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Abstract

Given the increasing scale of model sizes, novel training strategies like gradual
stacking [Gong et al., 2019, Reddi et al., 2023] have garnered interest. Stacking
enables efficient training by gradually growing the depth of a model in stages
and using layers from a smaller model in an earlier stage to initialize the next
stage. Although efficient for training, the model biases induced by such growing
approaches are largely unexplored. In this work, we examine this fundamental
aspect of gradual stacking, going beyond its efficiency benefits. We propose a
variant of gradual stacking called MIDAS that can speed up language model train-
ing by up to 40%. Furthermore we discover an intriguing phenomenon: MIDAS
is not only training-efficient but surprisingly also has an inductive bias towards
improving downstream tasks, especially tasks that require reasoning abilities like
reading comprehension and math problems, despite having similar or slightly worse
perplexity compared to baseline training. To further analyze this inductive bias, we
construct reasoning primitives – simple synthetic tasks that are building blocks for
reasoning – and find that a model pretrained with stacking is significantly better
than standard pretraining on these primitives, with and without fine-tuning. This
provides stronger and more robust evidence for this inductive bias towards reason-
ing. These findings of training efficiency and inductive bias towards reasoning are
verified at 1B, 2B and 8B parameter language models. Finally, we conjecture the
underlying reason for this inductive bias by exploring the connection of stacking to
looped models and provide strong supporting empirical analysis.

1 Introduction

With the advent of very large deep learning models, efficient training to reduce the compute and
time requirements is becoming increasingly important. Along with efficient optimization procedures,
there has been a surge in interest to design efficient training strategies. One practical approach is
to use smaller models to initialize larger models. Usually, this results in much faster convergence
compared to vanilla training [Chen et al., 2022, 2016, Gong et al., 2019, Reddi et al., 2023, Wang
et al., 2023, Li et al., 2023, Kim et al., 2023, Yao et al., 2024, Wang et al., 2024]. Stacking and
growing based approaches have particularly gained traction recently. For instance, gradual stacking
[Reddi et al., 2023] is a prominent approach where in each stage the last few layers of the model
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Figure 1: (a) Pictorial depiction of gradual stacking and MIDAS. (b) Accuracy improvements (in
%) for model trained with MIDAS over baseline for various task groups, despite having the same
perplexity. For both 1B, 2B and 8B models, we see that improvements are mostly positive, and are
much larger for tasks that require a lot of reasoning.

are stacked onto itself to initialize the model’s next stage, until the desired depth is reached. This
has been shown to significantly speed up BERT pretraining and also has some theoretical justification
for the efficiency aspect. While these methods can speed up training, such changes can also induce
specific biases into the model. However, the effect of stacking-based approaches on generalization
remains a fundamental open question and is largely unexplored.

Modern deep learning models when trained carefully have been shown to exhibit interesting inductive
biases, and their success is partially attributed to them. Such biases can arise either from model
architecture, optimization techniques, or training strategies, and these biases come in various forms
including simplicity bias, flatness of learned function, and sparsity. The implicit bias of optimizers,
in particular, has been subject to extensive research. For instance, the implicit bias of first-order
methods like stochastic gradient descent has been studied extensively in overparametrized settings
[Gunasekar et al., 2018, Liu et al., 2023]. Similarly, the inductive biases of architecture components
like self-attention and convolution have also been studied [Edelman et al., 2022, Wang and Wu,
2023]. More recently, there has also been interest in constructs like looped models [Lan et al., 2020,
Dehghani et al., 2018] that share weights across layers. They have been shown to be powerful enough
to emulate programmable computers [Giannou et al., 2023] and have the inductive bias to simulate
iterative solutions [Yang et al., 2023], thereby yielding models with algorithmic abilities. However,
in this vein, very little is known about the implicit biases of newer training strategies (e.g., greedy
layerwise training or gradual stacking) that are gaining popularity.

In this work, we investigate the inductive bias of stacking-based approaches beyond training
efficiency. We uncover an intriguing phenomenon — pretraining with a variant of stacking is not
only efficient, but also has a desirable inductive bias towards improving downstream benchmarks.
First, through comprehensive empirical analysis, we discover a novel variant of gradual stacking
called MIDAS (MIDdle grAdual Stacking) which copies the middle block of layers of a small
network to initialize a larger network (see Figure 1). We demonstrate that MIDAS is more efficient
in training compared to standard training and the previous leading stagewise training approach.
However, remarkably, it also yields significantly better performance on many downstream reasoning
tasks. For instance, we see in Figure 1 that MIDAS has significantly better performance on math
word problems and reasoning primitives. This performance boost should come as a surprise, since
MIDAS uses exactly the same data and fewer training FLOPS compared to standard training. In fact,
the pretraining perplexity of MIDAS on a validation set matches that of standard baseline training.
This strongly suggests that there is some inductive bias for MIDAS at play.

