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Abstract

Multilabel classification is a challenging problem arising in applications ranging
from information retrieval to image tagging. A popular approach to this problem is
to employ a reduction to a suitable series of binary or multiclass problems (e.g.,
computing a softmax based cross-entropy over the relevant labels). While such
methods have seen empirical success, less is understood about how well they ap-
proximate two fundamental performance measures: precision@k and recall@k. In
this paper, we study five commonly used reductions, including the one-versus-all
reduction, a reduction to multiclass classification, and normalised versions of the
same, wherein the contribution of each instance is normalised by the number of
relevant labels. Our main result is a formal justification of each reduction: we expli-
cate their underlying risks, and show they are each consistent with respect to either
precision or recall. Further, we show that in general no reduction can be optimal
for both measures. We empirically validate our results, demonstrating scenarios
where normalised reductions yield recall gains over unnormalised counterparts.

1 Introduction

Multilabel classification is the problem of predicting multiple labels for a given instance [Tsoumakas
and Katakis, 2007, Zhang and Zhou, 2014]. For example, in information retrieval, one may predict
whether a number of documents are relevant to a given query [Manning et al., 2008]; in image tagging,
one may predict whether several individuals’ faces are contained in an image [Xiao et al., 2010]. In
the extreme classification scenario where the number of potential labels is large, naïve modelling of
all possible label combinations is prohibitive. This has motivated a number of algorithms targetting
this setting [Agrawal et al., 2013, Yu et al., 2014, Bhatia et al., 2015, Jain et al., 2016, Babbar and
Schölkopf, 2017, Yen et al., 2017, Prabhu et al., 2018, Jain et al., 2019, Reddi et al., 2019]. One
popular strategy is to employ a reduction to a series of binary or multiclass problems, and thereafter
treat labels independently. Such reductions significantly reduce the complexity of learning, and have
seen empirical success. For example, in the one-versus-all reduction, one reduces the problem to
a series of independent binary classification tasks [Brinker et al., 2006, Dembczyński et al., 2010,
2012]. Similarly, in the pick-one-label reduction, one reduces the problem to multiclass classification
with a randomly drawn positive label [Boutell et al., 2004, Jernite et al., 2017, Joulin et al., 2017].

The theoretical aspects of these reductions are less clear, however. In particular, precisely what
properties of the original multilabel problem do these reductions preserve? While similar questions
are well-studied for reductions of multiclass to binary classification [Zhang, 2004, Tewari and Bartlett,
2007, Ramaswamy et al., 2014], reductions for multilabel problems have received less attention,
despite their wide use in practice. Recently, Wydmuch et al. [2018] established that the pick-one-label
is inconsistent with respect to the precision@k, a key measure of retrieval performance. On the other
hand, they showed that a probabilistic label tree-based implementation of one-versus-all is consistent.
This intriguing observation raises two natural questions: what can be said about consistency of other
reductions? And does the picture change if we consider a different metric, such as the recall@k?
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Reduction Notation Bayes-optimal f∗i (x) Prec@k Rec@k Consistency analysis

One-versus-all `OVA P(yi = 1 | x) X × [Wydmuch et al., 2018]
Pick-all-labels `PAL P(yi = 1 | x)/N(x) X × This paper

One-versus-all normalised `OVA−N P(y′i = 1 | x) × X This paper
Pick-all-labels normalised `PAL−N P(y′i = 1 | x) × X This paper
Pick-one-label `POL P(y′i = 1 | x) × X This paper

Table 1: Summary of reductions of multilabel to binary or multiclass classification studied in §4.1 of this paper.
For each reduction, we specify the notation used for the loss function; the Bayes-optimal scorer for
the ith label, assuming random (instance, label) pairs (x, y); whether the reduction is consistent for to
the multilabel precision@k and recall@k; and where this analysis is provided. Here, P(yi = 1 | x)
denotes the marginal probability of the ith label; P(y′

i = 1 | x) denotes a nonlinear transformation of
this probability, per (5); and N(x) is the expected number of relevant labels for x, also per (12).

In this paper, we provide a systematic study of these questions by investigating the consistency of
five multilabel reductions with respect to both precision@k and recall@k:

(a) the one-versus-all reduction (OVA) to independent binary problems [Dembczyński et al., 2010];
(b) a pick-all-labels (PAL) multiclass reduction, wherein a separate multiclass example is created

for each positive label [Reddi et al., 2019];
(c) a normalised one-versus-all reduction (OVA-N), where the contribution of each instance is

normalised by the number of relevant labels;
(d) a normalised pick-all-labels reduction (PAL-N), with the same normalisation as above; and,
(e) the pick-one-label (POL) multiclass reduction, wherein a single multiclass example is created

by randomly sampling a positive label [Joulin et al., 2017, Jernite et al., 2017].
Our main result is a formal justification of each reduction: we explicate the multilabel risks underpin-
ning each of them (Proposition 5), and use this to show they are each consistent with respect to either
precision or recall (Proposition 9, 10). Further, this dichotomy is inescapable: the Bayes-optimal
scorers for the two measures are fundamentally incompatible (Corollary 2, 4), except in trivial cases
where all labels are conditionally independent, or the number of relevant labels is constant.

This finding has two important implications. First, while the above reductions appear superficially
similar, they target fundamentally different performance measures. Consequently, when recall is
of primary interest, such as when there are only a few relevant labels for an instance [Lapin et al.,
2018], employing the “wrong” reduction can potentially lead to suboptimal performance. Second,
the probability scores obtained from each reduction must be interpreted with caution: except for the
one-versus-all reduction, they do not coincide with the marginal probabilities for each label. Naïvely
using these probabilities for downstream decision-making may thus be sub-optimal.

In summary, our contributions are the following (see also Table 1):
(1) we formalise the implicit multilabel loss and risk underpinning five distinct multilabel learning

reductions (§4.1) to a suitable binary or multiclass problem (Proposition 5).
(2) we establish suitable consistency of each reduction: the unnormalised reductions are consistent

for precision, while the normalised reductions are consistent for recall (Proposition 9, 10).
(3) we empirically confirm that normalised reductions can yield recall gains over unnormalised

counterparts, while the latter can yield precision gains over the former.

2 Background and notation

We formalise the multilabel classification problem, and its special case of multiclass classification.

