
Chapter 1
Fast Binary Embedding for High-Dimensional
Data

Felix X. Yu, Yunchao Gong, and Sanjiv Kumar

Abstract Binary embedding of high-dimensional data requires long codes to pre-
serve the discriminative power of the input space. Traditional binary coding meth-
ods often suffer from very high computation and storage costs in such a scenario.
To address this problem, we propose two solutions which improve over existing
approaches. The first method, Bilinear Binary Embedding (BBE), converts high-
dimensional data to compact similarity-preserving binary codes using compact bi-
linear projections. Compared to methods that use unstructured matrices for projec-
tion, it improves the time complexity from O(d2) to O(d1.5), and the space com-
plexity fromO(d2) toO(d) where d is the input dimensionality. The second method,
Circulant Binary Embedding (CBE), generates binary codes by projecting the data
with a circulant matrix. The circulant structure enables the use of Fast Fourier Trans-
formation to speed up the computation. This further improves the time complexity
toO(d log d). For both BBE and CBE, we propose to learn the projections in a data-
dependent fashion. We show by extensive experiments that the proposed approaches
give much better performance than the state-of-the-arts for fixed time, and provides
much faster computation with no performance degradation for fixed number of bits.
The BBE and CBE methods were previously presented in [5, 38]. In this book chap-
ter, we present the two approaches in an unified framework, covering randomized
binary embedding, learning-based binary embedding, and learning with dimension
reductions. We also discuss the choice of algorithms.

Felix X. Yu
Columbia University, e-mail: yuxinnan@ee.columbia.edu
Yunchao Gong
Facebook AI Research, e-mail: ycgong@facebook.com
Sanjiv Kumar
Google Research, e-mail: sanjivk@google.com

1

yuxinnan@ee.columbia.edu
ycgong@facebook.com
sanjivk@google.com

2 Felix X. Yu, Yunchao Gong, and Sanjiv Kumar

1.1 Introduction

Embedding input data in binary spaces is becoming popular for efficient retrieval
and learning on massive data sets [19, 5, 30, 6, 21, 10, 11, 13, 20, 22, 24]. Moreover,
in a large number of application domains such as computer vision, biology and
finance, data is typically high-dimensional. Taking image retrieval and classification
as an example, it has been shown recently that in order to achieve high accuracy
on large-scale datasets, it is advantageous to use very high-dimensional descriptors
such as Fisher Vectors (FV) [27, 26, 31], Vector of Locally Aggregated Descriptors
(VLAD) [15], Locally Constraint Linear Code (LLC) [34], or a large set of weak
attributes [37]. When representing such high dimensional data by binary codes, it
has been shown that long codes are required in order to achieve good performance.
In fact, the required number of bits is O(d), where d is the input dimensionality
[19, 5, 31].

The goal of binary embedding is to well approximate the input distance as Ham-
ming distance so that efficient learning and retrieval can happen directly in the bi-
nary space. It is important to note that another related area called hashing is a special
case with slightly different goal: creating hash tables such that points that are similar
fall in the same (or nearby) bucket with high probability. In fact, even in hashing, if
high accuracy is desired, one typically needs to use hundreds of hash tables involv-
ing tens of thousands of bits.

Most of the existing linear binary coding approaches generate the binary code by
applying a “full” (unstructured) projection matrix, followed by a binarization step.
Formally, given a data point, x ∈ Rd, the k-bit binary code, h(x) ∈ {+1,−1}k is
generated simply as

h(x) = sgn(Rx), (1.1)

where R ∈ Rk×d, and sgn(·) is a binary map which returns element-wise sign1.
Several techniques have been proposed to generate the projection matrix randomly
without taking into account the input data [2, 30]. These methods are very popular
due to their simplicity but often fail to give the best performance due to their inability
to adapt the codes with respect to the input data. Thus, a number of data-dependent
techniques have been proposed with different optimization criteria such as recon-
struction error [17], data dissimilarity [23, 36], ranking loss [24], quantization error
after PCA [7], and pairwise misclassification [35]. These methods are shown to be
effective for learning compact codes for relatively low-dimensional data. However,
theO(d2) computational and space costs prohibit them from being applied to learn-
ing long codes for high-dimensional data. For instance, to generate O(d)-bit binary
codes for data with d ∼1M, a huge projection matrix will be required needing TBs
of memory, which is not practical2.

In order to overcome the computational challenges for the full projection based
methods, we propose two approaches reducing both the computational cost and stor-

1 A few methods transform the linear projection via a nonlinear map before taking the sign [36, 30].
2 In principle, one can generate the random entries of the matrix on-the-fly (with fixed seeds)
without needing to store the matrix. But this will increase the computational time even further.

1 Fast Binary Embedding for High-Dimensional Data 3

age cost. The first method, Bilinear Binary Embedding (BBE), reshapes the input
vector x into a matrix Z, and applies a bilinear projection to get the binary code:

h(x) = vec(sgn(RT
1 ZR2)). (1.2)

We use vec(·) to denote an operator which reshapes a matrix to a vector. It is easy
to show that when the shapes of Z,R1,R2 are O(

√
d) × O(

√
d), the method has

time and space complexity ofO(d1.5) andO(d), respectively. The BBE method was
originally presented in [5].

The second method, Circulant Binary Embedding (CBE), is even faster than
BBE. This is achieved by imposing a circulant structure on the projection matrix
R in (1.1).

h(x) = sgn(Rx), R is a circulant matrix. (1.3)

This special structure allows us to use Fast Fourier Transformation (FFT) based
techniques, which have been extensively used in signal processing. The proposed
method further reduces the time complexity to O(d log d), enabling efficient binary
embedding for very high-dimensional data3. The CBE method was originally pre-
sented in [38].

Table 1.1 compares the time and space complexity for different methods. This
book chapter along with [5, 38] make the following contributions:

• We propose the bilinear binary embedding (BBE), and circulant binary embed-
ding (CBE) methods, which reduce both the computational cost and storage
cost of binary embedding for high-dimensional data.

• For both the methods, in addition to randomized versions, we propose to learn
the data-dependent projections. This helps to further improve the coding quality
by considering the data distributions.

• Extensive experiments show that, compared to the state-of-the-art, the proposed
method improves the result dramatically for a fixed time cost, and provides
much faster computation with no performance degradation for a fixed number
of bits.