In this paper, we formalize and provide strong evidence for such an "inductive bias" – MIDAS
achieves better downstream evaluations despite performing similarly in terms of pretraining validation
perplexity. Thus, the improved quality of MIDAS is not because of better generalization in the
pretraining objective, but rather due to its ability to extract more skills and abilities from the pretraining
process. This kind of inductive bias phenomenon was first formalized in Saunshi et al. [2022] for
contrastive learning and later in Liu et al. [2023] for language modeling on synthetic data. However,
this is the first evidence of a strong inductive bias for a training procedure in real language model
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training. While our real-world benchmarks already provide strong evidence, in order to better
isolate the contributing factors, we construct simple synthetic tasks that are building blocks for
reasoning, called reasoning primitives. We find that a model pretrained with MIDAS has much better
performance on the reasoning primitives than a model obtained through standard pretraining, as is
evident in Figure 1. In light of the above discussion, we state the main contributions of our paper.

• We propose a novel variant of gradual stacking, called MIDAS, that achieves better training
efficiency than gradual stacking.

• Our investigation of the inductive bias in gradual stacking approaches, particularly with
MIDAS, reveals a surprising benefit: beyond enabling efficient training, it also enhances
performance on downstream tasks. This improvement is especially notable in tasks that rely
on context and reasoning abilities.

• We provide strong evidence of the aforementioned phenomenon on several datasets that
have previously been used to demonstrate reasoning capabilities.

• We construct simple synthetic tasks that are building blocks for reasoning and demonstrate
that MIDAS performs significantly better than baseline training on these tasks. These
datasets may be of independent interest to the LLM reasoning community.

• Finally, we conjecture the reason behind improved reasoning capabilities of MIDAS by
presenting connections between gradual stacking and looped models and provide strong
empirical evidence to support it.

2 Problem Setup

In this section, we first present the problem setup and background material needed for this paper.
Before we discuss the problem setting, we set up the following notation for the rest of the paper.

Notation. For a deep network f , we use fi and #(f) to denote the ith layer and the number of layers
of the network, respectively. With slight abuse of notation, we use fi,b (where i, b ∈ Z+) to denote
the layers between (i− 1) · b to i · b of a deep network f . In other words, fi,b denotes the ith block of
b layers in a deep network f . a1:k is used to denote a sequence of k scalars {a1, . . . , ak}.

Our goal is to learn a function f : X → Y which minimizes the loss E(x,y)∼D `(f(x), y), for some
loss function ` : Y×Y → R+∪{0} and data distributionD on X ×Y . We are interested in functions
of the form f = fL ◦ fL−1 ◦ · · · ◦ f1 where ◦ and L represent function composition and depth of the
network, respectively. We use FL to denote the function class consisting of functions of this form.
Given samples from the distribution D, we typically use an iterative stochastic optimizer (e.g., SGD)
to learn a function that minimizes the loss. We note that the optimization procedure is inconsequential
to the arguments in the paper. For standard training, each iteration is of the form:

f t = f t−1 +A(f t−1,Bt, ηt), (Standard Training)

where Bt is a mini-batch from distribution D and A(f t−1,Bt, ηt) represents the iterative optimizer
update at f t−1 on Bt and learning rate ηt. The computation cost and memory requirement for training
typically increases linearly with the depth, making even simple algorithms, like SGD, slow for very
large models. Throughout this paper, we use T to denote the total number of training iterations.

2.1 k-stage training

Since we primarily focus on stagewise training approaches, it is useful to formally define a stagewise
training procedure. In contrast to standard training, k-stage training involves dividing the training
process into k stages, and at each stage, using the the model from the previous stage to initialize the
model in the current stage. For simplicity, we assume L is divisible by k. The following are the key
ingredients:

1. Function class across stages. At stage i, we use function class Fd(i) where d(i) denotes the
depth of the network at that stage. When d(i)� L, training is more efficient.

2. Training schedules across stages. As training is divided into k stages, we use T1, · · · , Tk steps
across stages such that

∑k
i=1 Ti = T .
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(a) ALBert layer similarity (b) GRADSTACK block similarity (c) MIDAS block similarity

Figure 2: (a) For an ALBert model trained with weight sharing across all layers, we measure the
functional similarity between layers by looking at the top 1% activated neurons in each MLP layer
and measure the intersection-over-union (IoU) metric for each pair of layers. Despite all layers
having the same parameters, a natural functional similarity structure emerges around the middle.
(b) For a UL2 model trained with GRADSTACK, we measure the cosine similarity between every pair
of layer blocks for the first feedforward layer weights. (c) The same similarity measured for MIDAS.
The cosine similarities for stacking based models suggests strong connection to looped models, and
MIDAS has a closer similarity structure to ALBert style looped models than GRADSTACK.

3. Stage initialization. This is the key component of stagewise training. Given a network f ∈
Fd(i−1) trained in the (i − 1)th stage, letMi(f) denote the network initialization for the next
stage whereMi : Fd(i−1) → Fd(i) is growth operator.

Almost all the recent stagewise training procedures are different instantiations of this framework, using
different training schedules and stage initializations. We will revisit some prominent instantiations of
the framework in the next section.

2.2 Progressive & Gradual Stacking

Progressive and gradual stacking are two special instantiations of the aforementioned framework. We
provide a brief description of these approaches since they are important for our discussion.

Progressive Stacking [Gong et al., 2019]. This is simple instance of k-stage training setup where
model in the previous stage is stacked onto itself to initialize the model in the next stage. In particular,
(1) depth d(i) = 2i−1d(0) grows exponentially, (2) schedule Ti is typically T/k or proportional to
d(i), and (3) the growth functionMi(f) = f ◦ f .