2.1 Multilabel classification

Suppose we have an instance space X (e.g., queries) and label space Y
.
= {0, 1}L (e.g., documents)

for some L ∈ N+. Here, L represents the total number of possible labels. Given an instance x ∈ X
with label vector y ∈ Y, we interpret yi = 1 to mean that the label i is “relevant” to the instance x.
Importantly, there may be multiple relevant labels for a given instance. Our goal is, informally, to
find a ranking over labels given an instance (e.g., rank the most relevant documents for a query).

More precisely, let P be a distribution over X × Y, where P(y | x) denotes the suitability of label
vector y for instance x, and P(0L | x) = 0 (i.e., each instance must have at least one relevant
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label).1 Our goal is to learn a scorer f : X→ RL that orders labels according to their suitability (e.g.,
scores documents based on their relevance for a given query). We evaluate a scorer according to the
precision-at-k and recall-at-k for given k ∈ [L]

.
= {1, 2, . . . , L} [Lapin et al., 2018]:2

Prec@k(f)
.
= E

(x,y)

[
|rel(y) ∩ Topk(f(x))|

k

]
Rec@k(f)

.
= E

(x,y)

[
|rel(y) ∩ Topk(f(x))|

|rel(y)|

]
,

(1)
where Topk(f) returns the top k scoring labels according to f (assuming no ties), and rel(y) denotes
the indices of the relevant (positive) labels of y. In a retrieval context, the recall@k may be favourable
when k � rel(y) (i.e., we retrieve a large number of documents, but there are only a few relevant
documents for a query), since the precision will degrade as k increases [Lapin et al., 2018].

Optimising either of these measures directly is intractable, and so typically one picks a multil-
abel surrogate loss `ML : {0, 1}L × RL → R+, and minimises the multilabel risk RML(f)

.
=

E(x,y)[`ML(y, f(x))]. A Bayes-optimal scorer f∗ is any minimiser of RML. For several performance
measures, f∗ is any monotone transformation of the marginal label probabilities P(yi = 1 | x) [Dem-
bczyński et al., 2010, Koyejo et al., 2015, Wu and Zhou, 2017]. Thus, accurate estimation of these
marginals suffices for good performance on these measures. This gives credence to the existence of
efficient reductions that preserve multilabel classification performance, a topic we shall study in §4.

2.2 Multiclass classification

Multiclass classification is a special case of multilabel classification where each instance has only one
relevant label. Concretely, our label space is now Z

.
= [L]. Suppose there is an unknown distribution

P over X× Z, where P(z | x) denotes the suitability of label z for instance x. We may now evaluate
a candidate scorer f : X→ RL according to the top-k risk for given k ∈ [L]:

Rtop−k(f)
.
= P(z /∈ Topk(f(x))). (2)

This measure is natural when we can make k guesses as to an instance’s label, and are only penalised
if all guesses are incorrect [Lapin et al., 2018]. This is equivalent to the expected top-k loss, given by

`top−k(z, f)
.
= Jz /∈ Topk(f)K. (3)

When k = 1, we obtain the zero-one or misclassification loss. For computational tractability,
rather than minimise (2) directly, one often optimises a surrogate loss `MC : [L]× RL → R+, with
risk RMC(f)

.
= E(x,z)[`MC(z, f(x))]. Several surrogate losses have been studied [Zhang, 2004,

Ávila Pires and Szepesvári, 2016], the most popular being the softmax cross-entropy `SM(i, f)
.
=

−fi+log
∑

j∈[L] e
fj , with fi being the ith coordinate of the vector f . Consistency of such surrogates

with respect to the top-k error have been considered in several recent works (see e.g., [Lapin et al.,
2015, Lapin et al., 2018, Yang and Koyejo, 2019]). We say that `MC is consistent for the top-k error
if driving the excess risk for `MC to zero also drives the excess risk for the `top−k to zero; that is, for
any sequence (fn)∞n=1 of scorers,

reg(fn; `MC)→ 0 =⇒ reg(fn; `top−k)→ 0, (4)

where the regret of a scorer f with respect to `MC is reg(f ; `MC)
.
= RMC(f)− infg : X→RL RMC(g).

3 Optimal scorers for multilabel precision and recall@k

Our focus in this paper is on multilabel classification performance according to the precision@k and
recall@k (cf. (1)). It is therefore prudent to ask: what are the Bayes-optimal predictions for each
measure? Answering this gives insight into what aspects of a scorer these measures focus on.

Recently, Wydmuch et al. [2018] studied this question for precision@k, establishing that it is
optimised by any order-preserving transformation of the marginal probabilities P(yi = 1 | x).
Lemma 1 ([Wydmuch et al., 2018]). The multilabel precision@k of a scorer f : X→ RL is

Prec@k(f) = E
x

 ∑
i∈Topk(f(x))

1

k
· P(yi = 1 | x)

 .
1Without this assumption, one may take the convention that 0/0 = 1 in defining the recall@k.
2Similar metrics may be defined when L = 1 [Kar et al., 2014, 2015, Liu et al., 2016, Tasche, 2018].
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Corollary 2 ([Wydmuch et al., 2018]). Assuming there are no ties in the probabilities P(yi = 1 | x),

f∗ ∈ argmax
f : X→R

Prec@k(f) ⇐⇒ (∀x ∈ X) Topk(f∗(x)) = Topk

(
[P(yi = 1 | x)]

L
i=1

)
.

We now show that, by contrast, the recall@k will in general not encourage ordering by the marginal
probabilities. Indeed, it can be expressed in a nearly identical form to the precison@k, but with a
crucial difference: the marginal probabilities are transformed by an additional nonlinear weighting.
Lemma 3. The multilabel recall@k of a scorer f : X→ RL is

Rec@k(f) = E
x

 ∑
i∈Topk(f(x))

P(y′i = 1 | x)


P(y′i = 1 | x)

.
= P(yi = 1 | x) · E

y¬i|x,yi=1

[
1

1 +
∑

j 6=i yj

]
,

(5)

where y¬i denotes the vector of all but the ith label, i.e., (y1, . . . , yi−1, yi+1, . . . , yL) ∈ {0, 1}L−1.

