
Quantization based Fast Inner Product Search

Ruiqi Guo Sanjiv Kumar Krzysztof Choromanski David Simcha
Google Research, New York, NY 10011, USA

Abstract

We propose a quantization based approach
for fast approximate Maximum Inner Prod-
uct Search (MIPS). Each database vector is
quantized in multiple subspaces via a set of
codebooks, learned directly by minimizing
the inner product quantization error. Then,
the inner product of a query to a database
vector is approximated as the sum of in-
ner products with the subspace quantizers.
Different from recently proposed LSH ap-
proaches to MIPS, the database vectors and
queries do not need to be augmented in a
higher dimensional feature space. We also
provide a theoretical analysis of the proposed
approach, consisting of the concentration re-
sults under mild assumptions. Furthermore,
if a small set of held-out samples from the
query distribution is given at the training
time, we propose a modified codebook learn-
ing procedure which further improves the ac-
curacy. Experimental results on a variety
of datasets including those arising from deep
neural networks show that the proposed ap-
proach significantly outperforms the existing
state-of-the-art.

1 Introduction

Many information processing tasks such as retrieval
and classification involve computing the inner product
of a query vector with a set of database vectors, with
the goal of returning the database instances having
the largest inner products. This is often called Max-
imum Inner Product Search (MIPS) problem. For-
mally, given a database X = {xi}i=1···n, and a query
vector q drawn from the query distribution, where
xi, q ∈ Rd, we want to find x∗q ∈ X such that
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x∗q = argmaxx∈X(qTx). This definition can be triv-
ially extended to return top-N largest inner products.

The MIPS problem is particularly appealing for large
scale applications. For example, a recommendation
system needs to retrieve the most relevant items to a
user from an inventory of millions of items, whose rel-
evance is commonly represented as inner products [7].
Similarly, a large scale classification system needs to
classify an item into one of the categories, where the
number of categories may be very large [9]. A brute-
force computation of inner products via a linear scan
requires O(nd) time and space, which becomes com-
putationally prohibitive when the number of database
vectors and the data dimensionality is large. Therefore
it is valuable to consider algorithms that can compress
the database X and compute approximate x∗q much
faster than the brute-force search.

The problem of MIPS is related to that of Nearest
Neighbor Search with respect to L2 distance (L2NNS)
or angular distance (θNNS) between a query and a
database vector:

qTx = 1/2(||x||2 + ||q||2 − ||q − x||2) = ||q||||x|| cos θ,

or

argmax
x∈X

(qTx) = argmax
x∈X

(||x||2 − ||q − x||2)

= argmax
x∈X

(||x||cosθ),

where ||.|| is the L2 norm. Indeed, if the database
vectors are scaled such that ||x|| = constant ∀x ∈ X,
the MIPS problem becomes equivalent to L2NNS or
θNNS problems, which have been studied extensively
in the literature. However, when the norms of the
database vectors vary, as often true in practice, the
MIPS problem becomes quite challenging. The inner
product (distance) does not satisfy the basic axioms of
a metric such as triangle inequality and co-incidence.
For instance, it is possible to have xTx ≤ xT y for some
y 6= x. In this paper, we focus on the MIPS problem
where both database and the query vectors can have
arbitrary norms.

As the main contribution of this paper, we develop
a Quantization-based Inner Product (QUIP) search
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method to address the MIPS problem. We formulate
the problem of quantization as that of codebook learn-
ing, which directly minimizes the quantization error in
inner products (Sec. 3). Furthermore, if a small set of
held-out datatpoints (sampled from the query distri-
bution but separate from testing queries) is provided
at the training time, we propose a constrained opti-
mization framework which further improves the ac-
curacy (Sec. 3.2). We also provide a concentration-
based theoretical analysis of the proposed method
(Sec. 4). Extensive experiments on four real-world
datasets, involving recommendation (Movielens, Net-
flix ) and deep-learning based classification (ImageNet
and VideoRec) tasks show that the proposed approach
consistently outperforms the 5 state-of-the-art tech-
niques under both fixed space and fixed time scenarios
(Sec. 5).

2 Related works

The MIPS problem has been studied for more than
a decade. For instance, Cohen et al. [6] studied
it in the context of document clustering and pre-
sented a method based on randomized sampling with-
out computing the full matrix-vector multiplication.
In [13, 16], the authors described a procedure to mod-
ify tree-based search to adapt to MIPS criterion. Re-
cently, Bachrach et al. [3] proposed an approach that
transforms the input vectors such that the MIPS prob-
lem becomes equivalent to the L2NNS problem in the
transformed space, which they solved using a PCA-
Tree.