Gradual Stacking [Reddi et al., 2023]. In contrast to progressive stacking, gradual stacking incre-
mentally increases the model size where only the last L/k layers of model in the previous stage are
stacked to initialize the model in the next stage, as follows.

1. The depth d(i) = L·i
k grows linearly with the stage.

2. Ti is typically either T/k or allocated proportional or exponential to depth.

3. Mi(fd(i−1) ◦ · · · ◦ f1) = fd(i−1) · · · ◦ fd(i−1)−(L/k)−1 ◦ fd(i−1) · · · f1. This corresponding
to stacking the last L/k layers onto the network to initialize the next stage model.

In the next section, we study a novel variant of gradual stacking that enables faster training and
exhibits interesting inductive bias, which we examine carefully.

3 Algorithm: MIDAS

We present the MIDAS algorithm in this section. We first discuss the motivation behind this variant
of gradual stacking and then formally define the algorithm.
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3.1 Motivation

The motivation for MIDAS touches upon two crucial aspects: (a) the role of different layers in a
deep network and (b) a connection to looped models. Before delving into more technical details, it is
important to illustrate these points. We present the case for MIDAS based on three observations.

Observation 1: gradual stacking breaks the natural role of layers. Recall that gradual stacking
initializes a larger model model by duplicating and stacking the last block of b from the smaller model.
Thus in the newly initialized model, the second-last block of b layers will be the same as the last
b layers of the smaller model (see Figure 1). Intuitively, this is undesirable since the last few layers
have been shown to play a different role compared to other layers for Transformer models [Belrose
et al., 2023]. We further validate this in Figure 6. Thus, duplicating the last few layers can break
the natural role of layers at the initialization, making it a suboptimal choice. However, it is plausible
that the similarity structure across layers is broken after continued training and the initialization
is inconsequential. The next observation shows that this is not true, and establishes a connection
to looped models – networks with shared parameters between layers.

Observation 2: gradual stacking leads to models resembling looped models. To check the
effect of the initialization, we measure the cosine similarity between weights of layers for a model
pretrained with gradual stacking. In Figure 2b, we observe that indeed the layers continue to have
very high cosine similarity at the end of training, thus establishing a connection between stacking and
looped models like ALBert [Lan et al., 2020] and Universal Transformers [Dehghani et al., 2018].
Unsurprisingly, the similarity structure for gradual stacking is lopsided towards the end of the model,
which raises the question: Is this similarity structure natural for looped models?

Observation 3: looped models exhibit similarity in the middle. In order to study this, we train a
prototypical looped model, ALBert, where all layers share the same parameters. Surprisingly, despite
parameters being shared, a natural similarity structure emerges between layers: yet again the first
and last layers tend to be functionally dissimilar to other layers, whereas the functional similarity
between layers is the highest in the middle (see Figure 2a).

The above observations provides a strong motivation for stacking in the middle rather than at the end,
thus inspiring our MIDAS algorithm.

3.2 MIDAS algorithm

First we define the following mapping operator that is useful for stage initialization in MIDAS.

M(f, b) = f1,b ◦ · · · ◦ fdn/2e,b ◦ fdn/2e,b︸ ︷︷ ︸
Replication

◦ · · · ◦ fn,b, (1)

where n = #(f)/b is the number of blocks of b layers in deep network f . Note that operatorM(f, b)
expands the size of the network by size b. Based on this operator, MIDAS can again be described
as a simple instantiation of the k-stage training framework, as seen below. For completeness, the
pseudocode for the MIDAS in listed in Algorithm 1.
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Algorithm 1 MIDAS

Require: Schedule T1:k, η1:T , optimizer update
A (see Section 2), data distribution D.
Initialize f1,0 ∈ FL/k.
for s = 1→ k do

for t = 1→ Ts do
Sample batch Bt from D.
fs,t = fs,t−1 +A(fs,t−1,Bt, ηt)

end for
Initializer for next stage:

fs+1,0 =M(fs,Ts , L/k)

(see Equation 1)
end for
return fk,T

Figure 3: Histogram of accuracy improvements
for models trained with MIDAS over baseline.
The data points are MIDAS 1B models listed
in Table 1. The figure shows that MIDAS-based
models have much higher improvement in
contextual version of TyDiQA compared to the
non-contextual version.

1. The depth d(i) = L·i
k grows linearly with the stage, similar to gradual stacking.

2. Ti is typically either proportional to i (linear proportional) or i2 (square proportional) or
exp(i) (exponential). We will revisit this during our empirical analysis.

3. We use growth operatorM in equation 1 for initializing the next stage, which corresponds
to replicating the middle L/k layers to initialize the next stage model.

3.3 Experiments: UL2 Pretraining

In this section, we evaluate MIDAS for standard language model pretraining. We train a 24L decoder-
only model with 1.5B parameters using the UL2 objective [Tay et al., 2022] on a mixture of C4,
Wikipedia, Arxiv and Github. The observations also hold for GPT-style autoregressive language
modeling. To enable fair comparison, we cached the pretraining dataset and so all methods are
trained for the same number 500B tokens in the same order, using the same batch size (refer to
Appendix A.1 for more details on the training setup). We pretrain models with three methods:
(a) standard training (Baseline), (b) gradual stacking (GRADSTACK) and (c) our proposed method
MIDAS. The goal is to compare them with respect to validation loss and downstream performance
on several diverse benchmarks. Motivated by the proportional schedules from prior work, we try the
following generalized proportional schedules for gradual stacking and MIDAS.

