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Abstract

In this paper, we present an approach for approximate maximum likeli-
hood parameter learning in discriminative field models, which is based
on approximating true expectations with simple piecewise constant func-
tions constructed using inference techniques. Gradient ascent with
these updates shows interesting weak-convergence behavior which is tied
closely to the number of errors made during inference. The performance
of various approximations was evaluated with different inference tech-
niques showing that the learned parameters lead to good classification
performance so long as the method used for approximating thegradient
is consistent with the inference mechanism. The proposed approach is
general enough to be used for conditional training of conventional MRFs.

1 Introduction

In language processing, natural image analysis etc., the input data shows significant depen-
dencies, which should be modeled appropriately to achieve good classification. In earlier
work [1], we presented the Discriminative Random Field (DRF) model for image analysis,
which is a type of Conditional Random Field (CRF) proposed byLafferty et al. [2]. These
fields discriminatively model the conditional distribution of the labels given the observed
data directly as a Markov Random Field (MRF) and were shown togive better results than
the conventional MRFs [1]. The CRFs were developed in the context of analyzing 1D
sequence data for which exact maximum likelihood parameterlearning is feasible using ef-
ficient techniques, e.g. iterative scaling [2], quasi-Newton methods [3] etc. However, when
the graphs contain loops, it is not feasible to exactly maximize the likelihood with respect
to the parameters. Therefore, a critical issue for the discriminative fields to be practical is
the design of effective parameter learning techniques thatcan operate on arbitrary graphs
without needing any hand-tuned control parameters [1]. Theobjective of this paper is to
address this central question.

Through our analysis and experiments, we hope to draw three conclusions: First,param-
eter learningcan be achieved by approximating the likelihood gradient using the label
estimates obtained through methods such as Maximum A Posteriori (MAP) or Maximum
Posterior Marginal (MPM) given the conditional probability model. Second, good classi-
fication performance can be achieved by any of the choices of approximation, so long as
the method used for inference matches the method used for approximating the gradient in



the parameter learning. We further show that thislearning/inference dualityis rooted in
the fact that, in any classification problem, the goal is to minimize the number of errors,
which is what our gradient approximation does, which may notnecessarily maximize the
likelihood. Finally, we present anexplicit comparisonbetween several choices for which
currently there exists no formal comparison on what type of learning approximation should
be adopted for a given choice of inference method.

1.1 Discriminative fields

In this section, we review the formulation of discriminative fields. Although the formula-
tion is general to arbitrary graphs with multiple class labels [4], we will discuss the problem
of learning in the context of binary classification on 2D image lattices. Lety be the ob-
served data from an input image, wherey = {yi}i∈S , yi is the data fromith site, andS is
the set of sites. Let the corresponding labels be given byx = {xi}i∈S wherexi ∈ {−1, 1}.
The DRF formulation combines local discriminative models to capture the class associa-
tions at individual sites with the interactions in the neighboring sites as:

P (x|y)=
1

Z
exp




∑

i∈S

log P ′(xi|y)+
∑

i∈S

∑

j∈Ni

xixjv
T µij(y)



 (1)

whereZ is the partition function,v are the model parameters, andµij(y) are the pairwise
relational feature vectors. Note that both terms depend explicitly on all the observationsy.
Here,P ′(xi|y) is the local class posterior returned by an arbitrary discriminative classifier.
This gives the flexibility to choose domain-specific discriminative classifiers suitable for
specific task domains. In this paper, as in our previous work [1], we use a logistic link to
give the local class posterior, i.e.P ′(xi|y) = σ(xiw

T hi(y)) whereσ(t) = 1/1+e−t.
Here,w are the model parameters, andhi(y) are the sitewise feature vectors. Note that
this choice leads to a form of unary potential which is linearin parameters similar to the
CRFs given in [2]. So, this particular DRF form can be seen as a2D extension of 1D CRFs.

2 Parameter learning approaches

2.1 Maximum likelihood parameter learning

Let θ be the set of DRF parameters whereθ = {w,v}. GivenM i.i.d. labeled training
images, the maximum likelihood estimates of the parametersare given by maximizing the
log-likelihoodl(θ) =

∑M

m=1
log P (xm|ym, θ) i.e.,

θ̂=argmax
θ

M∑

m=1
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log σ(xm
i wT hi(y

m)+
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i xm
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m)−log Zm




 (2)

Where Zm is the partition function for themth image, which is given asZm =
∑

x exp
{∑

i∈Sm log σ(xiw
T hi(y

m)+
∑

i∈Sm

∑
j∈Ni

xixjv
T µij(y

m)
}

. Note thatZm

is a function of the parametersθ and the observed dataym. To learn the parameters using
gradient ascent, the derivatives of the log-likelihood canbe written as,