1.2 Bilinear Binary Embedding (BBE)

Most high-dimensional descriptors have a natural matrix or tensor structure. For ex-
ample, a HOG descriptor is a two-dimensional grid of histograms, and this structure
has been exploited for object detection [29]. A Fisher Vector [27, 26, 31] can be
represented as a k × 2l matrix, where k is the visual vocabulary size and l is the
dimensionality of the local image features (the most common choice is SIFT with

3 One could in principal use other structured matrices like Hadamard matrix along with a sparse
random Gaussian matrix to achieve fast projection as was done in fast Johnson-Lindenstrauss
transform[1, 3], but it is still slower than circulant projection and needs more space.

4 Felix X. Yu, Yunchao Gong, and Sanjiv Kumar

Method Time Space Time (Learning)
Full projection O(d2) O(d2) O(nd3)
BBE O(d1.5) O(d) O(nd1.5)
CBE O(d log d) O(d) O(nd log d)

Table 1.1 Comparison of the proposed methods (BBE and CBE) with the full projection based
methods for generating long codes (code dimension k comparable to input dimension d). n is the
number of instances used for learning data-dependent projection matrices. The O(d1.5) compu-
tational complexity of BBE can be achieved when the input vector is reshaped as a

√
d ×
√
d

matrix. The O(d log d) computational complexity of CBE is achieved by using FFT to speed up
the computation.

l=128). VLAD [15], which can be seen as a simplified version of FV, can be repre-
sented as a k × l matrix. Finally, an LLC [34] descriptor with s spatial bins can be
represented as a k × s matrix.

Let x ∈ Rd denote our descriptor vector. Based on the structure and interpreta-
tion of the descriptor, we reorganize it into a d1 × d2 matrix with d = d1d2:

x ∈ Rd1d2×1 7→ Z ∈ Rd1×d2 . (1.4)

We assume that each vector x ∈ Rd is zero-centered and has unit norm, as L2

normalization is a widely used preprocessing step that usually improves perfor-
mance [28].

We will first introduce a randomized method to obtain d-bit bilinear codes in
Section 1.2.1 and then explain how to learn data-dependent codes in Section 1.2.2.
Learning of reduced-dimension codes will be discussed in Section 1.2.3.

1.2.1 Randomized Bilinear Binary Embedding (Bilinear-rand)

To convert a descriptor x ∈ Rd to a d-dimensional binary string, we first consider
the framework of [2, 7] that applies a random rotation R ∈ Rd×d to x:

h(x) = sgn(Rx). (1.5)

Since x can be represented as a matrix Z ∈ Rd1×d2 , to make rotation more efficient,
we propose a bilinear formulation using two random orthogonal matrices R1 ∈
Rd1×d1 and R2 ∈ Rd2×d2 :

h(x) = vec
(
sgn(RT

1 ZR2)
)
, (1.6)

where vec(·) denotes column-wise concatenation.
It is easy to show that applying a bilinear rotation to Z ∈ Rd1×d2 is equivalent to

applying a d1d2×d1d2 rotation to vec(Z). This rotation is given by R̂ = R2⊗R1,
where ⊗ denotes the Kronecker product:

1 Fast Binary Embedding for High-Dimensional Data 5

visual codewords

S
IF

T
 d

im
en

si
on

s

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

(a) Original VLAD descriptor
visual codewords

S
IF

T
 d

im
en

si
on

(b) Original binary code

visual codewords

S
IF

T
 d

im
en

si
on

s

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

(c) Bilinearly rotated VLAD
visual codewords

S
IF

T
 d

im
en

si
on

s

(d) Bilinearly rotated binary code

Fig. 1.1 [5] Visualization of the VLAD descriptor and resulting binary code (given by the sign
function) before and after learned bilinear rotation. We only show the first 32 SIFT dimensions and
visual codewords. Before the rotation, we can clearly see a block pattern, with many zero values.
After the rotation, the descriptor and the binary code look more whitened.

vec(RT
1 ZR2) = (RT

2 ⊗RT
1) vec(Z) = R̂T vec(Z)

follows from the properties of the Kronecker product [18]. Another basic property
of the Kronecker product is that if R1 and R2 are orthogonal, then R2 ⊗ R1 is
orthogonal as well [18]. Thus, a bilinear rotation is simply a special case of a full
rotation, such that the full rotation matrix R̂ can be reconstructed from two smaller
matrices R1 and R2.

While the degree of freedom of our bilinear rotation is more restricted than a full
rotation, the projection matrices are much smaller, and the projection speed is much
faster. In terms of time complexity, performing a full rotation on x takesO((d1d2)2)
time, while our approach is O(d21d2 + d1d

2
2). In terms of space for projections, full

rotation takes O((d1d2)2), and our approach only takes O(d21 + d22). For example,
for a 64K-dimensional vector, a full rotation will take roughly 16GB of RAM, while
the bilinear rotations only take 1MB of RAM. The projection time for a full rotation
is more than a second, vs. only 3 ms for bilinear rotations.

Note that when d1 and d2 are set as d1 = d2 = d1/2, the BBE method has the
lowest computational complexity O(d1.5), and lowest space complexity O(d). As
computational efficiency is the main focus of this paper, we use such settings in
the experiment section. Empirically, tuning d1 and d2, or setting them accordingly
based on the structure of the descriptor may result in better retrieval performance,
but it will lead to higher computational cost.

6 Felix X. Yu, Yunchao Gong, and Sanjiv Kumar

1.2.2 Learning Bilinear Binary Embedding (Bilinear-opt)

In this section, we present a method for learning the rotations R1 and R2 that is
inspired by two-sided Procrustes analysis [32] and builds on our earlier work [7, 6].

Following [7], we want to find a rotation R̂ such that the angle θi between a ro-
tated feature vector R̂Txi = vec(RT

1 ZiR2) and its binary encoding (geometrically,
the nearest vertex of the binary hypercube), sgn(R̂Tx) = vec(sgn(RT

1 ZiR2)), is
minimized. Given N training points, we want to maximize∑N

i=1
cos(θi)

=
∑N

i=1

(
sgn(R̂Txi)

T

√
d

(R̂Txi)

)
(1.7)

=
∑N

i=1

(
vec(sgn(RT

1 ZiR2))
T

√
d

vecRT
1 ZiR2)

)
=

1√
d

∑N

i=1

(
vec(Bi)

T vec(RT
1 ZiR2)

)
=

1√
d

∑N

i=1
tr(BiR

T
2 Z

T
i R1), (1.8)

where Bi = sgn(RT
1 ZiR2). Notice that (1.7) involves the large projection matrix

R̂ ∈ Rd×d, direct optimization of which is challenging. However, after reformula-
tion into bilinear form (1.8), the expression only involves the two small matrices R1

and R2. Letting B = {B1, . . . ,BN}, our objective function is as follows:

Q(B,R1,R2) = max
B,R1,R2

N∑
i=1

tr(BiR
T
2 Z

T
i R1) (1.9)

s. t. Bi ∈ {−1,+1}d1×d2 , RT
1 R1 = I, RT

2 R2 = I.

This optimization problem can be solved by block coordinate ascent by alternating
between the different variables {B1, . . . ,BN}, R1, and R2. We describe the update
steps for each variable below, assuming the others are fixed.
(S1) Update Bi. When R1 and R2 are fixed, we independently solve for each Bi

by maximizing

Q(Bi) = tr(BiR
T
2 Z

T
i R1) =

∑d1
k=1

∑d2
l=1 B

kl
i Ṽ

lk
i ,

where Ṽlk
i denote the elements of Ṽi = RT

2 Z
T
i R1. Q(Bi) is maximized by Bi =

sgn(ṼT
i).