Definition 3.1 (PROP-α schedule). For a total training budget of T steps, the schedule PROP-α
spends time Ti in each stage such that Ti ∝ iα for all stages i ∈ [k]. Thus Ti = iα∑k

j=1 j
αT

PROP-1 schedule has been found to work very well for BERT pretraining [Reddi et al., 2023]. Since
UL2 pretraining is a harder task, we also explore less aggressive schedules like PROP-1 and PROP-2
that spend more time on larger models.

Efficiency and perplexity findings. We summarize the main results in Table 1, for various stacking
methods and schedules. Firstly, we note that for all schedules, MIDAS has significantly better
validation log perplexity than GRADSTACK at the same speedup level. This suggests that stacking
in the middle is a lot more effective for optimization than stacking at the end of the model. With the
PROP-2 schedule, MIDAS is 24% faster and nearly matches baseline’s log perplexity. Additionally,
we observe that the findings are robust to the choice of block size for stacking.

Downstream benchmark evaluations. While perplexity can serve as a decent proxy for model
quality, there is growing evidence that it is not the best measure [Liang et al., 2023]. Downstream
benchmark evaluations serve as a more holistic measure for quality and are out-of-distribution
evaluations of skills. To this effect, we evaluate MIDAS on many standard benchmarks and these
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Table 1: Downstream evaluations for UL2 pretrained models with 1B, 2B and 8B parameters.
Comparisons include standard training (Baseline), gradual stacking (GRADSTACK) from [Reddi
et al., 2023] and our proposed method MIDAS. The downstream evaluations are averaged over
tasks within 3 task groups. See Appendix A for precise tasks included in each task group. For
each cateory and model size, we highlight the top model is bolded and the second best model
is underlined. Firstly, MIDAS is much better than GRADSTACK, thus justifying stacking in the
middle. Secondly, MIDAS can match the log perplexity of baseline training while being roughly 24%
faster. Furthermore, even the schedule with 40% speedup has much better downstream evaluations
compared to baseline, even though it has worse log perplexity. The improvements are particular
larger for task groups that require reasoning (open book QA, math word problems).

Loss (↓) Closed Open Math Word All Tasks
d(i)/i Schedule Speedup (validation) Book QA (↑) Book QA (↑) Problems (↑) Average (↑)

(block size) (4 tasks) (5 tasks) (6 tasks) (15 tasks)

1B Parameters
Baseline 24 1x 1.996 13.2 33.3 23.5 24.0
GRADSTACK 4 PROP-1 1.39x 2.045 10.3 31.4 23.5 22.6
MIDAS 4 PROP-1 1.39x 2.028 11.6 34.5 30.3 26.7
MIDAS 3 PROP-1 1.41x 2.032 10.6 36.1 27.0 25.6
GRADSTACK 4 PROP-2 1.24x 2.024 11.0 31.6 17.3 20.4
MIDAS 4 PROP-2 1.24x 2.009 11.7 36.3 29.0 26.8
MIDAS 3 PROP-2 1.26x 2.012 11.9 37.3 29.8 27.5
MIDAS 4 PROP-3 1.16x 1.999 12.5 34.8 33.3 28.3

2B Parameters
Baseline 48 1x 1.926 15.2 39.1 27.1 28.0
MIDAS 8 PROP-1 1.39x 1.947 14.0 38.9 32.0 29.5
GRADSTACK 8 PROP-2 1.24x 1.945 14.2 37.0 24.5 25.9
MIDAS 8 PROP-2 1.24x 1.929 15.7 40.2 38.2 32.9

8B Parameters
Baseline 72 1x 1.841 21.1 39.6 34.9 32.8
MIDAS 9 PROP-2 1.26x 1.844 21.8 40.0 43.1 36.4

are group into task categories in Table 1 (refer to Appendix A.2 for more detailed evaluations on
individual tasks). The accuracy for task category is an average over representative tasks from that
group. For instance, for closed book QA task, we consider an average accuracy on TriviaQA, TydiQA
(no context), NaturalQuestions and WebQuestions.

Surprisingly, we find that downstream improvements for MIDAS are significantly larger than the
improvements in perplexity. In particular, MIDAS with PROP-2 schedule has the very similar
perplexity to baseline at 24% speedup, but the average downstream performance for MIDAS (26.8%)
is much better than baseline (24.0%). In fact, even MIDAS with PROP-1 schedule which has worse
log perplexity is much better on downstream evaluations. Similar trends of better downstream evals
holds for the 2B parameter model. The improvements are particularly large for open book QA and
math word problems, both of which are tasks that require reasoning abilities whereas memorizatino
tasks like closed book QA do not improve. We conjecture that these downstream improvements
are due to an inductive bias induced by stacking and we dive deeper into this in the next section.

4 Inductive bias of stacking

Results in Table 1 demonstrate that MIDAS not only yields training speedups, but also improves
downstream evaluations when trained on the same number of tokens as standard training. This
suggests that stacking can extract more skills out of the same data. Here, we take a closer look at
this improvements in downstream evaluations through the lens of an inductive bias of stacking.