∂l(θ)

∂w
=

1

2

∑

m

∑

i∈Sm

(xm
i − 〈xi〉)hi(y

m) (3)

∂l(θ)

∂v
=

∑

m

∑

i∈Sm

∑

j∈Ni

(xm
i xm

j −〈xixj〉)µij(y
m) (4)

Here〈.〉 denotes expectation withP (x|ym, θ). Ignoringµij , gradient ascent with (4) re-
sembles the learning problem in Boltzmann machines with allthe nodes being observed at
the training stage and computing the expectations can be seen as the ’free’ phase.



Generally the expectations in (3) and (4) cannot be computedanalytically due to the com-
binatorial size of the label space. Sampling procedures,e.g. Markov Chain Monte Carlo
(MCMC), can be used to approximate the true expectation. But, MCMC techniques have
two main problems, i.e. long ’burn-in’ period which make them slow, and high variance in
estimates [5]. To avoid MCMC drawbacks, Contrastive Divergence (CD) was proposed by
Hinton [5]. In CD, only a single MCMC move is made from the current empirical distribu-
tion of the data (P 0) leading to new distribution (P 1), thus eliminating the need of running
the chain beyond burn-in. According to this,〈xi〉 ≈ 〈xi〉P 1 and〈xixj〉 ≈ 〈xixj〉P 1 . Even
though CD is computationally simple and yields estimates with low variance, the bias in
estimates can be a problem [6], which was also verified in our experiments in Section 6.
However, this approximation of expectation using single sample forms the basis for differ-
ent approximations we use in this work, as shown in the next section.

2.2 Coupled parameter learning/inference approaches

The approximations defined in the previous section replace the exact gradient of (3) and (4)
by expressions of the form:

∂l(θ)

∂w
=

1

2

∑

m

∑

i∈Sm

(xm
i − fi(θ))hi(y

m), (5)

∂l(θ)

∂v
=

∑

m

∑

i∈Sm

∑

j∈Ni

(xm
i xm

j −gij(θ))µij(y
m). (6)

Here,fi andgij are functions that approximate the true expectations in thegradient. Several
approaches have been proposed that computefi andgij using pseudo-marginals [7][8]. In
this work, we propose to directly constructfi andgij using label estimates obtained through
inference at the current parameter estimates as explained in Section 3.2 and 3.3.

The first question is whether replacing the gradient by such an approximation leads to a
convergent parameter learning procedure. The answer is that, while the learning procedure
is not strictly convergent in general, it is weakly convergent in that it oscillates within a
set of good parameters, or converges to a good parameter withisolated large deviations, as
shown experimentally in Section 4 and justified in Section 5.The second question is why
the parameters learned using a particular choice of approximating functions should yield
good classification performance? Informally, if we use for parameter learning the same
approximating functionfi that was obtained from inference (e.g. MAP label estimate),
then, given input training labels{xm

i },

Nθ
E =

1

2

∑

m

∑

i∈Sm

|xm
i − fi(θ)| (7)

can be interpreted as the number of errors in classification.Comparing (7) with (5) shows
that the approximated gradient is directly related to the number of errors, so long as the
same approximation is used in both parameter learning and inference. We will show em-
pirical observations in Section 4 and the formal analysis inSection 5.

3 Candidate Approximations

We first explore the form offi andgij based on pseudo-marginals, and then using two
approximations directly based on two different label estimates: Maximum A Posteriori
(MAP) which is optimal for 0-1 loss function, and Maximum Posterior Marginal (MPM)
which is optimal for ’sitewise’ 0-1 loss function. For the binary DRFs, approximate MAP
estimates can be obtained using the min-cut/max-flow algorithms as explained in [1]. We
use the sum-product version of loopy Belief Propagation (BP) to obtain the MPM esti-
mates [9]. The approximations described below are designedto match these two classes of
inference techniques.



3.1 Pseudo Marginal Approximation (PMA)

It is easy to see that, if we had true marginal distributions at each sitei, Pi(xi|y), and at
each pair of sitesi andj ∈ Ni, Pij(xi, xj |y), we could compute exact expectations as:

〈xi〉 =
∑

xi

xiPi(xi|y) and 〈xixj〉 =
∑

xi,xj

xixjPij(xi, xj |y)

Since computing exact marginal distributions is in generalinfeasible, the simplest thing
will be to replace the actual marginals by pseudo marginals.In this work, we used loopy
BP to get these marginals, because we use BP to do inference toget MPM estimates. In
addition, these marginals are expected to return better approximation than mean-field as the
fixed points of BP correspond to the stationary points of Bethe free energy [9]. McCallum
et al. [8] use similar approximation, where TRP based pseudomarginals were used for
parameter learning in Factorial CRFs.