(S2) Update R1. Expanding (1.9) with R2 and Bi fixed, we have the following:

1 Fast Binary Embedding for High-Dimensional Data 7

Q(R1) =
∑N

i=1
tr(BiR

T
2 Z

T
i R1)

= tr
(∑N

i=1
(BiR

T
2 Z

T
i)R1

)
= tr(D1R1) ,

where D1 =
∑N
i=1(BiR

T
2 Z

T
i). The above expression is maximized with the help

of polar decomposition: R1 = V1U
T
1 , where D1 = U1S1V

T
1 is the SVD of D1.

(S3) Update R2:

Q(R2) =
∑N

i=1
tr(BiR

T
2 Z

T
i R1)

=
∑N

i=1
tr(RT

2 Z
T
i R1Bi)

= tr
(
RT

2

∑N

i=1
(ZTi R1Bi)

)
= tr(RT

2 D2) ,

where D2 =
∑N
i=1(Z

T
i R1Bi). Analogously to the update rule for R1, the update

rule for R2 is R2 = U2V
T
2 , where D2 = U2S2V

T
2 is the SVD of D2.

We cycle between these updates for several iterations to obtain a local maximum.
The convergence of the above program is guaranteed in finite number of iterations
as the optimal solution of each step is exactly obtained, each step is guaranteed not
to decrease the objective function value, and the objective function is bounded from
above. In our implementation, we initialize R1 and R2 by random rotations and
use three iterations. We have not found significant improvement of performance by
using more iterations. The time complexity of this program isO(N(d31+d

3
2)) where

d1 and d2 are typically fairly small (e.g., d1 = 128, d2 = 500).
Figure 1.1 visualizes the structure of a VLAD descriptor and the corresponding

binary code before and after a learned bilinear rotation.

1.2.3 Learning with Dimensionality Reduction

The formulation of Section 1.2.2 is used to learn d-dimensional binary codes starting
from d-dimensional descriptors. Now, to produce a code of size c = c1 × c2, where
c1 < d1 and c2 < d2, we need projection matrices R1 ∈ Rd1×c1 , R2 ∈ Rd2×c2
such that RT

1 R1 = I and RT
2 R2 = I. Each Bi is now a c1×c2 binary variable. Con-

sider the cosine of the angle between a lower-dimensional projected vector R̂Txi
and its binary encoding sgn(R̂Tx):

cos(θi) =
sgn(R̂Txi)

T

√
c

R̂Txi

‖R̂Txi‖2
,

where R̂ ∈ Rd1d2×c1c2 and R̂T R̂ = I . This formulation differs from that of (1.7)
in that it contains ‖R̂Txi‖2 in the denominator, which makes the optimization dif-
ficult [6]. Instead, we follow [6] to define a relaxed objective function based on the

8 Felix X. Yu, Yunchao Gong, and Sanjiv Kumar

sum of linear correlations

Q(B,R1,R2) =
∑N

i=1

(
sgn(R̂Txi)

T

√
c

(R̂Txi)

)
.

The optimization framework for this objective is similar to that of Section 1.2.2. For
the three alternating optimization steps, (S1) remains the same. For (S2) and (S3),
we compute the SVD of D1 and D2 as U1S1V

T
1 and U2S2V

T
2 respectively, and

set the two rotations to R1 = V̂1U
T
1 and R2 = Û2V

T
2 , where V̂1 is the top c1

singular vectors of V1 and Û2 is the top c2 singular vectors of U2. To initialize the
optimization, we generate random orthogonal directions.

1.3 Circulant Binary Embedding (CBE)

In the former sections, we have proposed the BBE method which can produce binary
code with computational complexity O(d1.5). In this section, we propose the circu-
lant binary embedding (CBE) method which is even faster than the BBE method.

A circulant matrix R ∈ Rd×d is a matrix defined by a vector r = (r0, r1, · · · , rd−1)T
[9]. Note that the circulant matrix is sometimes equivalently defined by “circulating”
the rows instead of the columns.

R = circ(r) :=

r0 rd−1 . . . r2 r1
r1 r0 rd−1 r2
... r1 r0

. . .
...

rd−2
. rd−1

rd−1 rd−2 . . . r1 r0

 . (1.10)

Let D be a diagonal matrix with each diagonal entry being a Bernoulli variable
(±1 with probability 1/2). For x ∈ Rd, its d-bit Circulant Binary Embedding (CBE)
with r ∈ Rd is defined as:

h(x) = sgn(RDx), (1.11)

where R = circ(r). The k-bit (k < d) CBE is defined as the first k elements of
h(x). The need for such a D is discussed in Section 1.3.1. Note that applying D to
x is equivalent to applying random sign flipping to each dimension of x. Since sign
flipping can be carried out as a preprocessing step for each input x, here onwards
for simplicity we will drop explicit mention of D. Hence the binary code is given as
h(x) = sgn(Rx).

The main advantage of circulant binary embedding is its ability to use Fast
Fourier Transformation (FFT) to speed up the computation.

1 Fast Binary Embedding for High-Dimensional Data 9

Proposition 1. For d-dimensional data, CBE has space complexity O(d), and time
complexity O(d log d).

