experimentally in Section 4 and justified in SectioffBe second question is why
the parameters learned using a particular choice of appatkig functions should yield
good classification performance? Informally, if we use fargmeter learning the same
approximating functionf; that was obtained from inference (e.g. MAP label estimate),
then, given input training labelge?" },

Np= 303 o) ™

m ieS™

can be interpreted as the number of errors in classifica@amparing (7) with (5) shows
that the approximated gradient is directly related to thenlper of errors, so long as the
same approximation is used in both parameter learning afefémce We will show em-
pirical observations in Section 4 and the formal analysiSénation 5.

3 Candidate Approximations

We first explore the form off; and g;; based on pseudo-marginals, and then using two
approximations directly based on two different label eates: Maximum A Posteriori
(MAP) which is optimal for 0-1 loss function, and Maximum Reror Marginal (MPM)
which is optimal for 'sitewise’ 0-1 loss function. For thenbry DRFs, approximate MAP
estimates can be obtained using the min-cut/max-flow alyns as explained in [1]. We
use the sum-product version of loopy Belief Propagation)(@®Pobtain the MPM esti-
mates [9]. The approximations described below are desitnetatch these two classes of
inference techniques.



3.1 Pseudo Marginal Approximation (PMA)

It is easy to see that, if we had true marginal distributionseech sitel, P;(z;|y), and at
each pair of sitesandj € \V;, P;;(z;, z;|y), we could compute exact expectations as:

X4 (Ifi,l'j

Since computing exact marginal distributions is in genertdasible, the simplest thing
will be to replace the actual marginals by pseudo marginalshis work, we used loopy

BP to get these marginals, because we use BP to do inferemges MPM estimates. In

addition, these marginals are expected to return bettepajppation than mean-field as the
fixed points of BP correspond to the stationary points of Bdtbe energy [9]. McCallum

et al. [8] use similar approximation, where TRP based pseundminals were used for
parameter learning in Factorial CRFs.

3.2 Saddle Point Approximation (SPA)

Here, we propose a very simple approximation inspired by 6] (ising MAP label

estimates. It is based on approximating the partition fonc{Z) using the Saddle

Point Approximation (SPA). According to this7 is approximated such that the sum-

mation over all the label configurations in Z is replaced by the most probable la-

bel configuration. In other words, i = argmaxP(x|y,f), then according to SPA,
xr

Z ~ exp {Eieslog o(@iw h(y)+>ics ZjeM:%i:EjvTuij(y)}. This leads to a very
simple approximation to the expectations in (3) and (@);) ~ &; and(z;z;) ~ Z;%;.

It is interesting to note that with the saddle point appraadion of Z, the gradient ascent
updates are similar to the perceptron-learning type ugdaged in [10] and [11] in non-
probabilistic settings.

3.3 Maximum Marginal Approximation (MMA)

This is the second approximation based on BP inference iohWPM label estimates are
used for approximating the expectations. Following theiargnts of SPA based parameter
learning in the previous section, one can make a similarcmation of Z such that all
the mass ofZ is assumed to be concentrated on the maximum marginal coatiig. |f

Z; = argmaxP;(x;|y, ), the expectations can be written a3:;) ~ #; and (z;z;) ~

Z;&;. Clearly, in the binary case, maximum marginals are justtiinesholded sitewise
marginals. Thus, MMA can be interpreted as a discrete ajipation of PMA. We use
this approximation to generalize the understanding of iberete approximations of actual
expectations which was also done in the case of SPA.

4 Experimental observations: parameter learning

To analyze the convergence performance of various pararestming procedures de-
scribed in the previous section, we learned a DRF model fonaryp image denoising
application. The aim was to obtain true labels from corrdgigary images. A binary
image (4 x 64 pixels) was corrupted by two types of noise: Gaussian naigeBamodal
(mixture of two Gaussians) noise. For each noise mddehoisy images were used as the
training set for learning the parameters. The details ofigaturesh;(y) andp,;(y), and
the noise parameters of this dataset are given in [1]. Heesparameter vectors andwv
both were two-element vectors, i#@. = [wy w1], andv = [vg v1].

In all the experiments, parameters were initialized fromd@n values and updates were
based on gradient ascent. The step sizeas fixed to a small valuel(—®). Fig. 1 shows
for each approximation, plots of the approximated gragiemd the parameters at each
iteration for a typical run with bimodal noise. For brevitgwhow plots only for parameter
wg. The rest of the parameters also gave similar plots. Thea piathe last row in Fig. 1



show the number of errors\%) made at the current estimate of the parameters using the
same inference technique on which a particular gradiemoappation is based.

For PMA based learning, parameters and gradients were affgayd to converge (Fig. 1
(a)), and the final parameters values were independent dénfitieization as for the true
gradient descent, since the log likelihood in (2) is a corfuection of parameters. This
indicates that the beliefs from loopy BP were convergingetasonable estimates for this
dataset.