3.2 Saddle Point Approximation (SPA)

Here, we propose a very simple approximation inspired by CD [5], using MAP label
estimates. It is based on approximating the partition function (Z) using the Saddle
Point Approximation (SPA). According to this,Z is approximated such that the sum-
mation over all the label configurationsx in Z is replaced by the most probable la-
bel configuration. In other words, if̂x = arg max

x
P (x|y, θ), then according to SPA,

Z ≈ exp
{∑

i∈S log σ(x̂iw
T hi(y))+

∑
i∈S

∑
j∈Ni

x̂ix̂jv
Tµij(y)

}
. This leads to a very

simple approximation to the expectations in (3) and (4):〈xi〉 ≈ x̂i and〈xixj〉 ≈ x̂ix̂j .
It is interesting to note that with the saddle point approximation ofZ, the gradient ascent
updates are similar to the perceptron-learning type updates used in [10] and [11] in non-
probabilistic settings.

3.3 Maximum Marginal Approximation (MMA)

This is the second approximation based on BP inference in which MPM label estimates are
used for approximating the expectations. Following the arguments of SPA based parameter
learning in the previous section, one can make a similar approximation ofZ such that all
the mass ofZ is assumed to be concentrated on the maximum marginal configuration. If
x̃i = arg max

xi

Pi(xi|y, θ), the expectations can be written as:〈xi〉 ≈ x̃i and 〈xixj〉 ≈

x̃ix̃j . Clearly, in the binary case, maximum marginals are just thethresholded sitewise
marginals. Thus, MMA can be interpreted as a discrete approximation of PMA. We use
this approximation to generalize the understanding of the discrete approximations of actual
expectations which was also done in the case of SPA.

4 Experimental observations: parameter learning

To analyze the convergence performance of various parameter learning procedures de-
scribed in the previous section, we learned a DRF model for a binary image denoising
application. The aim was to obtain true labels from corrupted binary images. A binary
image (64 × 64 pixels) was corrupted by two types of noise: Gaussian noise and Bimodal
(mixture of two Gaussians) noise. For each noise model,10 noisy images were used as the
training set for learning the parameters. The details on thefeatureshi(y) andµij(y), and
the noise parameters of this dataset are given in [1]. Here, the parameter vectorsw andv
both were two-element vectors, i.e.w = [w0 w1], andv = [v0 v1].

In all the experiments, parameters were initialized from random values and updates were
based on gradient ascent. The step sizeη was fixed to a small value (10−5). Fig. 1 shows
for each approximation, plots of the approximated gradients and the parameters at each
iteration for a typical run with bimodal noise. For brevity we show plots only for parameter
w0. The rest of the parameters also gave similar plots. The plots in the last row in Fig. 1



show the number of errors (Nθ
E) made at the current estimate of the parameters using the

same inference technique on which a particular gradient approximation is based.

For PMA based learning, parameters and gradients were always found to converge (Fig. 1
(a)), and the final parameters values were independent of theinitialization as for the true
gradient descent, since the log likelihood in (2) is a convexfunction of parameters. This
indicates that the beliefs from loopy BP were converging to reasonable estimates for this
dataset.

For SPA and MMA based learning, an interesting behavior emerges since both of them
make discrete approximations of the true expectations. It was found that both SPA and
MMA show two different scenarios of weak convergence depending on the parameter ini-
tialization. For SPA, in the first case (Fig. 1 (b)), the approximated gradients for all the pa-
rameters show oscillatory behavior. Initially there are large oscillations in gradients which
settle down to low gradient zone. The gradients remain in this zone for a long duration
before showing large oscillations with changing sign again. Note that this will not occur
for the gradient ascent with true gradients if suitably small η is chosen. To find the best set
of parameters, one can use commonly used heuristics to find better parameter values when
convergence is not guaranteed, e.g. voted perceptron used by Collins [11]. In this work we
used a simpler choice of majority vote parameter setting.
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(a) PMA (b) SPA-1 (c) SPA-2 (d) MMA

Figure 1: Plots of DRF parameter (w0) updates (top row), and the likelihood gradient (sec-
ond row) for different approximations. PMA shows a converging behavior while the SPA
shows oscillatory behavior which may be large (SPA-1) or microscopic (SPA-2). MMA
shows similar behavior as SPA. The last row shows number of errors at each parameter
update. The errors are low when the gradient magnitudes are small.