The MIPS problem has received a renewed attention
with the recent seminal work from Shrivastava and
Li [18], which introduced an Asymmetric Locality Sen-
sitive Hashing (ALSH) technique with provable search
guarantees. They also transform MIPS into L2NNS,
and use the popular LSH technique [1]. Specifically,
ALSH applies different vector transformations to a
database vector x and the query q, respectively:

x̂ = [x̃; ||x̃||2; ||x̃||4; · · · ||x̃||2m ].

q̂ = [q; 1/2; 1/2; · · · ; 1/2].

where x̃ = U0
x

maxx∈X ||x|| , U0 is some constant that

satisfies 0 < U0 < 1, and m is a nonnegative inte-
ger. Hence, x and q are mapped to a new (d + m)
dimensional space asymmetrically. Shrivastava and
Li [18] showed that when m → ∞, MIPS in the orig-
inal space is equivalent to L2NNS in the new space.
The proposed hash function followed L2LSH form [1]:

hL2
i (x̂) = bP

T
i x̂+bi

r c,
where Pi is a (d+m)-dimensional vector whose entries
are sampled i.i.d from the standard Gaussian, N (0, 1),
and bi is sampled uniformly from [0, r]. The same
authors later proposed an improved version of ALSH

based on Signed Random Projection (SRP) [19]. It
transforms each vector using a slightly different proce-
dure and represents it as a binary code. Then, Ham-
ming distance is used for MIPS.

x̂ = [x̃;
1

2
− ||x̃||2;

1

2
− ||x̃||4; · · · 1

2
− ||x̃||2m ],

q̂ = [q; 0; 0; · · · ; 0], and

hSRP
i (x̂) = sign(PT

i x̂);

DistSRP (x, q) =
b∑

i=1

hSRP
i (x̂) 6= hSRP

i (q̂).

Neyshabur and Srebro [15] argued that a symmetric
transformation was sufficient to develop a provable
LSH approach for the MIPS problem if query was re-
stricted to unit norm. They used a transformation
similar to the one used by Bachrach et al. [3] to aug-
ment the original vectors:

x̂ = [x̃;
√

1− ||x̃||2]. q̂ = [q̃; 0].

where x̃ = x
maxx∈X ||x|| , q̃ = q

||q|| . They showed that

this transformation led to significantly improved re-
sults over the SRP based LSH from [19].

Recently, composite quantization [10] and additive
quantization [2] techniques have been proposed to per-
form fast inner product search by exploiting additive
nature of inner product. This problem is also re-
lated to locally learned codebook of product quan-
tization [12] in Euclidean space. All of the above
three methods learn optimized codebooks at the cost
of added overhead of look up table construction, which
grows linearly with the length of codes. As confirmed
in [21], this overhead becomes non-negligible in prac-
tice.

In this paper, we also take a quantization based view
of the MIPS problem. We differ from the above-
mentioned quantization approaches in three respects:
1) Our proposed quantization scheme extends
product codes to inner product search and di-
rectly optimizes the retrieval rank. This addi-
tional constraint provides a considerable improvement
over minimizing quantization error. 2) We provide
theoretical guarantees. Unlike the previous quanti-
zation based approaches, we prove unbiasedness of the
estimator as well as gave concentration bounds. 3)
Our lookup table construction is efficient. Un-
like the composite quantization [10] or additive quanti-
zation [2], our lookup table construction has the same
speed as that of the original product quantization [11]
and does not grow with the length of the code. We
show our method leads to even better accuracy under
both fixed space or fixed time budget on a variety of
real world tasks.
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3 Quantization-based inner product
(QUIP) search