Since a circulant matrix is defined by a single column/row, clearly the storage
needed is O(d). Given a data point x, the d-bit CBE can be efficiently computed as
follows. Denote ~ as operator of circulant convolution. Based on the definition of
circulant matrix,

Rx = r~ x. (1.12)

The above can be computed based on Discrete Fourier Transformation (DFT), for
which fast algorithm (FFT) is available. The DFT of a vector t ∈ Cd is a d-
dimensional vector with each element defined as

F(t)l =
d−1∑
m=0

tn · e−i2πlm/d, l = 0, · · · , d− 1. (1.13)

The above can be expressed equivalently in a matrix form as

F(t) = Fdt, (1.14)

where Fd is the d-dimensional DFT matrix. Let FHd be the conjugate transpose of
Fd. It is easy to show that F−1d = (1/d)FHd . Similarly, for any t ∈ Cd, the Inverse
Discrete Fourier Transformation (IDFT) is defined as

F−1(t) = (1/d)FHd t. (1.15)

Since the convolution of two signals in their original domain is equivalent to the
hadamard product in their frequency domain [25],

F(Rx) = F(r) ◦ F(x). (1.16)

Therefore,

h(x) = sgn
(
F−1(F(r) ◦ F(x))

)
. (1.17)

For k-bit CBE, k < d, we only need to pick the first k bits of h(x). As DFT and
IDFT can be efficiently computed inO(d log d) with FFT [25], generating CBE has
time complexity O(d log d).

1.3.1 Randomized Circulant Binary Embedding (CBE-rand)

A simple way to obtain CBE is by generating the elements of r in (1.10) indepen-
dently from the standard normal distribution N (0, 1). We call this method random-
ized CBE (CBE-rand). A desirable property of any embedding method is its ability

10 Felix X. Yu, Yunchao Gong, and Sanjiv Kumar

to approximate input distances in the embedded space. Suppose Hk(x1,x2) is the
normalized Hamming distance between k-bit codes of a pair of points x1,x2 ∈ Rd:

Hk(x1,x2) =
1

k

k−1∑
i=0

∣∣ sgn(Ri·x1)− sgn(Ri·x2)
∣∣/2, (1.18)

and Ri· is the i-th row of R, R = circ(r). If r is sampled from N (0, 1), from [2],

Pr
(
sgn(rTx1) 6= sgn(rTx2)

)
= θ/π, (1.19)

where θ is the angle between x1 and x2. Since all the vectors that are circulant
variants of r also follow the same distribution, it is easy to see that

E(Hk(x1,x2)) = θ/π. (1.20)

For the sake of discussion, if k projections, i.e., first k rows of R, were generated
independently, it is easy to show that the variance ofHk(x1,x2) will be

Var(Hk(x1,x2)) = θ(π − θ)/kπ2. (1.21)

Thus, with more bits (larger k), the normalized hamming distance will be close to
the expected value, with lower variance. In other words, the normalized hamming
distance approximately preserves the angle4. Unfortunately in CBE, the projections
are the rows of R = circ(r), which are not independent. This makes it hard to
derive the variance analytically. To better understand CBE-rand, we run simula-
tions to compare the analytical variance of normalized hamming distance of inde-
pendent projections (1.21), and the sample variance of normalized hamming dis-
tance of circulant projections in Figure 1.2. For each θ and k, we randomly generate
x1,x2 ∈ Rd such that their angle is θ5. We then generate k-dimensional code with
CBE-rand, and compute the hamming distance. The variance is estimated by apply-
ing CBE-rand 1,000 times. We repeat the whole process 1,000 times, and compute
the averaged variance. Surprisingly, the curves of “Independent” and “Circulant”
variances are almost indistinguishable. This means that bits generated by CBE-rand
are generally as good as the independent bits for angle preservation. An intuitive ex-
planation is that for the circulant matrix, though all the rows are dependent, circulant
shifting one or multiple elements will in fact result in very different projections in
most cases. We will later show in experiments on real-world data that CBE-rand and
Locality Sensitive Hashing (LSH)6 has almost identical performance (yet CBE-rand
is significantly faster) (Section 1.4).

4 In this paper, we consider the case that the data points are `2 normalized. Therefore the cosine
distance, i.e., 1 - cos(θ), is equivalent to the l2 distance.
5 This can be achieved by extending the 2D points (1, 0), (cos θ, sin θ) to d-dimension, and per-
forming a random orthonormal rotation, which can be formed by the Gram-Schmidt process on
random vectors.
6 Here, by LSH we imply the binary embedding using R such that all the rows of R are sampled
iid. With slight abuse of notation, we still call it “hashing” following [2].

1 Fast Binary Embedding for High-Dimensional Data 11

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

log k
V

a
ri
a
n
c
e

Independet

Circulant

(a) θ = π/12

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

log k

V
a
ri
a
n
c
e

Independet

Circulant

(b) θ = π/6

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

log k

V
a
ri
a
n
c
e

Independet

Circulant

(c) θ = π/3

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

log k

V
a
ri
a
n
c
e

Independet

Circulant

(d) θ = π/2

Fig. 1.2 [38] The analytical variance of normalized hamming distance of independent bits as in
(1.21), and the sample variance of normalized hamming distance of circulant bits, as a function of
angle between points (θ) and number of bits (k). The two curves overlap.

Note that the distortion in input distances after circulant binary embedding comes
from two sources: circulant projection, and binarization. For the circulant projection
step, recent works have shown that the Johnson-Lindenstrauss-type lemma holds
with a slightly worse bound on the number of projections needed to preserve the
input distances with high probability [12, 39, 33, 16]. These works also show that
before applying the circulant projection, an additional step of randomly flipping the
signs of input dimensions is necessary7. To show why such a step is required, let
us consider the special case when x is an all-one vector, 1. The circulant projection
with R = circ(r) will result in a vector with all elements to be rT1. When r is
independently drawn from N (0, 1), this will be close to 0, and the norm cannot be
preserved. Unfortunately the Johnson-Lindenstrauss-type results do not generalize
to the distortion caused by the binarization step.

One problem with the randomized CBE method is that it does not utilize the
underlying data distribution while generating the matrix R. In the next section, we
propose to learn R in a data-dependent fashion, to minimize the distortions due to
circulant projection and binarization.

7 For each dimension, whether the sign needs to be flipped is predetermined by a (p = 0.5)
Bernoulli variable.

12 Felix X. Yu, Yunchao Gong, and Sanjiv Kumar

1.3.2 Learning Circulant Binary Embedding (CBE-opt)

We propose data-dependent CBE (CBE-opt), by optimizing the projection matrix
with a novel time-frequency alternating optimization. We consider the following
objective function in learning the d-bit CBE. The extension of learning k < d bits
will be shown in Section 1.3.3.

argmin
B,r

||B− ZRT ||2F + λ||RRT − I||2F (1.22)

s.t. R = circ(r),

where Z ∈ Rn×d, is the data matrix containing n training points: Z = [x0, · · · ,xn−1]T ,
and B ∈ {−1, 1}n×d is the corresponding binary code matrix.8

In the above optimization, the first term minimizes distortion due to binarization.
The second term tries to make the projections (rows of R, and hence the corre-
sponding bits) as uncorrelated as possible. In other words, this helps to reduce the
redundancy in the learned code. If R were to be an orthogonal matrix, the second
term will vanish and the optimization would find the best rotation such that the dis-
tortion due to binarization is minimized. However, when R is a circulant matrix,
R, in general, will not be orthogonal. Similar objective has been used in previous
works including [7, 5] and [35].