The “transformed” probabilities P(y′i = 1 | x) will in general not preserve the ordering of the
marginal probabilities P(yi = 1 | x), owing to the multiplication by a non-constant term. We thus
have the following, which is implicit in Wydmuch et al. [2018, Proposition 1], wherein it was shown
the pick-one-label reduction is inconsistent with respect to precision.
Corollary 4. Assuming there are no ties in the probabilities P(y′i = 1 | x),

f∗ ∈ argmax
f : X→R

Rec@k(f) ⇐⇒ (∀x ∈ X) Topk(f∗(x)) = Topk

(
[P(y′i = 1 | x)]

L
i=1

)
.

Further, the order of P(y′i = 1 | x) and P(yi = 1 | x) do not coincide in general.

One implication of Corollary 4 is that, when designing reductions for multilabel learning, one must
carefully assess which of these two measures (if any) the reduction is optimal for. We cannot hope
for a reduction to be optimal for both, since their Bayes-optimal scorers are generally incompatible.
We remark however that one special case where P(y′i = 1 | x) = P(yi = 1 | x) is when

∑
i∈[L] yi is

a constant for every instance, which may happen if the labels are conditionally independent.

Having obtained a handle on these performance measures, we proceed with our central object of
inquiry: are they well approximated by existing multilabel reductions?

4 Reductions from multi- to single-label classification

We study five distinct reductions of multilabel to binary or multiclass classification. Our particular
interest is in what multilabel performance measure (if any) these reductions implicitly aim to optimise.
As a first step to answering this, we explicate the multilabel loss and risk underpinning each of them.

4.1 Multilabel reductions: loss functions

Recall from §2.1 that a standard approach to multilabel classification is minimising a suitable
multilabel loss function `ML : {0, 1}L × RL → R+. To construct such a loss, a popular approach
is to decompose it into a suitable combination of binary or multiclass losses; implicitly, this is a
reduction of multilabel learning to a suitable binary or multiclass problem.

We consider five distinct decompositions (see Table 2). For each, we explicate their underlying
multilabel loss in order to compare them on an equal footing. Despite the widespread use of
these reductions, to our knowledge, they have not been explicitly compared in this manner by
prior work. Our goal is to thus provide a unified analysis of distinct methods, similar to the analysis
in Dembczyński et al. [2012] of the label dependence assumptions underpinning multilabel algorithms.

One-versus-all (OVA). The first approach is arguably the simplest: we train L independent binary
classification models to predict each yi ∈ {0, 1}. This can be interpreted as using the multilabel loss

`OVA(y, f)
.
=
∑
i∈[L]

`BC(yi, fi) =
∑
i∈[L]

{yi · `BC(1, fi) + (1− yi) · `BC(0, fi)} , (6)
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Reduction Example instantiation

One-versus-all
∑

i∈[L]

{
−yi · log efi

1+efi
− (1− yi) · log 1

1+efi

}
Pick-all-labels

∑
i∈[L]−yi · log efi∑

j∈[L] e
fj

One-versus-all normalised
∑

i∈[L]

{
− yi∑

j∈[L] yj
· log efi

1+efi
−
(

1− yi∑
j∈[L] yj

)
· log 1

1+efi

}
Pick-all-labels normalised

∑
i∈[L]−

yi∑
j∈[L] yj

· log efi∑
j∈[L] e

fj

Pick-one-label −yi′ · log efi′∑
j∈[L] e

fj
, i′ ∼ Discrete

({
yi∑

j∈[L] yj

})
Table 2: Examples of multilabel losses underpinning various reductions, given labels y ∈ {0, 1}L and predictions

f ∈ RL. We assume a sigmoid or softmax cross-entropy for the relevant base losses `BC, `MC.

where `BC : {0, 1} × R→ R+ is some binary classification loss (e.g., logistic loss). In words, we
convert each (x, y) into a positive example for each label with yi = 1, and a negative example for
each label with yi = 0. This is also known as the binary relevance model [Brinker et al., 2006,
Tsoumakas and Vlahavas, 2007, Dembczyński et al., 2010].

Pick-all-labels (PAL). Another natural approach involves a multiclass rather than binary loss: we
convert each (x, y) for y ∈ Y into multi-class observations {(x, i) : i ∈ [L], yi = 1}, with one
observation per positive label [Reddi et al., 2019]. This can be interpreted as using the multilabel loss

`PAL(y, f)
.
=
∑
i∈[L]

yi · `MC(i, f), (7)

where `MC : L × RL → R+ is some multiclass loss (e.g., softmax with cross-entropy or BOWL,
per §2.2). While the base loss is multiclass – which, inherently, assumes there is only one relevant
label – we compute the sum of many such multiclass losses, one for each positive label in y.3 Observe
that each loss in the sum involves the entire vector of scores f ; this is in contrast to the OVA loss,
wherein each loss in the sum only depends on the scores for the ith label. Further, note that when L
is large, one may design efficient stochastic approximations to such a loss [Reddi et al., 2019].

One-versus-all normalised (OVA-N). A natural variant of the approach adopted in the above two
reductions is to normalise the contribution of each loss by the number of positive labels. For the OVA
method, rather than independently model each label yi, we thus model normalised labels:

`OVA−N(y, f)
.
=
∑
i∈[L]

{
yi∑

j∈[L] yj
· `BC(1, fi) +

(
1− yi∑

j∈[L] yj

)
· `BC(0, fi)

}
. (8)

To gain some intuition for this loss, take the special case of square loss, `BC(yi, fi) = (yi − fi)2.
One may verify that `OVA−N(y, f) =

∑
i∈[L](y

′
i − fi)2 plus a constant, for y′i

.
= yi∑

yj
. Thus, the

loss encourages fi to estimate the “normalised labels” y′i, rather than the raw labels yi as in OVA.

Pick-all-labels normalised (PAL-N). Similar to the OVA-N method, we can normalise PAL to:

`PAL−N(y, f)
.
=
∑
i∈[L]

yi∑
j∈[L] yj

· `MC(i, f) =
1∑

j∈[L] yj
· `PAL(y, f). (9)

Such a reduction appears to be folk-knowledge amongst practitioners (in particular, being allowed by
popular libraries [Abadi et al., 2016]), but as far as we are aware, has not been previously studied.
To gain some intuition for this loss, observe that y′i

.
= yi∑

j∈[L] yj
forms a distribution over the labels.

Suppose our scores f ∈ RL are converted to a probability distribution via a suitable link function σ
(e.g., the softmax), and we apply the log-loss as our `MC. Then, `PAL−N corresponds to minimising
the cross-entropy between the true and model distributions over labels:

`PAL−N(y, f) =
∑
i∈[L]

−y′i · log σ(fi) = KL(y′‖σ(f)) + Constant.