Instead of augmenting the input vectors to a higher
dimensional space as in [15, 18], we approximate the
inner products by mapping each vector to a set of
subspaces, followed by independent quantization of
database vectors in each subspace. In this work, we
use a simple procedure for generating the subspaces.
Each vector’s elements are first permuted using a ran-
dom (but fixed) permutation1. Then each permuted
vector is mapped to K subspaces using simple chunk-
ing, as done in product codes [17, 11]. For ease of
notation, in the rest of the paper we will assume that
both query and database vectors have been permuted.
Chunking leads to block-decomposition of the query
q ∼ Q and each database vector x ∈ X:

x = [x(1);x(2); · · · ;x(K)] q = [q(1); q(2); · · · ; q(K)],

where each x(k), q(k) ∈ Rl, l = dd/Ke.2 The kth sub-
space containing the kth blocks of all the database vec-
tors, {x(k)}i=1...n, is then quantized by a codebook
U (k) ∈ Rl×Ck where Ck is the number of quantiz-
ers in subspace k. Without loss of generality, we as-
sume Ck = C ∀ k. Then, each database vector x

is quantized in the kth subspace as x(k) ≈ U (k)α
(k)
x ,

where α
(k)
x is a C-dimensional one-hot assignment vec-

tor with exactly one 1 and rest 0. Thus, a database
vector x is quantized by a single dictionary element

u
(k)
x in the kth subspace.

Given the quantized database vectors, the exact inner
product is approximated as:

qTx =
∑

k

q(k)Tx(k) ≈
∑

k

q(k)TU (k)α(k)
x =

∑

k

q(k)Tu(k)x

(1)
Note that this approximation is ’asymmetric’ in the
sense that only database vectors x are quantized, not
the query vector q. One can quantize q as well but
it will lead to increased approximation error. In fact,
the above asymmetric computation for all the database
vectors can still be carried out very efficiently via look
up tables similar to [11], except that each entry in the
kth table is a dot product between q(k) and columns
of U (k) .

Before describing the learning procedure for the code-

books U (k) and the assignment vectors α
(k)
x ∀ x, k, we

first show an interesting property of the approximation

in (1). Let S
(k)
c be the cth partition of the database

vectors in subspace k such that S
(k)
c = {x(k) : α

(k)
x [c] =

1Another possible choice is random rotation of the vec-
tors which is slightly more expensive than permutation but
leads to improved theoretical guarantees as discussed in the
supplementary material.

2One can do zero-padding wherever necessary, or use
different dimensions in each block.

1}, where α
(k)
x [c] is the cth element of α

(k)
x and U

(k)
c is

the cth column of U (k).

Lemma 3.1. If U (k)
c =

1

|S(k)
c |

∑

x(k)∈S(k)
c

x(k), then (1)

is an unbiased estimator of qTx.

Proof.

E
q∼Q,x∈X

[qTx−
∑

k

q(k)Tu(k)x ]

=
∑

k

E
q∼Q

q(k)T E
x∈X

[(x(k) − u(k)x ]

=
∑

k

E
q∼Q

q(k)T E
x∈X

[
∑

c

I[x(k) ∈ S(k)
c ](x(k) − U (k)

c )] = 0.

Where I is the indicator function, and the last equality

holds because for each k, E
x∈S(k)

c
[x(k) − U (k)

c ] = 0 by

definition.

We will provide the concentration inequalities for the
estimator in (1) in Sec. 4. Next we describe the learn-
ing of quantization codebooks in different subspaces.
We focus on two different training scenarios: when
only the database vectors are given (Sec. 3.1), and
when a held-out set of samples from the query dis-
tribution is also provided (Sec. 3.2). The latter can
result in significant performance gain when queries do
not follow the same distribution as the database vec-
tors. Note that the actual queries used at the test time
are different from the held-out samples, and hence un-
known at the training time.

3.1 Learning quantization codebooks from
database

Our goal is to learn data quantizers that minimize the
quantization error due to the inner product approxi-
mation given in (1). Given a held-out set of samples Z,
which is sampled from the same distribution as query
Q, but is different from testing queries, and assuming
each subspace to be independent, the expected squared
error can be expressed as:

1

|Z|
∑

z∈Z

∑

x∈X
[zTx−

∑

k

z(k)TU (k)α(k)
x ]2

=
∑

k

1

|Z|
∑

z∈Z

∑

x∈X
[z(k)T (x(k) − u(k)x )]2

=
∑

k

∑

x∈X
(x(k) − u(k)x )T Σ

(k)
Z (x(k) − u(k)x ),

(2)

where Σ
(k)
Z = 1

|Z|
∑

z∈Z z
(k)z(k)T is the non-centered

covariance matrix in subspace k estimated from held-
out sample set Z. Minimizing the error in (2) is
equivalent to solving a modified k-Means problem in
each subspace independently. Instead of using the
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Euclidean distance, Mahalanobis distance specified by