The above is a combinatorial optimization problem, for which an optimal solu-
tion is hard to find. In this section we propose a novel approach to efficiently find a
local solution. The idea is to alternatively optimize the objective by fixing r, and B,
respectively. For a fixed r, optimizing B can be easily performed in the input do-
main (“time” as opposed to “frequency”). For a fixed B, the circulant structure of R
makes it difficult to optimize the objective in the input domain. Hence we propose
a novel method, by optimizing r in the frequency domain based on DFT. This leads
to a very efficient procedure.

For a fixed r. The objective is independent on each element of B. Denote Bij as
the element of the i-th row and j-th column of B. It is easy to show that B can be
updated as:

Bij =

{
1 if Rj·xi ≥ 0

−1 if Rj·xi < 0
, (1.23)

i = 0, · · · , n− 1. j = 0, · · · , d− 1.

For a fixed B. Define r̃ as the DFT of the circulant vector r̃ := F(r). Instead of
solving r directly, we propose to solve r̃, from which r can be recovered by IDFT.

Key to our derivation is the fact that DFT projects the signal to a set of orthogonal
basis. Therefore the `2 norm can be preserved. Formally, according to Parseval’s
theorem , for any t ∈ Cd [25],

8 If the data is `2 normalized, we can set B ∈ {−1/
√
d, 1/
√
d}n×d to make B and ZRT more

comparable. This does not empirically influence the performance.

1 Fast Binary Embedding for High-Dimensional Data 13

||t||22 = (1/d)||F(t)||22.

Denote diag(·) as the diagonal matrix formed by a vector. Denote <(·) and =(·)
as the real and imaginary parts, respectively. We use Bi· to denote the i-th row of B.
With complex arithmetic, the first term in (1.22) can be expressed in the frequency
domain as:

||B−XRT ||2F =
1

d

n−1∑
i=0

||F(BT
i· −Rxi)||22 (1.24)

=
1

d

n−1∑
i=0

||F(BT
i·)− r̃ ◦ F(xi)||22 =

1

d

n−1∑
i=0

||F(BT
i·)− diag(F(xi))r̃||22

=
1

d

n−1∑
i=0

(
F(BT

i·)− diag(F(xi))r̃
)T (F(BT

i·)− diag(F(xi))r̃
)

=
1

d

[
<(r̃)TM<(r̃) + =(r̃)TM=(r̃) + <(r̃)Th+ =(r̃)Tg

]
+ ||B||2F ,

where,

M = diag
(n−1∑
i=0

<(F(xi)) ◦ <(F(xi)) + =(F(xi)) ◦ =(F(xi))
)

h = −2
n−1∑
i=0

<(F(xi)) ◦ <(F(BT
i·)) + =(F(xi)) ◦ =(F(BT

i·))

g = 2

n−1∑
i=0

=(F(xi)) ◦ <(F(BT
i·))−<(F(xi)) ◦ =(F(BT

i·)).

The above can be derived based on the following fact. For any Q ∈ Cd×d, s,
t ∈ Cd,

||s−Qt||22 = (s−Qt)H(s−Qt) (1.25)

=sHs− sHQt− tHQHs+ tHQHAt

=<(s)T<(s) + =(s)T=(s)
− 2<(t)T (<(Q)T<(s) + =(Q)T=(s))
+ 2=(t)T (=(Q)T<(s)−<(Q)T=(s))
+ <(t)T (<(Q)T<(Q) + =(Q)T=(Q))<(t)
+ =(t)T (<(Q)T<(Q) + =(Q)T=(Q))=(t)
+ 2<(t)T (=(Q)T<(Q)−<(Q)T=(Q))=(t).

14 Felix X. Yu, Yunchao Gong, and Sanjiv Kumar

For the second term in (1.22), we note that the circulant matrix can be diagonal-
ized by DFT matrix Fd and its conjugate transpose FHd . Formally, for R = circ(r),
r ∈ Rd,

R = (1/d)FHd diag(F(r))Fd. (1.26)

Let Tr(·) be the trace of a matrix. Therefore,

||RRT − I||2F = ||1
d
FHd (diag(r̃)Hdiag(r̃)− I)Fd||2F

=Tr

[
1

d
FHd (diag(r̃)Hdiag(r̃)− I)H(diag(r̃)Hdiag(r̃)− I)Fd

]
=Tr

[
(diag(r̃)Hdiag(r̃)− I)H(diag(r̃)Hdiag(r̃)− I)

]
=||r̃H ◦ r̃− 1||22 = ||<(r̃)2 + =(r̃)2 − 1||22. (1.27)

Furthermore, as r is real-valued, additional constraints on r̃ are needed. For any
u ∈ C, denote u as the complex conjugate of u. We have the following result [25]:
For any real-valued vector t ∈ Cd, F(t)0 is real-valued, and

F(t)d−i = F(t)i, i = 1, · · · , bd/2c.

From (1.24) − (1.27), the problem of optimizing r̃ becomes

argmin
r̃

<(r̃)TM<(r̃) + =(r̃)TM=(r̃) + <(r̃)Th

+ =(r̃)Tg + λd||<(r̃)2 + =(r̃)2 − 1||22 (1.28)
s.t. =(r̃0) = 0

<(r̃i) = <(r̃d−i), i = 1, · · · , bd/2c
=(r̃i) = −=(r̃d−i), i = 1, · · · , bd/2c.

The above is non-convex. Fortunately, the objective function can be decomposed,
such that we can solve two variables at a time. Denote the diagonal vector of the
diagonal matrix M as m. The above optimization can then be decomposed to the
following sets of optimizations.

argmin
r̃0

m0r̃
2
0 + h0r̃0 + λd

(
r̃20 − 1

)2
, s.t. r̃0 = r̃0. (1.29)

argmin
r̃i

(mi +md−i)(<(r̃i)2 + =(r̃i)2) (1.30)

+ 2λd
(
<(r̃i)2 + =(r̃i)2 − 1

)2
+ (hi + hd−i)<(r̃i) + (gi − gd−i)=(r̃i),
i = 1, · · · , bd/2c.