4.1 Downstream performance vs log perplexity

A reasonable expectation from pretraining is that improvements in the pretraining objective would
correlate with improvements in model quality and downstream performance. This notion of transfer
has even been theoretically formalized for language modeling in Saunshi et al. [2020], Arora and
Goyal [2023]. Thus, based on this, a natural explanation for the downstream improvements of
stacking would be that it generalizes better on the pretraining objective. However, as we see in
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Figure 4: Downstream evalulation vs validation log perplexity isoplots as training proceeds for
baseline and MIDAS 1B models trained on the same data (stacking is 24% faster here). On the y-axis
we track the performance on various task groups – closed book QA, open book QA, math word
problems and our reasoning primitives from Section 5. On the x-axis the log perplexity is presented
in the reverse order, thus downstream performance for both methods improves as log perplexity gets
lower. For closed book QA (memorization) tasks MIDAS has very similar trends to baseline. For
open book QA tasks and math word problems, MIDAS has much better downstream performance
at an equivalent log perplexity. This showcases the inductive bias of MIDAS towards better overall
quality and better reasoning abilities.

Table 1, downstream performance of MIDAS is better despite having similar or worse validation
perplexity – hence this is not simply the case of better generalization to unseen pretraining data. It is
natural to ask: If not perplexity, what explains this downstream phenomenon?

Since pretraining objective is just a proxy objective for model quality, it is plausible that different
training strategies and model architectures can extract different level of skills from it. This is because
there are multiple ways of doing well on the pretraining tasks, and some training strategies can be
biased to pick one solution over another one. This behavior has been formalized as the inductive
bias in pretraining by recent work [Saunshi et al., 2022, Liu et al., 2023] – at the same level of
validation pretraining loss, different optimization algorithms could have vastly different downstream
performance. We hypothesize that a similar phenomenon is at play when it comes to stacking.

Isoplots. Inspired by this phenomenon of different downstream performance at the same perplexity,
we visualize the inductive bias of a method by plotting downstream accuracy vs log perplexity isoplots
as training proceeds. We use the UL2 1B models that are pretrained with standard (baseline) training
and with MIDAS using the PROP-2 schedule (refer to Section 3.3 for more details). In Figure 4,
we visualize the downstream vs log perplexity plots for different task groups – closed-book QA,
open-book QA and math word problems. We observe a very interesting trend – MIDAS and baseline
training can have different isoplot behaviors and the divergence is different for different tasks.

4.2 Reasoning vs memorization for QA

For a clearer display of the inductive bias, we measure the improvements due to MIDAS on closed
book vs open book QA tasks. It is reasonable to assume that closed book QA tasks require strong
memorization abilities whereas open book QA tasks requires some reasoning abilities to infer answers
from the context that is provided. On average, we see much larger improvements on open book QA
tasks compared to closed book QA tasks, as already evident in Figure 1 and Table 1.

MIDAS is significantly better on Open book QA. To make a direct comparison, we consider
TydiQA-GoldP and TydiQA-NoContext tasks – the datasets are identical and the only difference is
whether or not additional context is provided (the answer for the contextual version is guaranteed to
be inferred from the given context). In Figure 3, we see that the improvements by various MIDAS
based models on the contextual version of TydiQA are much higher than those on the non-contextual
version. This provides a direct evidence of the bias of MIDAS towards improving tasks that require
reasoning. Furthermore, we find that the memorization performance of stacking improves as the
schedule spends more time on larger model.
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Table 2: Evaluation on math tasks, including math word problems from Table 1 and a harder task
GSM8k. For GSM8k we report accuracy with 8-shot prompts and with finetuning. We also report
accuracy on all tasks after using an external calculator to fix arithmetic errors; this correspond to
w/ calc. Overall the use of calculator improves the accuracy for all models on all tasks. The benefit
of MIDAS over baseline is even higher with calculator.

Model Pretraining Math WPs (5-shot) GSM8k (8-shot) GSM8k (Finetune)
Loss (↓) W/o calc. W calc. W/o calc. W calc. W/o calc. W calc.

2B Parameters
Baseline 1.926 15.4 27.1 3.0 3.6 5.3 8.5
MIDAS 1.929 22.5 38.3 3.0 4.1 10.4 14.5

8B Parameters
Baseline 1.841 27.3 34.9 4.5 6.6 12.3 15.8
MIDAS 1.844 32.9 43.1 5.5 7.4 15.2 18.7

4.3 Reasoning in math tasks

To test reasoning abilities, we evaluate the language models on various math word problem datasets
like SVAMP [Patel et al., 2021], ASDiv [Miao et al., 2020], AQuA dataset for algebraic word
problems, the MAWPS benchmark [Koncel-Kedziorski et al., 2016]. We report 5-shot evaluation for
the pretrained model on these tasks. Following Wei et al. [2022], we use an external calculator to
do the arithmetic and evaluate the models on their ability to compute the correct expression for the
answer. This is because small models have bad arithmetic accuracy. The choice of using calculator or
not does not significantly affect the trends of the results. For stacking, we use MIDAS PROP-2 model
because it achieves nearly the same perplexity as the baseline model (while being 24% faster), thus,
leading to a fair comparison based on the previous notion of inductive bias.