Σ
(k)
Z is used for assignment. One can use the standard

Lloyd’s algorithm to find the solution for each subspace
k iteratively by alternating between two steps:

c(k)x = argmin
c

(x(k) − U (k)
c )T Σ

(k)
Z (x(k) − U (k)

c ),

α(k)
x [c(k)x ] = 1, ∀ c, x

U (k)
c =

∑
x(k)∈S(k)

c
x(k)

|S(k)
c |

∀ c. (3)

The Lloyd’s algorithm is known to converge to a local
minimum (except in pathological cases where it may
oscillate between equivalent solutions) [5]. Also, note
that the resulting quantizers are always the Euclidean
means of their corresponding partitions, and hence,
Lemma 3.1 is applicable to (2) as well, leading to an
unbiased estimator.

The above procedure requires the non-centered covari-
ance matrix ΣZ , which will not be known if held-out
samples are not available at the training time. In that
case, one possibility is to assume that the queries come
from the same distribution as the database vectors,
i.e., ΣZ = ΣX . In the experiments we will show that
this version performs reasonably well. However, if a
small set of example queries is available at the training
time, besides estimating the query covariance matrix,
we propose to impose novel constraints that lead to
improved quantization, as described next.

3.2 Learning quantization codebook from
database and held-out samples

In most applications, it is possible to have access to
a small set of held-out samples from the query dis-
tribution, Z. Of course, the actual testing queries
used at the test-time do not intersect with this set.
Given these held-out samples, we propose to mod-
ify the learning criterion by imposing additional con-
straints while minimizing the expected quantization
error. Given a held-out sample z, since we are inter-
ested in finding the database vector x∗z with highest
dot-product, ideally we want the dot product of query
to the quantizer of x∗z to be larger than the dot product
with any other quantizers. Let us denote the matrix

containing the kth subspace assignment vectors α
(k)
x

for all the database vectors by A(k). Thus, the modi-
fied optimization is given as,

argmin
U(k),A(k)

∑

z∈Z

∑

x∈X
[
∑

k

z(k)Tx(k) −
∑

k

z(k)TU (k)α(k)
x ]2

s.t. ∀z, x,
∑

k

z(k)TU (k)α(k)
x ≤

∑

k

z(k)TU (k)α
(k)
x∗z

where x∗z = argmax
x

zTx

(4)

We relax the above hard constraints using slack vari-
ables to allow for some violations, which leads to the
following equivalent objective:

argmin
U(k),A(k)

∑

z∈Z

∑

x∈X

∑

k

(
z(k)T (x(k) − U (k)α(k)

x )
)2

+ λ
∑

z∈Z

∑

x∈X
[
∑

k

z(k)T (U (k)α(k)
x − U (k)α

(k)
x∗z

)]+

(5)

where [t]+ = max(t, 0) is the standard hinge loss, and
λ is a nonnegative coefficient. We use an iterative pro-
cedure to solve the above optimization, which alter-
nates between solving U (k) and A(k) for each k. In the
beginning, each codebook U (k) is initialized with a set
of random database vectors mapped to the kth sub-
space. Then, we iterate through the following three
steps:

1. Find a set of violated constraints W with each el-
ement as a triplet, i.e., Wj = {zj , x∗zj , x−j }j=1···J ,
where zj ∈ Z is an held-out sample, x∗zj is the
database vector having the maximum dot product
with zj , and z−j is a vector such that zTj x

∗
zj ≥ zTj x−j

but
∑

k

z
(k)T
j U (k)α

(k)
x∗zj

<
∑

k

z
(k)T
j U (k)α

(k)

x−j

2. Fixing U (k) and all columns of A(k) except α
(k)
x ,

one can update α
(k)
x ∀ x, k as:

c(k)x =argmin
c

(
(x(k)−U (k)

c )T Σ
(k)
Z (x(k)−U (k)

c )

+ λ
(∑

j

z(k)TU (k)
c (I[x = x−j ]−I[x = x∗zj ])

)
,

α(k)
x [c(k)x ] = 1

Since C is typically small (256 in our experiments),

we can find c
(k)
x by enumerating all possible values

of c.