In (1.29), we need to minimize a 4th order polynomial with one variable, with the
closed form solution readily available. In (1.30), we need to minimize a 4th order
polynomial with two variables. Though the closed form solution is hard (requiring

1 Fast Binary Embedding for High-Dimensional Data 15

d Full projection Bilinear projection Circulant projection
215 5.44× 102 2.85 1.11
217 - 1.91× 101 4.23
220 (1M) - 3.76× 102 3.77× 101

224 - 1.22× 104 8.10× 102

227 (100M) - 2.68× 105 8.15× 103

Table 1.2 Computational time (ms) of full projection (LSH, ITQ, SH etc.), bilinear projection
(BBE), and circulant projection (CBE). The time is based on a single 2.9GHz CPU core. The error
is within 10%. An empty cell indicates that the memory needed for that method is larger than the
machine limit of 24GB.

solution of a cubic bivariate system), we can find local minima by gradient descent,
which can be considered as having constant running time for such small-scale prob-
lems. The overall objective is guaranteed to be non-increasing in each step. In prac-
tice, we can get a good solution with just 5-10 iterations. In summary, the proposed
time-frequency alternating optimization procedure has running time O(nd log d).

1.3.3 Learning with Dimension Reduction

In the case of learning k < d bits, we need to solve the following optimization
problem:

argmin
B,r

||BPk −XPTkR
T ||2F + λ||RPkP

T
kR

T − I||2F

s.t. R = circ(r), (1.31)

in which Pk =

[
Ik O
O Od−k

]
, Ik is a k×k identity matrix. Od−k is a (d−k)×(d−k)

all-zero matrix, and O is a k × (d− k) all-zero matrix.
In fact, the right multiplication of Pk can be understood as a “temporal cut-off”,

which is equivalent to a frequency domain convolution. This makes the optimization
difficult, as the objective in frequency domain can no longer be decomposed. To
address this issues, we propose a simple solution in which Bij = 0, i = 0, · · · , n−
1, j = k, · · · , d − 1 in (1.22). Thus, the optimization procedure remains the same,
and the cost is also O(nd log d). We will show in experiments that this heuristic
provides good performance in practice.

1.4 Experiments

To demonstrate the performance of the proposed binary embedding methods, we
conducted experiments on three real-world high-dimensional datasets used by the

16 Felix X. Yu, Yunchao Gong, and Sanjiv Kumar

current state-of-the-art method for generating binary codes. The Flickr-25600 dataset
contains 100K images sampled from a noisy Internet image collection. Each image
is represented by a 25, 600 dimensional vector. The ImageNet-51200 contains 100k
images sampled from 100 random classes from ImageNet [4], each represented by a
51, 200 dimensional vector. The third dataset (ImageNet-25600) is another random
subset of ImageNet containing 100K images in 25, 600 dimensional space. All the
vectors are normalized to be of unit norm. Most of the experiment results in this
section have been presented in our former work [38].

We compared the performance of the randomized (bilinear-rand, CBE-rand) and
learned (bilinear-opt, CBE-opt) versions of our embedding methods with the widely
used method for high-dimensional data, i.e., LSH. Note that bilinear binary embed-
dings have been shown to perform similar or better than another promising tech-
nique called Product Quantization [14]. We also show an experiment with rela-
tively low-dimensional data in 2048 dimensional space using Flickr data to compare
against techniques that perform well for low-dimensional data but do not scale to
high-dimensional scenario. Example techniques include ITQ [7], SH [36], SKLSH
[30], and AQBC [6].

Following [5, 23, 8], we use 10,000 randomly sampled instances for training. We
then randomly sample 500 instances, different from the training set as queries. The
performance (recall@1-100) is evaluated by averaging the recalls of the query in-
stances. The ground-truth of each query instance is defined as its 10 nearest neigh-
bors based on `2 distance. For each dataset, we conduct two sets of experiments:
fixed-time where code generation time is fixed and fixed-bits where the number of
bits is fixed across all techniques. We also show an experiment where the binary
codes are used for classification. For the bilinear method, in order to get fast com-
putation, the feature vector is reshaped to a near-square matrix, and the dimension of
the two bilinear projection matrices are also chosen to be close to square. Parameters
for other techniques are tuned to give the best results on these datasets.

Computational Time. When generating k-bit code for d-dimensional data, the
full projection, bilinear projection, and circulant projection methods have time com-
plexity O(kd), O(

√
kd), and O(d log d), respectively. We compare the computa-

tional time in Table 1.2 on a fixed hardware. Based on our implementation, the
computational time of the above three methods can be roughly characterized as
d2 : d

√
d : 5d log d. Note that faster implementation of FFT algorithms will lead to

better computational time for CBE by further reducing the constant factor. Due to
the small storage requirement O(d), and the wide availability of highly optimized
FFT libraries, CBE is also suitable for implementation on GPU. Our preliminary
tests based on GPU shows up to 20 times speedup compared to CPU. In this paper,
for fair comparison, we use same CPU based implementation for all the methods.

In addition, the optimizations of learning-based CBE (Section 1.3.2) can be eas-
ily solved in a parallel fashion. The small footprints of both BBE and CBE also
make them suitable to be implemented on mobile devices, which has strict memory
requirement.

Retrieval. The recall for different methods is compared on the three datasets in
Figure 1.3, 1.5, and 1.7 shows the performance for different methods when the code

1 Fast Binary Embedding for High-Dimensional Data 17

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(a) # bits (CBE) = 3,200

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(b) # bits (CBE) = 6,400

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(c) # bits (CBE) = 12,800

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(d) # bits (CBE) = 25,600

Fig. 1.3 [38] Recall on Flickr-25600 with fixed time. “# bits” is the number of bits of CBE. Other
methods are using less bits to make their computational time identical to CBE. The standard devi-
ation is within 1%.

generation time for all the methods is kept the same as that of CBE. For a fixed time,
both CBE and BBE significantly outperform LSH. And CBE outperforms BBE in
such high-dimensional settings. Even CBE-rand outperforms LSH and Bilinear code
by a large margin.

Figure 1.4, 1.6, and 1.8 compare the performance of different techniques with
codes of same length. In this case, the performance of CBE-rand is almost identical
to LSH even though it is hundreds of time faster. This is consistent with our analysis
in Section 1.3.1. Bilinear-rand is also very competitive to LSH. In addition, CBE-
opt/CBE-rand outperform the Bilinear-opt/Bilinear-rand in addition to being 2-3
times faster.