MIDAS is significantly better on Math/Reasoning tasks. Detailed results can be found in Table 5.
For most math tasks, we observe that MIDAS based pretrained model is significantly better than the
baseline model, especially for the MAWPs benchmark. This provides further evidence of better math
and reasoning capabilities of MIDAS.

GSM8K fine-tuning. We also evaluate the 2B and 8B models on harder math problems from the
GSM8k dataset [Cobbe et al., 2021] through few-shot prompting and fine-tuning. Full results are
presented in Table 2. For MIDAS we use the PROP-2 model that has very similar perplexity as the
baseline model. We find that MIDAS has much higher accuracy after fine-tuning, thus suggesting
that the benefit of the inductive bias continue after fine-tuning and are not just restricted to few-shot
evaluations. In particular, on the test set, the accuracy metric increased from 5.3% (for baseline
model) to 10.4% (for MIDAS) for the 2B model (these numbers were produced by computing the
average score over three runs with different random seeds). Similarly the GSM8k accuracy of the 8B
model improves from 12.3% to 15.2%. This suggests that MIDAS not only improves the performance
on harder math tasks, but also that the gains remain or improve after fine-tuning.

Effect of calculator. For LLMs with less than 20B parameters, Wei et al. [2022] found that the
models often solve the problem correctly but make arithmetic errors. This leads to low accuracy on
math word problems. Wei et al. [2022] remedied this by computing all arithmetic expressions using a
Python program as an external calculator. In Table 2 we find that this improves the accuracy for our
models too. Interestingly, we find that the gap between MIDAS and baseline gets even larger with
the use of calculators in almost all comparisons. We believe this is because arithmetic abilities is
closer to memorization for smaller models [Razeghi et al., 2022] and the use of calculator makes the
problem closer to reasoning, since now the model only has to infer the right expression. We believe
this interplay between reasoning and memorization for math problems deserves further investigation.

4.4 Connection to looped models

Given the nature of the growth operator in each stage, we hypothesize that stacking based models are
close to looped models. The layer duplication that happens at every stage ensures that blocks of layers
start from a common initialization. We measure the similarity between different blocks of layers by
measuring cosine similarities between the parameter vectors (see Figure 2). Since looped models
have been conjectured to solve algorithmic problems [Giannou et al., 2023] by finding iterative
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Figure 5: Accuracy improvements for model trained with MIDAS over baseline for representative rea-
soning primitives, despite having the same perplexity. We see clear improvements for stacking on al-
most all the primitives, both with 5-shot evaluation and after fine-tuning (FT) for the depth 2 primitive.

solutions [Yang et al., 2023], we conjecture that the better reasoning abilities of MIDAS are due to
this connection to looped model. We believe exploring this further is a very fruitful direction.

5 Deep dive into reasoning improvements

To further investigate the nature of this inductive bias, we construct various simple synthetic tasks
to help tease apart the model’s capabilities. We conjecture that these simple tasks capture core
basic capabilities needed for contextual reasoning, and we therefore call these tasks “contextual
reasoning primitives”. They are: induction copying, variable assignment, and pre-school math
(PSM), discussed further below. Overall, across various few-shot evaluations and fine-tuning, we
see significant performance gaps between MIDAS and baseline training, suggesting that we have
successfully isolated some of the basic capabilities at which MIDAS excels relative to baseline
training. We refer the reader to Appendix B for more results and the exact input format.

Primitive 1: Induction copying. The “induction copying” primitive presents a sequence of words,
followed by a subsequence selected randomly from within this original sequence, and asks the model
to output the next word in the sequence. A simplified example is: “pum nyj gdq ocu rzk jbw
mlz eny kyx uni rzk jbw mlz eny kyx”, and the expected output is “uni”. This primitive is
inspired by the “induction head” mechanism introduced in Olsson et al. [2022], which is posited to be
the basic mechanism for in-context learning more generally. In Figure 5, task “Copying”, we present
results for 3-letter words of random letters, separated by spaces, with a sequence length of 10 and a
subsequence length of 5.

Primitive 2: Variable assignment. The “variable assignment” primitive tests the model’s ability to
associate a value with a variable name and apply this ability compositionally, which we test by varying
the “depth” of the task. We conjecture that this ability is a core function in contextual reasoning,
particularly in math. An example of the depth-0 variant is “u=1; t=0; v=13; y=4; f=22; y=”,
and the expected output is 4. An example of the depth-2 variant is “y=7; f=0; z=3; b=9; x=8;
q=y; l=f; m=z; h=x; a=b; n=h; j=m; t=a; i=l; g=q; n=”, and the expected output is 8.
Refer to Appendix B for more details.

Primitive 3: Pre-school math (PSM). This tests the model’s ability to solve a very simple “pre-
school math” problem by correctly associating multiple values and variables simultaneously and
applying this association to a particular task. An example is “z=6; b=5; i=-z+b; i=”, and the
expected answer (with chain-of-thought) is “-6+5=-1”.

5-shot evaluation results. Figure 5 presents the results for representative tasks, with more results in
Appendix B. Overall, we see that MIDAS outperforms baseline training across all tasks. In particular,
we see that MIDAS is significantly stronger than baseline at Depth 0, Copying, PSM-calc, and Depth
1, in decreasing order of magnitude of the performance gap. Depth-2 is much harder and is at random
guessing (20%) for both models.