3This is to be contrast with the label powerset approach [Boutell et al., 2004], which treats each distinct label
vector as a separate class, and thus creates a multiclass problem with 2L classes.
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Pick-one-label (POL). In this reduction, given an example (x, y), we select a single random positive
label from y as the true label for x [Jernite et al., 2017, Joulin et al., 2017]. This can be understood
as a stochastic version of (9), which considers a weighted combination of all positive labels.

4.2 Multilabel reductions: population risks

Each of the above reductions is intuitively plausible. For example, the OVA reduction is a classical
approach, which has seen success in multiclass to binary contexts; it is natural to consider its use
in multilabel contexts. On the other hand, the PAL reduction explicitly encourages “competition”
amongst the various labels if, e.g., used with a softmax cross-entropy loss. Finally, the normalised
reductions intuitively prevent instances with many relevant labels from dominating our modelling.

In order to make such intuitions precise, a more careful analysis is needed. To do so, we consider
what underlying multilabel risk (i.e., expected loss) each reduction implicitly optimises.
Proposition 5. Given a scorer f : X→ R, the multilabel risks for each of the above reductions are:

ROVA(f) =
∑
i∈[L]

E
(x,yi)

[`BC(yi, fi(x))] ROVA−N(f) =
∑
i∈[L]

E
(x,y′i)

[`BC(y′i, fi(x))]

RPAL(f) = E
(x,z)

[N(x) · `MC(z, f(x))] RPAL−N(f) = RPOL(f) = E
(x,z′)

[`MC(z′, f(x))] ,

where P(y′i = 1 | x) is per (5), and we have defined discrete random variables z, z′ over [L] by

P(z′ = i | x)
.
= P(y′i = 1 | x) (10)

P(z = i | x)
.
= N(x)−1 · P(yi = 1 | x) (11)

N(x)
.
=
∑
i∈[L]

P(yi = 1 | x). (12)

Proposition 5 explicates that, as expected, the OVA and OVA-N methods decompose into sums
of binary classification risks, while the other reductions decompose into sums of multiclass risks.
There are three more interesting implications. First, normalisation has a non-trivial effect: for
both OVA and PAL, their normalised counterparts involve modified binary and multiclass label
distributions respectively. In particular, while PAL involves P(z | x) constructed from the marginal
label probabilities, PAL-N involves P(z′ | x) constructed from the “transformed” probabilities in (5).

Second, PAL yields a weighted multiclass risk, where the weight N(x) is the expected number of
relevant labels for x. Since PAL treats the multilabel problem as a series of multiclass problems for
each positive label, instances with many relevant labels have a greater contribution to the loss. The
weight can also be seen as normalising the marginal label probabilities [P(yi = 1 | x)]i∈[L] to a valid
multiclass distribution over the L labels. By contrast, the risk in PAL-N is unweighted, despite the
losses for each being related by a scaling factor per (9). Intuitively, this is a consequence of the fact
that the normaliser can vary across draws from P(y | x), i.e.,

E
y|x

[`PAL−N(y, f(x))] = E
y|x

[
1∑

j∈[L] yj
· `PAL(y, f(x))

]
6= E

y|x

[
1∑

j∈[L] yj

]
· E
y|x

[`PAL(y, f(x))] .

Third, there is a subtle distinction between PAL and OVA. The former allows for the use of an
arbitrary multiclass loss `MC; in the simplest case, for a base binary classification loss `BC, we may
choose a loss which treats the given label as a positive, and all other labels as negative: `MC(i, f) =
`BC(1, fi) +

∑
j 6=i `BC(0, fj). This is a multiclass version of the one-versus-all reduction [Rifkin

and Klautau, 2004]. However, even with this choice, the PAL and OVA risks do not agree.
Lemma 6. The risk of the PAL reduction using the multiclass one-verus-all loss is

RPAL(f) = ROVA(f) +
∑
i∈[L]

E
x

[(N(x)− 1) · `BC(0, fi(x))] .

To understand this intuitively, the PAL loss decomposes into one term for each relevant label; for
each such term, we apply the loss `MC, which considers all other labels to be negative. Consequently,
every irrelevant label is counted multiple times, which manifests in the extra weighting term above.
We will shortly see how this influences the optimal scorers for the reduction.
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5 Optimal scorers for multilabel reductions

Having explicated the risks underpinning each of the reductions, we are now in a position to answer
the question of what precisely they are optimising. We show that in fact each reduction is consistent
for either the precision@k or recall@k; following §3, they cannot be optimal for both in general.

5.1 Multilabel reductions: Bayes-optimal predictions

We begin our analysis by computing the Bayes-optimal scorers for each reduction. Doing so requires
we commit to a particular family of loss functions `BC and `MC. We consider the family of strictly
proper losses [Savage, 1971, Buja et al., 2005, Reid and Williamson, 2010], whose Bayes-optimal
solution in a binary or multiclass setting is the underlying class-probability. Canonical examples
are the cross-entropy and square loss. In the following, we shall assume our scorers are of the form
f : X→ [0, 1], so that they output valid probabilities rather than arbitrary real numbers; in practice
this is typically achieved by coupling a scorer with a link function, e.g., the softmax or sigmoid.

Corollary 7. Suppose `BC and `MC are strictly proper losses, and we use scorers f : X → [0, 1].
Then, for every x ∈ X and i ∈ [L], the Bayes-optimal f∗i (x) for the OVA and PAL reductions are

f∗OVA,i(x) = P(yi = 1 | x)

f∗PAL,i(x) = N(x)−1 · P(yi = 1 | x),

while the Bayes-optimal f∗i (x) for each of the “normalised” reductions (OVA-N, PAL-N, POL) are

f∗i (x) = P(y′i = 1 | x).

In words, the unnormalised reductions result in solutions that preserve the ordering of the marginal
probabilities, while the normalised reductions result in solutions that preserve the ordering of the
“transformed” marginal probabilities. Recalling Corollary 2 and 4, we see that the unnormalised
reductions implicitly optimise for precision, while the normalised reductions implicitly optimise for
recall. While this fact is well known for OVA [Dembczyński et al., 2010, Wydmuch et al., 2018], to
our knowledge, the question of Bayes-optimality has not been explored for the other reductions.