Classification. Besides retrieval, we also test the binary codes for classification.
The advantage is to save on storage allowing even large-scale datasets to fit in mem-
ory [19, 31]. We follow the asymmetric setting of [31] by training linear SVM on
binary code sgn(Rx), and testing on the original Rx. This empirically has been
shown to give better accuracy than the symmetric procedure. We use ImageNet-

18 Felix X. Yu, Yunchao Gong, and Sanjiv Kumar

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(a) # bits (all) = 3,200

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(b) # bits (all) = 6,400

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(c) # bits (all) = 12,800

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(d) # bits (all) = 25,600

Fig. 1.4 [38] Recall on Flickr-25600 with fixed number of bits. CBE-opt/CBE-rand are 2-3 times
faster than Bilinear-opt/Bilinear-rand. Both CBE and BBE(Bilinear) are hundreds of times faster
than LSH. The standard deviation is within 1%.

Original LSH Bilinear-opt CBE-opt
25.59±0.33 23.49±0.24 24.02±0.35 24.55 ±0.30

Table 1.3 [38] Multiclass classification accuracy on binary coded ImageNet-25600. The binary
codes of same dimensionality are 32 times more space efficient than the original features (single-
float).

25600, with randomly sampled 100 images per category for training, 50 for valida-
tion and 50 for testing. The code dimension is set as 25,600. As shown in Table 1.3,
our methods, which have much faster computation, does not show any performance
degradation compared to LSH in classification task as well.

Low-Dimensional Experiment. There exist several techniques that do not scale
to high-dimensional case. To compare our method with those, we conducted exper-
iments with fixed number of bits on a relatively low-dimensional dataset (Flickr-
2048), constructed by randomly sampling 2,048 dimensions of Flickr-25600. As
shown in Figure 1.9, though BBE and CBE are not designed for such scenario,

1 Fast Binary Embedding for High-Dimensional Data 19

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(a) # bits (CBE) = 3,200

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(b) # bits (CBE) = 6,400

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(c) # bits (CBE) = 12,800

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(d) # bits (CBE) = 25,600

Fig. 1.5 [38] Recall on ImageNet-25600 with fixed time. “# bits” is the number of bits of CBE.
Other methods are using less bits to make their computational time identical to CBE. The standard
deviation is within 1%.

they perform better or equivalent to other techniques except ITQ which scales very
poorly with d (O(d3)). Moreover, as the number of bits increases, the gap between
ITQ and our methods becomes much smaller suggesting that the performance of
ITQ is not expected to be better if one could run ITQ on high-dimensional data.
Note that in such small-scale scenario, BBE is faster than CBE due to the computa-
tional overhead of FFT.

1.5 Choice of Algorithms

CBE has better computational complexity compared to BBE. In addition, according
to the experimental results, with fixed bits, CBE outperforms BBE in general. This
suggests that the circulant projection is more powerful than the bilinear projection in

20 Felix X. Yu, Yunchao Gong, and Sanjiv Kumar

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(a) # bits (all) = 3,200

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(b) # bits (all) = 64,00

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(c) # bits (all) = 12,800

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(d) # bits (all) = 25,600

Fig. 1.6 [38] Recall on ImageNet-25600 with fixed number of bits. CBE-opt/CBE-rand are 2-3
times faster than Bilinear-opt/Bilinear-rand. Both CBE and BBE(Bilinear) are hundreds of times
faster than LSH. The standard deviation is within 1%.

generating the binary code. This resonates with the works using circulant projections
for Johnson-Lindenstrauss transformations [1, 3].

The disadvantage of CBE is the computational overhead of FFT. Based on our
implementation, BBE is faster for moderate to high-dimensional data (10k - 30k),
and CBE is faster on very high-dimensional data (30k - 100M). Therefore, the fi-
nal choice of the algorithm should depend on the evaluation metric, and the actual
computational cost based on implementation.

1.6 Conclusion

This book chapter introduces two fast binary embedding methods for high-dimensional
data [5, 38] with unified notations and framework. The Bilinear Binary Embed-
ding (BBE) has time complexity O(d1.5). The Circulant Binary Embedding (CBE)

1 Fast Binary Embedding for High-Dimensional Data 21

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(a) # bits (CBE) = 6,400

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(b) # bits (CBE) = 12,800

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(c) # bits (CBE) = 25,600

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(d) # bits (CBE) = 51,200

Fig. 1.7 [38] Recall on ImageNet-51200, with fixed time. “# bits” is the number of bits of CBE.
Other methods are using less bits to make their computational time identical to CBE. The standard
deviation is within 1%.

has time complexity O(d log d). Both algorithms have space complexity O(d). We
have also proposed methods for learning the projection matrices in a data-dependent
fashion to further improve the performance. The proposed methods show no perfor-
mance degradation on real-world data compared to the expensive full projection
methods, which has computational complexityO(d2). On the contrary, for the fixed
time, our methods showed significant accuracy gains.

Both the proposed methods use highly structured projections to speed up the
computation. Our future work is to study more generalized structured projections
for binary embedding. This requires both theoretical analysis on the randomized
projections, and novel optimization algorithms for learning data-dependent projec-
tions.

22 Felix X. Yu, Yunchao Gong, and Sanjiv Kumar

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(a) # bits (all) = 6,400

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(b) # bits (all) = 12,800

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(c) # bits (all) = 25,600

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(d) # bits (all) = 51,200

Fig. 1.8 [38] Recall on ImageNet-51200 with fixed number of bits. CBE-opt/CBE-rand are 2-3
times faster than Bilinear-opt/Bilinear-rand. Both CBE and BBE(Bilinear) are hundreds of times
faster than LSH. The standard deviation is within 1%.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

SKLSH

ITQ

SH

AQBC

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(a) # bits = 1,024

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

LSH

SKLSH

ITQ

SH

AQBC

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(b) # bits = 2,048

Fig. 1.9 [38] Performance comparison on relatively low-dimensional data (Flickr-2048) with fixed
number of bits. CBE gives comparable performance to the state-of-the-art even on low-dimensional
data as the number of bits is increased. However, note that these other methods do not scale to very
high-dimensional data setting which is the main focus of this work.

1 Fast Binary Embedding for High-Dimensional Data 23

References

[1] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast
Johnson-Lindenstrauss transform. In ACM Symposium on Theory of Comput-
ing, 2006.

[2] Moses S Charikar. Similarity estimation techniques from rounding algorithms.
In ACM Symposium on Theory of Computing, 2002.