Fine-tuning results. Due to the difficulty of the variable assignment task at Depths 1 and 2, we
investigate fine-tuning on these tasks as well. We fine-tune on a mixture of 32 depth-1 examples and
32 depth-2 examples (i.e., only 64 examples total), using full-batch gradient descent. Figure 5 reports
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the validation accuracy on Depth 1 and Depth 2 after fine-tuning on this mixture (tasks “Depth 1 (FT)”
and “Depth 2 (FT)”). Overall, we see that fine-tuning with just 64 examples significantly improves
performance, resulting in MIDAS outperforming baseline by a gap of over 20% validation accuracy
at both depths. See Appendix B for further fine-tuning and evaluation details.

6 Conclusions and future work

In this work we propose a novel stacking method that outperforms previous stacking methods and
speeds up language model pretraining by 25-40%. In the process, we uncover a very intriguing
inductive bias of stacking – its ability to improve downstream reasoning tasks. Through extensive
empirical analysis, the paper makes a strong case for the presence and significance of this inductive
bias. We believe this deserves further attention and exploration since understanding this inductive
bias could unlock new approaches to improving model quality, reasoning in particular. The reasoning
primitives start to provide more insights by isolating the reasoning improvements and we hope that the
dataset is useful for future reasoning on improving reasoning. Finally understanding the dichotomy
between memorization and reasoning, and how this affects the performance on various tasks is an
interesting direction to pursue.

Acknowledgments. We thank Srinadh Bhojanapalli and Vaishnavh Nagarajan for discussions on
role of layers and memory vs contextual tasks, respectively, in the early stages of the project. We also
thank Satyen Kale for valuable feedback throughout the project.
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A Experimental Details

A.1 Pretraining details

Model architecture. We use a decoder-only model and train it using the UL2 objective [Tay et al.,
2022] with 60% causal LM, 20% prefix LM and 20% span corruption. The 1B model uses 24 layers,
model dimension of 2048, hidden dimension of 5120 and 32 attention heads. The 2B model is very
similar to the 1B model, except it uses 48 layers instead of 24. The 8B model uses 72 layers, model
dimension of 2048, hidden dimension of 16384 and 16 attention heads.

Dataset. We use a mixture of C4 (57%) [Raffel et al., 2020], Wikipedia (17%), Github (17%),
Arxiv (9%); the proportions are motivated by the dataset used for Llama pretraining [Touvron et al.,
2023]. All models are trained for 512B tokens that are precached so that all model see exactly the
same data in the same order. This corresponds to 0.86 epochs of C4, 9 epochs of Wikipedia, 0.58
epochs of Arxiv and 0.44 epochs of Github.

Training details. For the 1B and 2B models, we use a cosine learning schedule with a peak learning
rate of 0.01 that decays to 0.001 in the end, and use a batch size of 512. For the 8B model we use a
peak learning rate of 0.001 and decay it to 0.0001, and use a batch size of 1024. Peak learning rate
was tuned to be optimal for baseline training. All experiments use the AdaFactor optimizer [Shazeer
and Stern, 2018] and sequence length of 1280.

A.2 Additional downstream evaluations

In this section we share further experimental details related to the results summarized in the Table 1.

Trivia QA TyDi QA Natural Questions Web Questions
(No Context)

Method

Baseline (1B) 28.050 11.968 4.543 8.120
GRADSTACK 4 PROP-1 (1B) 22.395 10.106 3.019 5.807
MIDAS 4 PROP-1 (1B) 24.984 11.702 3.712 5.856
MIDAS 3 PROP-1 (1B) 22.883 9.574 3.546 6.496
GRADSTACK 4 PROP-2 (1B) 22.870 11.436 3.989 5.856
MIDAS 4 PROP-2 (1B) 26.411 10.372 3.712 6.447
MIDAS 3 PROP-2 (1B) 25.460 10.904 3.767 7.431
MIDAS 4 PROP-3 (1B) 26.911 11.968 4.460 6.841
Baseline (2B) 33.579 12.766 5.928 8.711
MIDAS 8 PROP-1 (2B) 31.090 11.702 5.568 7.776
MIDAS 8 PROP-2 (2B) 34.580 13.032 6.260 8.907

Table 3: Closed Book QA
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Figure 6: Measure of linearity for different layers in pretrained BERT-Base and BERT-Large models.
For each layer i, we fit a linear map Ai between inputs Yi and the output of the Transformer block
(without the residual connection), Yi+1 − Yi. We then measure the r2 score and cosine similarity
for the learned linear fit. The first and last few layers demonstrate a much higher level of linearity
compared to the rest of the layers.