5.2 Multilabel reductions: consistency

Corollary 7 shows that the various reductions’ asymptotic targets coincide with those for precision or
recall. But what can be said about their consistency (in the sense of Equation 4)? For the multiclass
reductions, we now show this follows owing to a stronger version of Corollary 7: PAL and PAL-N
have identical risks (upto scaling and translation) to the precision and recall@k, respectively.

Corollary 8. Suppose `MC is the top-k loss in (2). Then, using this loss with PAL and PAL-N,

RPAL(f) = Constant− k · Prec@k(f)

RPAL−N(f) = Constant− Rec@k(f).

Despite the prior use of these reductions, the above connection has, to our knowledge, not been noted
hitherto. It explicates that two superficially similar reductions optimise for fundamentally different
quantities, and their usage should be motivated by which of these is useful for a particular application.

Building on this, we now show that when used with surrogate losses that are consistent for top-k
error (cf. (4)), the reductions are consistent with respect to the precision and recall, respectively. In
the following, denote the regret of a scorer f : X→ RL with respect to a multilabel loss `ML by

reg(f ; `ML)
.
= E

(x,y)
[`ML(y, f(x))]− inf

g : X→RL
E

(x,y)
[`ML(y, g(x))] .

We similarly denote the regret for the precision@k and recall@k by reg(f ; P@k) and reg(f ; R@k).

Proposition 9. Suppose `MC is consistent for the top-k error. For any sequence (fn)∞n=1 of scorers,

reg(fn; `PAL)→ 0 =⇒ reg(fn; P@k)→ 0

reg(fn; `PAL−N)→ 0 =⇒ reg(fn; R@k)→ 0.
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Our final analysis is regarding the OVA-N method, which does not have a risk equivalence to the
recall@k.4 Nonetheless, its Bayes-optimal scorers were seen to coincide with that of the recall;
as a consequence, similar to the consistency analysis of OVA in Wydmuch et al. [2018], we may
show that accurate estimation of the transformed probabilities P(y′i = 1 | x) implies good recall
performance. This consequently implies consistency of OVA-N, as the latter can guarantee good
probability estimates when equipped with a strongly proper loss [Agarwal, 2014], such as for example
the cross-entropy or square loss.

Proposition 10. Suppose `BC is a λ-strongly proper loss. For any scorer f : X→ [0, 1],

reg(f ; R@k) ≤ 2 · E
x

[
max
i∈[L]

|P(y′i = 1 | x)− fi(x)|
]
≤
√

2/λ · reg(f ; `OVA−N).

5.3 Implications and further considerations

We conclude our analysis with some implications of the above results.

OVA versus PAL. Corollary 7 suggests that for optimising precision (or recall), there is no asymptotic
difference between using OVA and PAL (or their normalised counterparts). However, a potential
advantage of the PAL approach is that it allows for use of tight surrogates to the top-k loss (2),
wherein only the top-k scoring negatives are considered in the loss. In settings where L is large, one
can efficiently optimise such a loss via the stochastic negative mining approach of Reddi et al. [2019].

Interpreting model scores. One subtle implication of Corollary 7 is that for all methods but OVA,
the learned scores do not reflect the marginal label probabilities. In particular, while the optimal scorer
for the OVA and PAL both preserve the order of the marginal probabilities, the latter additionally
involves an instance-dependent scaling by N(x). Consider, then, an extreme scenario where for
some x ∈ X, all labels have marginal P(yi = 1 | x) = 1. Under the OVA reduction, we would assign
each label a score of 1, indicating “perfect relevance”. However, under the PAL reduction, we would
assign them a score of 1

L , which would naïvely indicate “low relevance”.

For PAL, one can rectify this by positing a form gi(x) for P(yi = 1 | x), e.g., gi(x) = σ(wT
i x).

Then, if one uses fi(x) = gi(x)∑
j∈[L] gj(x) , the learned gi’s will model the marginals, upto scaling.

Learning from multiclass samples. Our focus in the paper has been on settings where we have
access to multilabel samples (x, y), and choose to convert them to suitable binary or multiclass
samples, e.g., (x, z) for PAL. A natural question is whether it is possible to learn when we only have
partial knowledge of the true multilabel vector y. For example, in an information retrieval setup, we
would ideally like to observe the multilabel vector of all relevant documents for a query. However, in
practice, we may only observe a single relevant document (e.g., the first document clicked by a user
issuing a query), which is randomly sampled according to the marginal label distribution (11).

In the notation of Proposition 5, such a setting corresponds to observing multiclass samples from
P(x, z) directly, rather than multilabel samples from P(x, y). A natural thought is to then minimise
the top-k risk (2) directly on such samples, in hopes of optimising for precision. Surprisingly, this
does not correspond to optimising for precision or recall, as we now explicate.

Lemma 11. Pick any P(x, y) over X× {0, 1}L, inducing a distribution P(x, z) as in (12). Then,

Rtop−k(f) = P(z /∈ Topk(f(x))) = E
x

 ∑
i/∈Topk(f(x))

N(x)−1 · P(yi = 1 | x)

 .
This risk above is similar to the precision@k, except for the N(x)−1 term. Proposition 5 reveals
a crucial missing ingredient that explains this lack of equivalence: when learning from (x, z), one
needs to weight the samples by N(x), the number of relevant labels. This is achieved implicitly by
the PAL reduction, since the loss involves a term for each relevant label. One may further contrast the
above to the POL reduction: while this reduction does not weigh samples, it samples labels according
to the transformed distribution (10), rather than the marginal distribution (11). This distinction is
crucial in ensuring that the POL matches the recall@k.

4Consistency of OVA for precision@k was done in Wydmuch et al. [2018].
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Figure 1: Precision@k and recall@k for the PAL and PAL-N reductions. As predicted by the theory, the former
yields superior precision@k performance, while the latter yields superior recall@k performance. The
OVA and OVA-N reductions show the same trend, and are omitted for clarity. The maximal number of
labels for any instance is k = 5, which is the point at which both methods have overlapping curves.

In sum, when we only observe a single relevant label for an instance, care is needed to understand
what distribution this label is sampled from, and whether additional instance weighting is necessary.

6 Experimental validation

We now present empirical results validating the preceding theory. Specifically, we illustrate that using
the pick-all-labels (PAL) reduction versus its normalised counterpart can have significant differences
in terms of precision and recall performance. Since the reductions studied here are all extant in the
literature, our aim is not to propose one of them as being “best” for multilabel classification; rather,
we wish to verify that they simply optimise for different quantities.