3. Fixing A, and all the columns of U (k) except U
(k)
c ,

one can update U
(k)
c by gradient descent where gra-

dient can be computed as:

∇U (k)
c = 2Σ

(k)
Z

∑

x∈X
α(k)
x [c](U (k)

c − x(k))

+ λ
∑

j

(
z
(k)
j (α

(k)

x−j
[c]− α(k)

x∗zj
[c])
)

Note that if no violated constraint is found, step 2
is equivalent to finding the nearest neighbor of x(k)

in U (k)in Mahalanobis space specified by Σ
(k)
Z . Also,

in that case, by setting ∇U (k)
c = 0, the update rule

in step 3 becomes U
(k)
c = 1

|S(k)
c |
∑

x(k)∈S(k)
c
x(k) which
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Figure 1: Upper bound on the probability of an event
F(a, ε) as a function of the number of subspaces K for
ε = 0.2. The left figure corresponds to η = 0.75 and
the right one to η = 0.5. Different curves correspond to
different data dimensionality (d = 128, 256, 512, 1024).

is the stationary point for the first term. Thus, if
no constraints are violated, the above procedure be-
comes identical to k-Means-like procedure described
in Sec. 3.1. The steps 2 and 3 are guaranteed not to
increase the value of the objective in (4). In prac-
tice, we have found that the iterative procedure can
be significantly sped up by modifying the step 3 as
perturbation of the stationary point of the first term
with a single gradient step of the second term. The
time complexity of step 1 is at most O(nKC|Z|), but
in practice it is much cheaper because we limit the
number of constraints in each iteration to be at most
J . Step 2 takes O(nKC) and step 3 O((n + J)KC)
time. In all the experiments, we use at most J = 1000
constraints in each iteration, Also, we fix λ = .01, step
size ηt = 1/(1 + t) at each iteration t, and the maxi-
mum number of iterations T = 30.

4 Theoretical analysis

In this section we present concentration results about
the quality of the quantization-based inner product
search method. Due to the space constraints, proofs of
the theorems are provided in the supplementary ma-
terial. We start by defining a few quantities.

Definition 4.1. Given fixed a, ε > 0, let F(a, ε) be
an event such that the exact dot product qTx is at
least a, but the quantized version is either smaller than
qTx(1− ε) or larger than qTx(1 + ε).

Intuitively, the probability of event F(a, ε) measures
the chance that difference between the exact and the
quantized dot product is large, when the exact dot
product is large. We would like this probability to be
small. Next, we introduce the concept of balancedness
for subspaces.

Definition 4.2. Let v be a vector which is chun-
ked into K subspaces: v(1), ..., v(K). We say that
chunking is η-balanced if the following holds for every

k ∈ {1, ...,K}:

‖v(k)‖2 ≤ (
1

K
+ (1− η))‖v‖2

Since the input data may not satisfy the balanced-
ness condition, we next show that random permutation
tends to create more balanced subspaces. Obviously, a
(fixed) random permutation applied to vector entries
does not change the dot product.

Theorem 4.1. Let v be a vector of dimensionality
d and let perm(v) be its version after applying ran-
dom permutation of its dimensions. Then the expected
perm(v) is 1-balanced.

Another choice of creating balancedness is via a (fixed)
random rotation, which also does not change the dot-
product. This leads to even better balancedness prop-
erty as discussed in the supplementary material (see
Theorem 2.1). Next we show that the probability
of F(a, ε) can be upper bounded by an exponentially
small quantity in K, indicating that the quantized dot
products accurately approximate large exact dot prod-
ucts when the quantizers are the means obtained from
Mahalanobis k-Means as described in Sec. 3.1. Note
that in this case quantized dot-product is an unbi-
ased estimator of the exact dot-product as shown in
Lemma 3.1.

Theorem 4.2. Assume that the dataset X of dimen-
sionality d resides entirely in the ball B(p, r) of radius
r, centered at p . Further, let {x − p : x ∈ X\p} be
η-balanced for some 0 < η < 1, where \ is applied

pointwise, and let E[
∑

k(x(k)− u(k)x )]k=1···K be a mar-

tingale. Denote qmax = maxk=1,...,K maxq∈Q ‖q(k)‖.
Then, there exist K sets of codebooks, each with C
quantizers, such that the following is true:

P(F(a, ε)) ≤ 2e
−( aεr )2 C

2K
d

8q2max(1+(1−η)K) .

The above theorem shows that the probability of
F(a, ε) decreases exponentially as the number of sub-
spaces (i.e., blocks) K increases. This is consistent
with experimental observation that increasing K leads
to more accurate retrieval. Examples of how the upper
bound of F(a, ε) decreases is illustrated in Figure 1.