In the second case for SPA, (Fig. 1 (c)), after initial oscillations, the gradients do not
show ’periodic’ large oscillations again but maintain microscopic oscillations within low
gradient zones (not visible in the figure due to the scale of the plots). The MMA based
learning showed similar behavior as for the SPA indicating that these behaviors are related
to the discrete, piecewise constant approximation of the actual expectations. An oscillating
gradients case for MMA is shown in Fig. (1 (c)). In Section 5 wewill analyze the weak
convergence characteristics of the SPA and MMA based learning procedures.



Finally, note that number of errors for all approximations is small whenever gradient magni-
tudes are small which indicates that all the three techniques are trying to achieve parameter
values that minimize the errors for that particular inference. This is especially interesting in
the case of SPA and MMA because of the nature of the approximations. We will compare
the performance of the parameter learning procedures with different inference techniques
on a separate test set in Section 6.

5 Analysis of SPA/MMA based learning

Let us denote the gradients in (5) and (6) byJ(θ). Also, assume a single training image,
M = 1 for simplicity. Note that, for both SPA and MMA,fi(θ) andgij(θ) = fi(θ)fj(θ)
are piecewise constant functions, computed using the labelestimates. LetΘ be the space of
all θ. Thus, if Θ =

⋃
k

Θk s.t. fi(θ) = fik ∀ θ ∈ Θk,∀ i ∈ S thenJ(θ) = Jk ∀ θ ∈ Θk.

Further, we focus on a single component ofJ(θ), i.e. J(α) = HαT (X − F ) whereX, F
andHα are vectors with components,Xt = xi, Ft = fi(θ) andHα

t = hα
i (y) if α ∈ w,

andXt = xixj , Ft = fi(θ)fj(θ) andHα
t = µα

ij(y) if α ∈ v. For a given training set,Hα

andX are fixed. The gradient ascent will converge whenJ(θ) = 0, i.e. J(α) = 0 ∀ α ∈ θ.
For this, there must exist aθ such that projection of(X − F ) on Hα is 0 ∀ α ∈ θ. Since,
Hα

t ∈ < and (Xt − Ft) ∈ {2, 0,−2}, for genericHα andX, this will happen only if
F = X (i.e. zero error case). Thus, convergence requires existence of suchθ for which all
the sites are correctly labeled while training, which is generally infeasible. However,J(α)
will be ’tiled’ with many zero-crossings depending on the conditional probability form
and the inference criterion. To analyze the weak-convergence of gradient ascent shown
in Section 4, we need to consider only those zero-crossings for which J(α−) > 0, and
J(α+) < 0. Suppose thatθ is initialized such that, in its neighborhood, the tiling ofJ(θ)
is similar to the one shown in Fig. 2(a). Then, for a fixedη, initially there will be large
oscillations with gradients changing signs (1 to 4). Then, the gradients will be low for
many iterations (5 to 6) before showing the ’divergence buildup’ in steps 6 to 8. Finally,
the parameters will jump from 8 to 4 and then to 3, repeating the cycle. This explains the
’periodic’ oscillations in gradients and parameters observed for SPA-1 in Fig. 1(b). On
the contrary, for the configuration ofJ(θ) in Fig. 2(b), we will have only microscopic
oscillations in gradients between steps 3 and 4 as observed for SPA-2.

(a) SPA-1 (b) SPA-2

Figure 2: The gradient ascent updates of SPA based parameterlearning in two cases. The
numbers represent the sequence of parameter updates.

As shown in Fig. 1, the number of classification errors are closely tied to the approximated
gradients. If we define the number of errors at the parameter estimateθ as in (7), i.e.
Nθ

E = (1/2)
∑

i∈S |xi − fi(θ)|, then using the form ofJ(w) in (5), ‖J(w)‖ ≤ RNθ
E ,

whereR = maxi ‖hi(y)‖ and‖.‖ is theL1 norm. Similarly, define the pairwise errorNθ
P

as,Nθ
P = (1/2)

∑
i∈S

∑
j∈Ni

|xixj − fi(θ)fj(θ)|. Using the form ofJ(v) in (6) with
gij(θ) = fi(θ)fj(θ), it is easy to see that‖J(v)‖ ≤ 2QNθ

P , whereQ = maxij ‖µij(y)‖.
This implies,‖J(v)‖ ≤ 2QdNθ

E , sinceNθ
P ≤ dNθ

E whered is the maximum degree of
the graph, i.e.d = maxi |Ni|. Two conclusions can be drawn from this discussion. First,
if ‖J(θ)‖ is large, thenNθ

E is also large as verified in the plots in Fig. 1. Second, if at



someθ, Nθ
E is small,‖J(θ)‖ will also be small. Thus, for a suitably small step sizeη, the

parameter change will also be small. This would mean that onewill stay in a low error
zone for a long period as seen in Fig. 1.