To remove potential confounding factors, we construct a synthetic dataset where we have complete
control over the data distribution. Our construction is inspired by an information retrieval scenario,
wherein there are two distinct groups of queries (e.g., issued by different user bases), which have a
largely disjoint set of relevant documents. Within a group, queries may be either generic or specific,
i.e., have many or few matching documents. Formally, we set X = R2 and L = 10 labels. We
draw instances from a equal-weighted mixture of two Gaussians, where the Gaussians are centered
at (1, 1) and (−1,−1) respectively. For the first mixture component, we draw labels according to
P(y | x) which is uniform over two possible y: either y = (1K−1, 0,0K), or y = (0K−1, 1,0K),
where K .

= L/2. For the second mixture component, the y’s are supported on the “swapped” labels
y = (0K , 0,1K−1), and y = (0K , 1,0K−1).

With this setup, we generate a training sample of 104 (instance, label) pairs. We train the OVA, PAL,
OVA-N and PAL-N methods, and compute their precision and recall on a test sample of 103 (instance,
label) pairs. We use a linear model for our scorer f , and the softmax cross-entropy loss for `MC.

Figure 1 shows the precision and recall@k curves as k is varied. As predicted by the theory, there
is a significant gap in performance between the two methods on each metric; e.g., the PAL method
performs significantly better than its normalised counterpart in terms of precision. This illustrates the
importance of choosing the correct reduction based on the ultimate performance measure of interest.

7 Conclusion and future work

We have studied five commonly used multilabel reductions in a unified framework, explicating the
underlying multilabel loss each of them optimises. We then showed that each reduction is provably
consistent with respect to either precision or recall, but not both. Further, we established that the
Bayes-optimal scorers for the precision and recall only coincide in special cases (e.g., when the labels
are conditionally independent), and so no reduction can be optimal for both. We empirically validated
that normalised loss functions can yield recall gains over unnormalised counterparts. Consistency
analysis for other multilabel metrics and generalisation analysis are natural directions for future work.
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Supplementary material for “Multilabel reductions:
what is my loss optimising?”

A Proof of results in body

Proof of Lemma 1. By definition, and linearity of expectation,

Prec@k(f) = E
x
E
y|x

[
1

k
· |rel(y) ∩ Topk(f(x))|

]

= E
x
E
y|x

∑
i∈[L]

1

k
· yi · Ji ∈ Topk(f(x))K

 (13)

= E
x

 ∑
i∈Topk(f(x))

1

k
· E
y|x

[yi]


= E

x

 ∑
i∈Topk(f(x))

1

k
· P(yi = 1 | x)

 .

Proof of Lemma 3. By definition, and linearity of expectation,

Rec@k(f) = E
x
E
y|x

[
|rel(y) ∩ Topk(f(x))|

|rel(y)|

]
= E

x
E
y|x

[∑
i∈[L] yi · Ji ∈ Topk(f(x))K∑

j∈[L] yj

]
(14)

= E
x
E
y|x

 ∑
i∈Topk(f(x))

yi∑
j∈[L] yj


= E

x

 ∑
i∈Topk(f(x))

E
y|x

[
yi∑

j∈[L] yj

] .
Let us now observe that5

E
y|x

[
yi∑

j∈[L] yj

]
= E

yi

E
y¬i|x,yi

[
yi∑

j∈[L] yj

]

= P(yi = 1 | x) · E
y¬i|x,yi=1

[
1

1 +
∑

j 6=i yj

]
+

(1− P(yi = 1 | x)) · E
y¬i|x,yi=0

[
0

0 +
∑

j 6=i yj

]

= P(yi = 1 | x) · E
y¬i|x,yi=1

[
1

1 +
∑

j 6=i yj

]
.

(15)

The result follows.

Proof of Corollary 4. The fact that the Bayes-optimal scorers have the stated form follows identically
to the proof of the optimal scorers for the precision@k from Wydmuch et al. [2018], except that we
now use the probabilities P(y′i = 1 | x) in place of the marginals.

5We have also used here the assumption that P(0L | x) = 0.
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We now demonstrate that the ordering of the two probabilities may be different. In fact, the proof
of this result is implicit in Wydmuch et al. [2018], who showed the inconsistency of the pick-one-
label reduction for precision; we explicate it here. Consider the case of L = 3, and a distribution
concentrated on a single x ∈ X, and just two possible y:

P(y = (1, 1, 0) | x) = p

P(y = (0, 0, 1) | x) = 1− p,

for some p ∈
(

1
2 , 1
)
. Clearly, the marginal probabilities are (p, p, 1− p), and so the first two labels

have higher marginal relevance.

Observe now that

P(y′i = 1 | x) = E
y|x

[
yi∑

j∈[L] yj

]
=


p · 1

2 if i = 1

p · 1
2 if i = 2

(1− p) · 1
1 if i = 3.

Now suppose p ∈
(

1
2 ,

2
3

)
. Then, we have 1 − p > p

2 . Consequently, the ordering of the two
probabilities will not be the same. In particular, the Bayes-optimal predictor for the recall@1 will
favour the label y3, even though it has lowest marginal probability.

Proof of Proposition 5. We provide proofs for each of the reductions in turn.

OVA. For the one-versus-all reduction in Equation 6, observe that for a given x ∈ X with f(x) ∈ RL,

E
y|x

[`OVA(y, f(x))] = E
y|x

∑
i∈[L]

`BC(yi, fi(x))


=
∑
i∈[L]

E
y|x

[`BC(yi, fi(x))]

=
∑
i∈[L]

E
yi|x

[`BC(yi, fi(x))].

Consequently,
ROVA(f) =

∑
i∈[L]

E
(x,yi)

[`BC(yi, fi(x))] .

PAL. For the pick-all-labels reduction, observe that for a given x ∈ X with f(x) ∈ RL, the loss in
Equation 7 has expectation

E
y|x

[`ML(y, f(x))] =
∑
i∈[L]

E
y|x

[yi · `MC(i, f(x))]

=
∑
i∈[L]

P(yi = 1 | x) · `MC(i, f(x))

= N(x) · E
z|x
`MC(z, f(x)),

where N(x)
.
=
∑

i∈[L] P(yi = 1 | x) is a normaliser, being the expected number of labels per

instance. Here, z is a discrete random variable taking values in [L], with P(z = i | x)
.
= P(yi=1|x)

N(x) .
Consequently,

RPAL(f) = E
(x,z)

[N(x) · `MC(z, f(x))] .