Furthermore, if we assume that each subspace is inde-
pendent, which is a slightly more restrictive assump-
tion than the martingale assumption made in Theo-
rem 4.2, we can use Berry-Esseen [14] inequality to
obtain an even stronger upper bound as given below.

Theorem 4.3. Suppose, ∆ = maxk=1,...,K ∆(k),

where ∆(k) = maxx ||u(k)x − x(k)|| is the maximum dis-
tance between a datapoint and its quantizer in subspace

k. Assume ∆ ≤ a
1
3

qmax
. Then,

P(F(a, ε)) ≤ 2
∑K

k=1 L
(k)

√
2π|X|aε

e
− a2ε2|X|2

2(
∑K
k=1

L(k))2 +
βK(

∑K
k=1 L

(k))
3
2

a2ε3|X| 32
,
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where L(k) = Eq∈Q[
∑

S
(k)
c

∑
x∈S(k)

c
(q(k)Txk −

q(k)Tu
(k)
x )2] and β > 0 is some universal constant.

5 Experimental results

We conducted experiments with 4 datasets which are
summarized below:

Movielens This dataset consists of user ratings col-
lected by the MovieLens site from web users. We
use the same SVD setup as described in the ALSH
paper [18] and extract 150 latent dimensions from
SVD results. This dataset contains 10,681 database
vectors and 71,567 query vectors.

Netflix The Netflix dataset comes from the Netflix
Prize challenge [4]. It contains 100,480,507 ratings
that users gave to Netflix movies. We process it in
the same way as suggested by [18]. That leads to
300 dimensional data. There are 17,770 database
vectors and 480,189 query vectors.

ImageNet This dataset comes from the state-of-the-
art GoogLeNet [20] image classifier trained on Ima-
geNet3. The goal is to speed up the maximum dot-
product search in the last i.e., classification layer.
Thus, the weight vectors for different categories form
the database while the query vectors are the last hid-
den layer embeddings from the ImageNet validation
set. The data has 1025 dimensions (1024 weights
and 1 bias term). There are 1,000 database and
49,999 query vectors.

VideoRec This dataset consists of embeddings of
user interests [8], trained via a deep neural net-
work to predict a set of relevant videos for a user.
The number of videos in the repository is 500,000.
The network is trained with a multi-label logistic
loss. As for the ImageNet dataset, the last hid-
den layer embedding of the network is used as query
vector, and the classification layer weights are used
as database vectors. The goal is to speed up the
maximum dot product search between a query and
500,000 database vectors. Each database vector has
501 dimensions (500 weights and 1 bias term). The
query set contains 1,000 vectors.

Following [18], we focus on retrieving Top-1, 5 and
10 highest inner product neighbors for Movielens and
Netflix experiments. For ImageNet dataset, we re-
trieve top-5 categories as common in the literature.
For the VideoRec dataset, we retrieve Top-50 videos
for recommendation to a user. We experiment with
three variants our technique: (1) QUIP-cov(x): uses
only database vectors at training, and replaces ΣZ by
ΣX in the k-Means like codebook learning in Sec. 3.1,
(2) QUIP-cov(z): uses ΣZ estimated from a held-out

3The original paper ensembled 7 models and used 144
different crops. In our experiment, we focus on one global
crop using one model.

sample set for k-Means like codebook learning, and (3)
QUIP-opt : uses full optimization based quantization
(Sec. 3.2). We compare the performance (precision-
recall curves) with 5 state-of-the-art methods: (1)
Signed ALSH [18], (2) L2 ALSH [18]4; (3) Sim-
ple LSH [15]. (4) PCA-tree version adapted to inner
product search as proposed in [3], which has shown
better results than IP-tree [16] and (5) Composite
quantization [10] which also uses quantization view
and codebook learning.

We conduct two sets of experiments: (i) fixed bit
- the number of bits used by all the techniques is
kept the same, (ii) fixed time - the time taken by
all the techniques is fixed to be the same. In the
fixed bit experiments, we fix the number of bits to
be b = 64, 128, 256, 512. For all the QUIP variants,
the codebook size for each subspace, C, was fixed to
be 256, leading to a 8-bit representation of a database
vector in each subspace. The number of subspaces
(i.e., blocks) was varied to be k = 8, 16, 32, 64 lead-
ing to 64, 128, 256, 512 bit representation, respectively.
For the fixed time experiments, we first note that the
proposed QUIP variants use table lookup based dis-
tance computation while the LSH based techniques
use POPCNT-based Hamming distance computation.
Depending on the number of bits used, we found
POPCNT to be 2 to 3 times faster than table lookup.
Thus, in the fixed-time experiments, we increase the
number of bits for LSH-based techniques by 3 times to
ensure that the time taken by all the methods is the
same.