[3] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. Fast locality-sensitive
hashing. In ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2011.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-
agenet: A large-scale hierarchical image database. In Computer Vision and
Pattern Recognition, 2009.

[5] Yunchao Gong, Sanjiv Kumar, Henry A Rowley, and Svetlana Lazebnik.
Learning binary codes for high-dimensional data using bilinear projections.
In Computer Vision and Pattern Recognition, 2013.

[6] Yunchao Gong, Sanjiv Kumar, Vishal Verma, and Svetlana Lazebnik. Angu-
lar quantization-based binary codes for fast similarity search. In Advances in
Neural Information Processing Systems, 2012.

[7] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iter-
ative quantization: A procrustean approach to learning binary codes for large-
scale image retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(12):2916–2929, 2013.

[8] Albert Gordo and Florent Perronnin. Asymmetric distances for binary embed-
dings. In Computer Vision and Pattern Recognition, 2011.

[9] Robert M Gray. Toeplitz and circulant matrices: A review. Now Pub, 2006.
[10] Junfeng He, Regunathan Radhakrishnan, Shih-Fu Chang, and Claus Bauer.

Compact hashing with joint optimization of search accuracy and time. In Com-
puter Vision and Pattern Recognition, 2011.

[11] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang, and Sung-Eui
Yoon. Spherical hashing. In Computer Vision and Pattern Recognition, 2012.

[12] Aicke Hinrichs and Jan Vybı́ral. Johnson-Lindenstrauss lemma for circulant
matrices. Random Structures & Algorithms, 39(3):391–398, 2011.

[13] Prateek Jain, Brian Kulis, and Kristen Grauman. Fast image search for learned
metrics. In Computer Vision and Pattern Recognition, 2008.

[14] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for
nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(1):117–128, 2011.

[15] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregat-
ing local descriptors into a compact image representation. In Computer Vision
and Pattern Recognition, 2010.

[16] Felix Krahmer and Rachel Ward. New and improved Johnson-Lindenstrauss
embeddings via the restricted isometry property. SIAM Journal on Mathemat-
ical Analysis, 43(3):1269–1281, 2011.

24 Felix X. Yu, Yunchao Gong, and Sanjiv Kumar

[17] Brian Kulis and Trevor Darrell. Learning to hash with binary reconstructive
embeddings. In Advances in Neural Information Processing Systems, 2009.

[18] Alan J. Laub. Matrix Analysis for Scientists and Engineers. SIAM.
[19] Ping Li, Anshumali Shrivastava, Joshua Moore, and Arnd Christian Konig.

Hashing algorithms for large-scale learning. In Advances in Neural Informa-
tion Processing Systems, 2011.

[20] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. Su-
pervised hashing with kernels. In Computer Vision and Pattern Recognition,
2012.

[21] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Hashing with graphs.
In International Conference on Machine Learning, 2011.

[22] Wei Liu, Jun Wang, Yadong Mu, Sanjiv Kumar, and Shih-fu Chang. Compact
hyperplane hashing with bilinear functions. In International Conference on
Machine Learning, 2012.

[23] Mohammad Norouzi and David Fleet. Minimal loss hashing for compact bi-
nary codes. In International Conference on Machine Learning, 2012.

[24] Mohammad Norouzi, David Fleet, and Ruslan Salakhutdinov. Hamming dis-
tance metric learning. In Advances in Neural Information Processing Systems,
2012.

[25] Alan V Oppenheim, Ronald W Schafer, John R Buck, et al. Discrete-time
signal processing, volume 5. Prentice Hall Upper Saddle River, 1999.

[26] Florent Perronnin and Christopher R. Dance. Fisher kernels on visual vocab-
ularies for image categorization. Computer Vision and Pattern Recognition,
2007.

[27] Florent Perronnin, Yan Liu, Jorge Sánchez, and Hervé Poirier. Large-scale im-
age retrieval with compressed fisher vectors. In Computer Vision and Pattern
Recognition, 2010.

[28] Florent Perronnin, J. Sánchez, and Thomas Mensink. Improving the Fisher
kernel for large-scale image classification. 2010.

[29] Hamed Pirsiavash, Deva Ramanan, and Charless Fowlkes. Bilinear classifiers
for visual recognition. In Advances in Neural Information Processing Systems,
2009.

[30] Maxim Raginsky and Svetlana Lazebnik. Locality-sensitive binary codes from
shift-invariant kernels. In Advances in Neural Information Processing Systems,
2009.

[31] Jorge Sánchez and Florent Perronnin. High-dimensional signature compres-
sion for large-scale image classification. In Computer Vision and Pattern
Recognition, 2011.

[32] PH Schönemann. On two-sided orthogonal Procrustes problems. Psychome-
trika, 1968.

[33] Jan Vybı́ral. A variant of the Johnson–Lindenstrauss lemma for circulant ma-
trices. Journal of Functional Analysis, 260(4):1096–1105, 2011.

[34] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yihong
Gong. Locality-constrained linear coding for image classification. Computer
Vision and Pattern Recognition, 2010.

1 Fast Binary Embedding for High-Dimensional Data 25

[35] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Sequential projection learning
for hashing with compact codes. In International Conference on Machine
Learning, 2010.

[36] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In Advances
in Neural Information Processing Systems, 2008.

[37] Felix X. Yu, Rongrong Ji, Ming-Hen Tsai, Guangnan Ye, and Shih-Fu Chang.
Weak attributes for large-scale image retrieval. In Computer Vision and Pattern
Recognition, 2012.

[38] Felix X. Yu, Sanjiv Kumar, Yunchao Gong, and Shih-Fu Chang. Circulant
binary embedding. In International Conference on Machine Learning, 2014.

[39] Hui Zhang and Lizhi Cheng. New bounds for circulant Johnson-Lindenstrauss
embeddings. arXiv preprint arXiv:1308.6339, 2013.

	Fast Binary Embedding for High-Dimensional Data
	Felix X. Yu, Yunchao Gong, and Sanjiv Kumar
	Introduction
	Bilinear Binary Embedding (BBE)
	Randomized Bilinear Binary Embedding (Bilinear-rand)
	Learning Bilinear Binary Embedding (Bilinear-opt)
	Learning with Dimensionality Reduction

	Circulant Binary Embedding (CBE)
	Randomized Circulant Binary Embedding (CBE-rand)
	Learning Circulant Binary Embedding (CBE-opt)
	Learning with Dimension Reduction

	Experiments
	Choice of Algorithms
	Conclusion
	References