For SPA and MMA based learning, an interesting behavior gasesince both of them
make discrete approximations of the true expectations.alt feund that both SPA and
MMA show two different scenarios of weak convergence dependn the parameter ini-
tialization. For SPA, in the first case (Fig. 1 (b)), the apjimated gradients for all the pa-
rameters show oscillatory behavior. Initially there amgéaoscillations in gradients which
settle down to low gradient zone. The gradients remain is zbne for a long duration
before showing large oscillations with changing sign ag&lote that this will not occur
for the gradient ascent with true gradients if suitably $mas$ chosen. To find the best set
of parameters, one can use commonly used heuristics to fitet parameter values when
convergence is not guaranteed, e.g. voted perceptron ygedllns [11]. In this work we
used a simpler choice of majority vote parameter setting.
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Figure 1: Plots of DRF parametar() updates (top row), and the likelihood gradient (sec-
ond row) for different approximations. PMA shows a conveggbehavior while the SPA
shows oscillatory behavior which may be large (SPA-1) orrascopic (SPA-2). MMA
shows similar behavior as SPA. The last row shows numberrofsat each parameter
update. The errors are low when the gradient magnitudesaak. s

In the second case for SPA, (Fig. 1 (c)), after initial ostitins, the gradients do not
show ’periodic’ large oscillations again but maintain neigcopic oscillations within low
gradient zones (not visible in the figure due to the scale efplots). The MMA based
learning showed similar behavior as for the SPA indicatirag these behaviors are related
to the discrete, piecewise constant approximation of theshexpectations. An oscillating
gradients case for MMA is shown in Fig. (1 (c)). In Section 5wi#t analyze the weak
convergence characteristics of the SPA and MMA based legpriocedures.



Finally, note that number of errors for all approximatiomsinall whenever gradient magni-
tudes are small which indicates that all the three techisique trying to achieve parameter
values that minimize the errors for that particular infenThis is especially interesting in
the case of SPA and MMA because of the nature of the approxinsat\We will compare
the performance of the parameter learning procedures ffdgreht inference techniques
on a separate test set in Section 6.

5 Analysis of SPA/MMA based learning

Let us denote the gradients in (5) and (6).by). Also, assume a single training image,
M =1 for simplicity. Note that, for both SPA and MMAY;(6) andg;;(9) = fi(6)f;(0)
are piecewise constant functions, computed using the éslbiehates. Le® be the space of
all 0. Thus, if © = |J O s.t. fi(0) = fixr VO €Ok, Vie SthenJ(0) = J, VO € O.

k

Further, we focus on a single componenti¢d), i.e. J(a) = H** (X — F) whereX, F
and H> are vectors with componentX; = z;, F; = f;(6) andHY = h{(y) if a € w,
andX, = x;x;, Iy = fi(0) f;(0) andHy* = pg;(y) if o € v. For a given training setf®
andX are fixed. The gradient ascent will converge wtigfl) = 0, i.e. J(o) =0V a € 6.
For this, there must exist@such that projection ofX — F) on H* is0V « € 6. Since,
H} € Rand(X; — F;) € {2,0,—2}, for genericH* and X, this will happen only if
F = X (i.e. zero error case). Thus, convergence requires exsstaisuchd for which all
the sites are correctly labeled while training, which iseyafly infeasible. However/(«a)
will be 'tiled’ with many zero-crossings depending on thenditional probability form
and the inference criterion. To analyze the weak-convegaf gradient ascent shown
in Section 4, we need to consider only those zero-crossimgw/fiich J(a~) > 0, and
J(a™) < 0. Suppose tha is initialized such that, in its neighborhood, the tiling.bf?)
is similar to the one shown in Fig. 2(a). Then, for a fixgdnitially there will be large
oscillations with gradients changing signs (1 to 4). Théw, gradients will be low for
many iterations (5 to 6) before showing the 'divergencedugl in steps 6 to 8. Finally,
the parameters will jump from 8 to 4 and then to 3, repeatiegcticle. This explains the
'periodic’ oscillations in gradients and parameters obseérfor SPA-1 in Fig. 1(b). On
the contrary, for the configuration of(#) in Fig. 2(b), we will have only microscopic
oscillations in gradients between steps 3 and 4 as obseov&PA-2.
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Figure 2: The gradient ascent updates of SPA based paraleatging in two cases. The
numbers represent the sequence of parameter updates.

As shown in Fig. 1, the number of classification errors arsallptied to the approximated
gradients. If we define the number of errors at the parameténated as in (7), i.e.
N = (1/2) Y ,cq @i — fi(0)], then using the form of (w) in (5), ||J(w)|| < RNY,
whereR = max; ||h;(y)|| and||.|| is the L; norm. Similarly, define the pairwise erroFé,
as, N} = (1/2) Y ics > jen; lTizg — fi(0)f;(0)]. Using the form ofJ(v) in (6) with
gi;(0) = fi(0)f;(0), itis easy to see that/(v)|| < 2QNE, whereQ = max;; HMJ(ZHH-
This implies,||J(v)|| < 2QdNY, sinceN% < dN¢ whered is the maximum degree of
the graph, i.ed = max; |[\;|. Two conclusions can be drawn from this discussion. First,
if |J(6)| is large, thenNZ is also large as verified in the plots in Fig. 1. Second, if at




somed), N is small,||.J(6)|| will also be small. Thus, for a suitably small step sizehe
parameter change will also be small. This would mean thatvghestay in a low error
zone for a long period as seen in Fig. 1.