Figure 2 shows the precision recall curves for Movie-
lens and Netflix, and Figure 3 shows the same for the
ImageNet and VideoRec datasets. All the quantiza-
tion based approaches outperform LSH based meth-
ods significantly when all the techniques use the same
number of bits. Even in the fixed time experiments,
the proposed approaches remain superior to the LSH-
based approaches (shown with dashed curves), even
though the former uses 3 times less bits than latter,
leading to significant reduction in memory footprint.
We also show comparison with Composite Quantiza-
tion [10] and PCA-Tree [3] in Figure 4. Composite
Quantization [10] works better than ALSH and Sim-
pleLSH with the same number of bits, but is outper-
formed by our proposed methods. PCA-Tree does not
perform well on these datasets, mostly due to the fact
that the dimensionality of our datasets is relatively
high (150 to 1025 dimensions), and trees are known to
be more susceptible to dimensionality. Note the the
original paper from Bachrach et al. [3] used datasets
with dimensionality up to 50.

Among the proposed methods, QUIP-cov(z) typically
performs better than QUIP-cov(x), but the gap in per-

4The recommended parameters m = 3, U0 = 0.85, r =
2.5 were used in the implementation.
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(a) Movielens dataset
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(b) Netflix dataset

Figure 2: Precision Recall curves (higher is better) for different methods on Movielens and Netflix datasets, retrieving
Top-1, 5 and 10 items. Baselines: Signed ALSH [19], L2 ALSH [18] and Simple LSH [15]. Proposed Methods:
QUIP-cov(x), QUIP-cov(z), QUIP-opt. Curves for fixed bit experiments are plotted in solid line for both the baselines
and proposed methods, where the number of bits used are b = 64,128,256,512 respectively, from left to right. Curves for
fixed time experiment are plotted in dashed lines. The fixed time plots are the same as the fixed bit plots for the proposed
methods. For the baseline methods, the number of bits used in fixed time experiments are b = 192,384,768,1536
respectively, so that their running time is comparable with that of the proposed methods.
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(a) ImageNet dataset, retrieval of Top 5 items.
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(b) VideoRec dataset, retrieval of Top 50 items.

Figure 3: Precision Recall curves on ImageNet and VideoRec. See Figure 2 for more explanation.
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(a) Movielens, top-10
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Figure 4: Recall curves for different techniques (including PCA-Tree and Composite Quantization [10]) under different
numbers of returned neighbors (shown as the percentage of total number of points in the database). We plot the recall
curve instead of the precision recall curve because PCA-Tree uses original vectors to compute distances therefore the
precision will be the same as recall in Top-K search. The number of bits used for all the plots is 512, except for Signed
ALSH-FixedTime, L2 ALSH-FixedTime and Simple LSH-FixedTime, which use 1536 bits.

formance is not that large. In theory, the non-centered
covariance matrix of the held-out samples (ΣZ) can be
quite different than that of the database (ΣX), leading
to drastically different results. However, the compara-
ble performance implies that it is often safe to use ΣX

when learning a codebook. On the other hand, when
a small set of held-out samples is available, QUIP-opt
outperforms both QUIP-cov(x) and QUIP-cov(z) on
all four datasets. This is because it learns the code-
book with constraints that steer learning towards re-
trieving the maximum dot product neighbors in addi-
tion to minimizing the quantization error. The over-
all training for QUIP-opt was quite fast, requiring 1
to 10 minutes using a single-threaded implementation,
depending on the dataset size.

6 Conclusion

We have described a quantization based approach for
fast approximate inner product search, which relies on
robust learning of codebooks in multiple subspaces.
One of the proposed variants leads to a very sim-
ple kmeans-like learning procedure and yet outper-
forms the existing state-of-the-art by a significant mar-
gin. We have also described its theoretical properties
including the concentration bounds. We introduced
novel constraints in the quantization error minimiza-
tion framework that lead to even better codebooks,
tuned to the problem of highest dot-product search.
Extensive experiments on retrieval and classification
tasks show the advantage of the proposed method over
the existing techniques. In the future, we would like
to analyze the theoretical guarantees associated with
the constrained optimization procedure.
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