OVA-N. For the normalised one-versus-all reduction in Equation 8, observe that

E
y|x

[`ML(y, f(x))] =
∑
i∈[L]

E
y|x

[
yi∑

j∈[L]yj

· `BC(1, fi(x)) +

(
1− yi∑

j∈[L]yj

)
· `BC(0, fi(x))

]

=
∑
i∈[L]

P(y′i = 1 | x) · `BC(1, fi(x)) + (1− P(y′i = 1 | x)) · `BC(0, fi(x))
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=
∑
i∈[L]

E
y′i|x

[`BC(y′i, fi(x))] ,

where in the third line we used the definition of P(y′i = 1 | x) (Equation 5) and Equation 15.
Consequently,

ROVA−N(f) =
∑
i∈[L]

E
(x,y′i)

[`BC(y′i, fi(x))] .

PAL-N. For the normalised pick-all-labels reduction observe that for a given x ∈ X with f(x) ∈ RL,
the loss in Equation 9 has expectation

E
y|x

[`ML(y, f(x))] =
∑
i∈[L]

E
y|x

[
yi∑

j∈[L] yj
· `MC(i, f(x))

]

=
∑
i∈[L]

P(y′i = 1 | x) · `MC(i, f(x))

=
∑
i∈[L]

P(z′ = i | x) · `MC(i, f(x))

= E
z′
`MC(z′, f(x)),

where in the second line we used the fact that P(z′ = i | x)
.
= P(y′i = 1 | x) is a valid mul-

ticlass distribution, as previously noted in Wydmuch et al. [2018] and evident from Equation 15.
Consequently,

RPAL−N(f) = E
(x,z′)

[`MC(z′, f(x))] .

POL. The result here trivially follows from the fact that POL is a stochastic version of PAL.

Proof of Lemma 6. By Proposition 5, we have

RPAL(f) = E
(x,z)

[N(x) · `MC(z, f(x))]

= E
x

∑
i∈[L]

N(x) · P(z = i | x) · `MC(i, f(x))


= E

x

∑
i∈[L]

P(yi = 1 | x) ·

`BC(1, fi(x)) +
∑
j 6=i

`BC(0, fj(x))




= E
x

∑
i∈[L]

P(yi = 1 | x) ·

`BC(1, fi(x))− `BC(0, fi(x)) +
∑
j∈[L]

`BC(0, fj(x))




= E
x

∑
i∈[L]

P(yi = 1 | x) · {`BC(1, fi(x))− `BC(0, fi(x))}

+

E
x

∑
i∈[L]

P(yi = 1 | x)

 ·
∑

j∈[L]

`BC(0, fj(x))


= E

x

∑
i∈[L]

P(yi = 1 | x) · {`BC(1, fi(x))− `BC(0, fi(x))}

+

E
x

N(x) ·

∑
j∈[L]

`BC(0, fj(x))
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= E
x

∑
i∈[L]

P(yi = 1 | x) · `BC(1, fi(x)) + P(yi = 0 | x) · `BC(0, fi(x))− `BC(0, fi(x))

+

E
x

N(x) ·

∑
j∈[L]

`BC(0, fj(x))


=
∑
i∈[L]

E
x,yi

[`BC(yi, fi(x))] + E
x

(N(x)− 1) ·

∑
j∈[L]

`BC(0, fj(x))

 .

Proof of Corollary 7. We provide proofs for each of the reductions in turn.

OVA. For the one-versus-all reduction, we may compute each f∗i (x) independently. When `BC is a
strictly proper loss, these will by definition be equal P(yi = 1 | x).

PAL. For the pick-all-labels reduction, the factor N(x) only modifies the marginal distribution of x.
Since N(x) > 0, this weighting factor will not affect the Bayes-optimal solution. Thus, since `MC is
strictly proper, the Bayes-optimal prediction will by definition be P(z = i | x) = P(yi=1|x)

N(x) .

OVA-N. For the normalised one-versus-all reduction, since `BC is a strictly proper loss, by definition
f∗i (x) = P(y′i = 1 | x).

PAL-N. For the normalised pick-all-labels reduction, since `MC is a strictly proper loss, and we have
a multiclass risk, by definition f∗i (x) = P(z′ = i | x) = P(y′i = 1 | x).

POL. The result here trivially follows from the fact that POL is a stochastic version of PAL.

Proof of Corollary 8. Observe first that, by (13),

k · Prec@k(f) =
∑
i∈[L]

E
(x,yi)

[yi · Ji ∈ Topk(f(x))K]

=
∑
i∈[L]

E
(x,yi)

[yi · (1− `top−k(i, f(x)))]

=
∑
i∈[L]

E
yi

[yi]− E
(x,yi)

[yi · `top−k(i, f(x))]

= constant−
∑
i∈[L]

E
(x,yi)

[yi · `top−k(i, f(x))]

= constant− E
(x,y)

∑
i∈[L]

yi · `top−k(i, f(x))


= constant−RPAL(f).

Similarly, by (14),

Rec@k(f) = E
(x,y)

∑
i∈[L]

yi∑
j∈[L] yj

· Ji ∈ Topk(f(x))K


= E

(x,y)

∑
i∈[L]

yi∑
j∈[L] yj

· (1− `top−k(i, f(x)))


= E

(x,y)

∑
i∈[L]

yi∑
j∈[L] yj

− E
(x,y)

∑
i∈[L]

yi∑
j∈[L] yj

· `top−k(i, f(x))
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= constant− E
(x,y)

∑
i∈[L]

yi∑
j∈[L] yj

· `top−k(i, f(x))


= constant−RPAL−N(f).

Proof of Proposition 9. For clarity, we will explicate here the dependence of all quantities on the
type of risk (multiclass or multilabel reduction), and the base loss. For simplicity, we will assume the
existence of a surrogate regret bound for the top-k risk: that is, we assume that for every scorer, the
surrogate loss `MC satisfies

regMC(f ; `top−k) ≤ Ψ (regMC(f ; `MC))

for some function Ψ such that limz→0+ Ψ(z) = 0, where regMC(f ; `MC) denotes multiclass regret
for a scorer using a loss `MC. This clearly implies consistency.