Finally, we need to argue that sm@ll (9)| implies, in general, smalV%. In other words,
if the projection of(X — F') on each plandZ® V « € 6 is small, it implies| X — F|| is
small. This phenomenon is related to the MAP or MPM inferecriteria of selectingt”
given a probability model. We leave the formal reasonindtiture exploration. However,
it is worth mentioning that in addition to the observationghis work, we also observed
this behavior empirically even on real-world problems widhge number of parameters

[4].
6 Experimental observations: inference

The aim of these experiments was to compare the performdunid#soent parameter learn-
ing procedures for fixedinference procedure. For each noise model introduced itiddec
4, a test set 0200 noisy images was generated uslitgnoisy images each from four base
images. For comparison, we also obtain the local MAP satuliging Iterated Conditional
Modes (ICM) [12] which has been shown to be robust to incdrpezameter settings.
In addition, we also compare results with parameters lehtimough pseudo-Likelihood
(PL), which uses a factored approximation of the partitionction for tractability [1].

The overall pixelwise errors on the test set are given iretdblThere are three key obser-
vations: First, the MAP inference works the best with SPAapagters (both use min-cut),
and MPM works the best with PMA parameters (both use BP), ecafly verifying the
claim oflearning/inference dualitySecond, for the MAP inference, SPA based learning is
the most accurate as well as the most efficient approach. PAde&rning is more than
14 times faster than the next best set of parameters, i.e. fidi. Rast, MMA is able

to learn reasonable parameters for MPM inference (both Byed@ almost half the train-
ing time for PMA at the cost of slight decrease in performainom PMA. Note that both
PMA and MMA use BP at the learning stage and slightly bettsults of PMA may be
because PMA returns a single converged estimates of thenptaes while in MMA one
has to heuristically pick the best set of parameters. Bpagformance may be expected if
a better heuristic is used instead of picking the majoritegdgarameters.

Table 1: Pixelwise classification error&%) on 200 test images@4 x 64 pixels each).
The rows show different parameter learning procedures haadtolumns show different
inference techniques used for two different noise modeds. t8xt for more.

Gaussian noise Bimodal noise Learning time
MAP MPM ICM MAP  MPM ICM (Sec)
PMA | 2.73 2,51 3091 6.45 5.48 17.39 1183.13
SPA | 2.49 7.64 3.98 5.82 19.19 14.88 81.52
MMA | 34.34 296  4.11 || 26.53 5.70 16.00 635.78
PL | 3.82 3.10 3.89 || 17.69 7.31 22.22 299.75
CD | 3.78 2.82 4.09 8.88 6.29 8.92 206.93

[ Inference time (Sec] 5.52  90.04 5.20 || 596 113.84 5.20 | |

An interesting observation is that the MAP inference is veogr with MMA parameters
and the same is true for MPM inference with SPA parameterss flinther enforces the
idea that learning/inference duality is rooted in minimgithe classification error for a
learning/inference pair, rather than maximizing the tikelihood.

As a by-product of this comparison, we find that MPM infereicenore robust to the
parameters returned by other techniques than MAP whicls gigmificantly worse results



with parameters other than SPA and PMA. In addition, the RLGD parameters generally
give bad estimates while ICM does poor inference due to thielpm of label initialization.

Finally, if it is argued that MPM works well with PMA, not begse of duality, but because
PMA returns true ML parameters (i.e. BP converged to truegimats), the results indicate
that MAP inference is not the best with ML parameters and tifierénce based approxi-
mation (SPA in this case) may yield better results enfortiregrole of duality even when
exact ML parameter learning is possible.

7 Conclusion and future work

We have presented an approach for learning the parametdiscaminative field models,
which uses inference to approximate the gradients used xinmian likelihood learning.
We showed that proposed approximations lead to a weaklyecgent behavior of the
learning procedures. Further, the learned parameterstéegdod classification perfor-
mance so long as the method used for approximating the grtaidieonsistent with the
inference mechanism. We also provided an experimental adegm of commonly used
learning and inference techniques for discriminative §elebr MAP inference, SPA based
learning was found to be most accurate as well as efficienfady although we limited
the presentation to the restricted case of binary fields, awe lalready used maximum
marginal approximation to successfully learn more tB&00 parameters for multiclass
DRFs applied to object detection [4]. We are currently estihg the performance of the
proposed approximate parameter learning procedures wiitteational MRFs.
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