Finally, we need to argue that small‖J(θ)‖ implies, in general, smallNθ
E . In other words,

if the projection of(X − F ) on each planeHα ∀ α ∈ θ is small, it implies‖X − F‖ is
small. This phenomenon is related to the MAP or MPM inferencecriteria of selectingF
given a probability model. We leave the formal reasoning forfuture exploration. However,
it is worth mentioning that in addition to the observations in this work, we also observed
this behavior empirically even on real-world problems withlarge number of parameters
[4].

6 Experimental observations: inference

The aim of these experiments was to compare the performance of different parameter learn-
ing procedures for afixedinference procedure. For each noise model introduced in Section
4, a test set of200 noisy images was generated using50 noisy images each from four base
images. For comparison, we also obtain the local MAP solution using Iterated Conditional
Modes (ICM) [12] which has been shown to be robust to incorrect parameter settings.
In addition, we also compare results with parameters learned through pseudo-Likelihood
(PL), which uses a factored approximation of the partition function for tractability [1].

The overall pixelwise errors on the test set are given in table 1. There are three key obser-
vations: First, the MAP inference works the best with SPA parameters (both use min-cut),
and MPM works the best with PMA parameters (both use BP), empirically verifying the
claim of learning/inference duality. Second, for the MAP inference, SPA based learning is
the most accurate as well as the most efficient approach. The SPA learning is more than
14 times faster than the next best set of parameters, i.e. from PMA. Last, MMA is able
to learn reasonable parameters for MPM inference (both use BP), at almost half the train-
ing time for PMA at the cost of slight decrease in performancefrom PMA. Note that both
PMA and MMA use BP at the learning stage and slightly better results of PMA may be
because PMA returns a single converged estimates of the parameters while in MMA one
has to heuristically pick the best set of parameters. Betterperformance may be expected if
a better heuristic is used instead of picking the majority voted parameters.

Table 1: Pixelwise classification errors (%) on 200 test images (64 × 64 pixels each).
The rows show different parameter learning procedures and the columns show different
inference techniques used for two different noise models. See text for more.

Gaussian noise Bimodal noise Learning time
MAP MPM ICM MAP MPM ICM (Sec)

PMA 2.73 2.51 3.91 6.45 5.48 17.39 1183.13

SPA 2.49 7.64 3.98 5.82 19.19 14.88 81.52

MMA 34.34 2.96 4.11 26.53 5.70 16.00 635.78

PL 3.82 3.10 3.89 17.69 7.31 22.22 299.75

CD 3.78 2.82 4.09 8.88 6.29 8.92 206.93

Inference time (Sec) 5.52 90.04 5.20 5.96 113.84 5.20

An interesting observation is that the MAP inference is verypoor with MMA parameters
and the same is true for MPM inference with SPA parameters. This further enforces the
idea that learning/inference duality is rooted in minimizing the classification error for a
learning/inference pair, rather than maximizing the true likelihood.

As a by-product of this comparison, we find that MPM inferenceis more robust to the
parameters returned by other techniques than MAP which gives significantly worse results



with parameters other than SPA and PMA. In addition, the PL and CD parameters generally
give bad estimates while ICM does poor inference due to the problem of label initialization.

Finally, if it is argued that MPM works well with PMA, not because of duality, but because
PMA returns true ML parameters (i.e. BP converged to true marginals), the results indicate
that MAP inference is not the best with ML parameters and the inference based approxi-
mation (SPA in this case) may yield better results enforcingthe role of duality even when
exact ML parameter learning is possible.

7 Conclusion and future work

We have presented an approach for learning the parameters ofdiscriminative field models,
which uses inference to approximate the gradients used in maximum likelihood learning.
We showed that proposed approximations lead to a weakly convergent behavior of the
learning procedures. Further, the learned parameters leadto good classification perfor-
mance so long as the method used for approximating the gradient is consistent with the
inference mechanism. We also provided an experimental comparison of commonly used
learning and inference techniques for discriminative fields. For MAP inference, SPA based
learning was found to be most accurate as well as efficient. Infact, although we limited
the presentation to the restricted case of binary fields, we have already used maximum
marginal approximation to successfully learn more than3000 parameters for multiclass
DRFs applied to object detection [4]. We are currently evaluating the performance of the
proposed approximate parameter learning procedures with conventional MRFs.
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