We provide bounds for the precision and recall in turn.

Precision bound. By Corollary 8,

Prec@k(f) = Constant− 1

k
·RPAL(f ; `top−k).

Thus,

reg(f ; P@k) =
1

k
· regPAL(f ; `top−k)

where regPAL(f ; `MC)
.
= RPAL(f ; `MC) − infg : X→RRPAL(g; `MC) is the regret under the PAL

reduction, using a base multiclass loss of `MC.

By Proposition 5, for any multiclass loss `MC,

RP
PAL(f ; `MC) = C · E

(x̄,z)
[`MC(z, f(x̄))] = C ·RP̄

MC(f ; `MC),

where, if x has distribution with density p(x) with respect to base measure µ, x̄ has distribution with
density p̄(x)

.
= C−1 · p(x) ·N(x), and C .

=
∫
X
p(x′) ·N(x′) dµ(x). Note that C ≤ L < +∞ since

N(x) ∈ [0, L] for every x ∈ X. Note also that the above explicates the dependence of the risks on
the underlying distributions, as they are distinct in the LHS and RHS.

The above implies that the multilabel PAL risk given a distribution P(x, z) is expressible as a constant
times a standard multiclass risk over a distribution P̄(x̄, z). Thus, a Bayes-optimal scorer for the PAL
risk must satisfy

f∗ ∈ argmin
f : X→R

RP
PAL(f ; `MC) = argmin

f : X→R
RP̄

MC(f ; `MC).

Consequently, if f∗ denotes the Bayes-optimal scorer for the PAL risk, we have

regP
PAL(f ; `MC) = C · E

(x̄,z)
[`MC(z, f(x̄))− `MC(z, f∗(x̄))]

= C · regP̄
MC(f ; `MC).

We have thus reduced the multilabel regret on the left-hand side to a multiclass regret on the right-hand
side. Further, in doing so, we have introduced a distribution P̄(x̄, z) whose marginal density p̄ is
distorted compared to the original p.

Now, since `MC is assumed to be a consistent surrogate to the top-k loss,

reg(f ; P@k) =
1

k
· regP

PAL(f ; `top−k)

=
C

k
· regP̄

MC(f ; `top−k)

≤ C

k
·Ψ
(

regP̄
MC(f ; `MC)

)
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=
C

k
·Ψ
(
regP

PAL(f ; `MC)
)
,

where we have used the fact that a surrogate regret bound holds for any distribution, even one where
the marginals are distorted. We thus have a surrogate regret bound for the precision@k.

Recall bound. By Corollary 8,

Rec@k(f) = Constant−RPAL−N(f ; `top−k).

Thus,

reg(f ; R@k) = regPAL−N(f ; `top−k).

By Proposition 5,

RPAL−N(f ; `top−k) = E
(x,z′)

[`top−k(z′, f(x))]

where P′(x, z′) is as per (12). That is, the multilabel PAN risk is a multiclass risk. Now, since `MC is
assumed to be a consistent surrogate to the top-k loss,

reg(f ; R@k) = regP
PAL−N(f ; `top−k)

= regP′
MC(f ; `top−k)

≤ Ψ
(

regP′(f ; `MC)
)

= Ψ
(
regP

PAL−N(f ; `MC)
)
.

We thus have a surrogate regret bound for the recall@k.

Proof of Proposition 10. Observe that by Lemma 3 and Corollary 7,

reg(f ; R@k) = E
x

 ∑
i∈Topk(f(x))

P(y′i = 1 | x)−
∑

i∈Topk(f∗(x))

P(y′i = 1 | x)


= E

x

 ∑
i∈Topk(f(x))

P(y′i = 1 | x)−
∑

i∈Topk(P(y′|x))

P(y′i = 1 | x)

 .
The first inequality thus follows exactly as per Wydmuch et al. [2018, Theorem 2]: we simply swap
P(yi = 1 | x) with P(y′i = 1 | x). Thus,

reg(f ; R@k) ≤ 2 · E
x

[
max
i∈[L]

|fi(x)− P(y′i = 1 | x)|
]
. (16)

The second inequality is a standard consequence of existing bounds for strongly proper losses [Agar-
wal, 2014]. By Proposition 5,

ROVA−N(f) =
∑
i∈[L]

E
(x,yi)

[`BC(yi, fi(x))]

=
∑
i∈[L]

RBC(fi),

where RBC denotes a binary classification risk. Since the risk decomposes across each i ∈ [L], the
Bayes-optimal scorers may be computed separately for i. The regret thus similarly decomposes as:

reg(f ; `OVA−N) =
∑
i∈[L]

reg(fi; `BC)

≥
∑
i∈[L]

λ

2
· E
x

[
(fi(x)− P(y′i = 1 | x))2

]
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=
λ

2
· E
x

∑
i∈[L]

(fi(x)− P(y′i = 1 | x))2


≥ λ

2
· E
x

[
max
i∈[L]

(fi(x)− P(y′i = 1 | x))2

]
by non-negativity of each term

=
λ

2
· E
x

[(
max
i∈[L]

|fi(x)− P(y′i = 1 | x)|
)2
]

≥ λ

2
·
(
E
x

[
max
i∈[L]

|fi(x)− P(y′i = 1 | x)|
])2

by Jensen’s inequality

≥ λ

2
·
(

max
i∈[L]

E
x
|fi(x)− P(y′i = 1 | x)|

)2

by Jensen’s inequality,

where in the second line, we used the fact that `BC is strongly proper, and Agarwal [2014, Theorem
13]; and in the fifth line, we used the fact that the maximum is over a sequence of L nonnegative
quantities, so that the maximum of their squares is the square of their maximum. We thus have

max
i∈[L]

E
x
|fi(x)− P(y′i = 1 | x)| ≤

√
2

λ
·
√

reg(f ; `OVA−N).

Applying this to (16), the claim follows.

Proof of Lemma 11. Observe that

Rtop−k(f) = P(z /∈ Topk(f(x)))

= E
x
E
z|x

Jz /∈ Topk(f(x))K

= E
x
E
z|x

[`top−k(z, f(x))]

= E
x

∑
i∈[L]

P(z = i | x) · `top−k(i, f(x))


= E

x

 ∑
i/∈Topk(f(x))

N(x)−1 · P(yi = 1 | x)

 ,
where in the last line we used the definition of P(z = i | x) from Equation 12.
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