TyDi QA SquadV2 DROP QuAC CoQA
(With Context)

Method

Baseline (1B) 31.364 41.102 22.850 18.782 52.615
GRADSTACK 4 PROP-1 (1B) 34.318 36.907 21.529 17.465 46.763
MIDAS 4 PROP-1 (1B) 36.136 39.148 24.287 18.727 54.350
MIDAS 3 PROP-1 (1B) 37.045 44.892 25.010 18.354 55.085
GRADSTACK 4 PROP-2 (1B) 30.000 40.958 22.106 17.200 47.842
MIDAS 4 PROP-2 (1B) 35.455 46.576 24.444 19.654 55.372
MIDAS 2 PROP-2 (1B) 38.182 46.256 24.780 19.944 57.269
MIDAS 4 PROP-3 (1B) 33.636 40.226 24.717 19.488 55.853
Baseline (2B) 42.500 49.558 25.063 20.588 57.806
MIDAS 8 PROP-1 (2B) 37.727 48.892 26.133 20.068 61.822
MIDAS 8 PROP-2 (2B) 41.818 47.974 27.884 20.737 62.637

Table 4: Open Book QA

ASDiv MAWPS MAWPS MAWPS MAWPS SVAMP
Add/Sub Multi-Arith Single-Eq Single-Op

Method

Baseline (1B) 21.708 38.987 1.667 30.512 34.164 13.900
GRADSTACK 4 PROP-1 (1B) 19.084 38.734 2.000 31.102 35.231 15.100
MIDAS 4 PROP-1 (1B) 27.719 45.063 2.833 40.157 49.110 16.900
MIDAS 3 PROP-1 (1B) 25.763 45.063 2.500 33.071 40.747 14.800
GRADSTACK 4 PROP-2 (1B) 15.219 29.114 1.000 24.606 26.335 7.600
MIDAS 4 PROP-2 (1B) 26.288 51.899 3.333 39.370 40.036 13.000
MIDAS 3 PROP-2 (1B) 28.578 38.987 3.000 41.142 50.356 16.800
MIDAS 4 PROP-3 (1B) 28.912 55.696 1.500 41.142 50.890 21.800
Baseline (2B) 27.863 41.519 3.167 37.402 36.477 16.400
MIDAS 8 PROP-1 (2B) 28.960 56.203 1.000 41.929 45.907 18.100
MIDAS 8 PROP-2 (2B) 34.685 58.228 7.333 50.000 57.473 21.800

Table 5: Math World Problems

B Details for contextual reasoning primitives

In this section, we provide further details corresponding to Section 5.
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All evaluations in Section 5 were performed on the 1B-parameter models. For MIDAS, we use the
variant with block size 4 and the PROP-2 schedule.

B.1 Exact input format

Expanding on Section 5, here we provide the format of the inputs and target outputs. The only caveat
is that, for simplicity of presentation, we present the inputs in 0-shot form here vs. their 5-shot form.
In 5-shot form, which is how we conduct the 5-shot evaluations, each example is separated by two
consecutive newline characters.

For each dataset below, the inputs are separated from the targets by the “|” character (this is not a
token in the input), and the targets are colored in red.

Figure 5 uses the following evaluation datasets, in the following order:

1. Copying (random-letter words)

2. Variable assignment depth 0 (code)

3. Variable assignment depth 1 (code)

4. Variable assignment depth 1 (code)

5. Variable assignment depth 2 (code)

6. Variable assignment depth 2 (code)

7. Pre-school math (PSM)

Copying (random-letter words):

Fill in blank:

pum nyj gdq ocu rzk jbw mlz eny kyx uni rzk jbw mlz eny kyx ___. ->|uni

Copying (real words):

Fill in blank:

eat fit ban sea vet zit pea cat van tea sea vet zit pea cat ___. ->|van

Variable assignment depth 0 (basic):

Fill in blank:

o=14
s=4
u=8
m=10
q=12
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m=___. ->|10

Variable assignment depth 1 (basic):

Fill in blank:

g=21
b=24
v=3
s=23
h=20
k=b
a=s
n=v
f=g
d=h
a=___. ->|23

Variable assignment depth 2 (basic):

Fill in blank:

w=24
l=12
d=16
e=5
j=9
g=j
y=e
r=l
k=d
h=w
v=g
i=r
c=h
t=k
p=y
c=___. ->|24

Variable assignment depth 0 (math):

The following is a set of simple mathematical equations.
n=22
r=16
w=13
v=6
k=10
What is the numerical value of n?
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Answer:|22

Variable assignment depth 1 (math):

The following is a set of simple mathematical equations.
h=20
w=9
c=22
j=11
v=5
g=c
k=w
a=j
s=h
o=v
What is the numerical value of s?
Answer:|20

Variable assignment depth 2 (math):

The following is a set of simple mathematical equations.
g=9
v=24
k=15
p=6
c=10
t=p
s=g
a=c
y=v
n=k
l=s
w=n
j=t
m=y
i=a
What is the numerical value of j?
Answer:|6

Variable assignment depth 0 (code):

The following is a very short Python program. Use the program to resolve
the value of the variable in the question.

Program:
q=12
k=17
l=1
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y=3
a=6

Question:
What is the value of k?

Answer:
|17

Variable assignment depth 1 (code):

The following is a very short Python program. Use the program to resolve
the value of the variable in the question.

Program:
k=11
f=21
e=10
l=7
c=13
y=f
o=c
r=e
u=k
n=l

Question:
What is the value of o?

Answer:
|13

Variable assignment depth 2 (code):

The following is a very short Python program. Use the program to resolve
the value of the variable in the question.

Program:
t=13
j=14
v=4
s=17
y=21
q=j
l=s
e=y
h=t
x=v
b=x
f=e
n=q
a=h
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i=l

Question:
What is the value of i?

Answer:
|17

Pre-school math (PSM):

Fill in blank:

k=1
j=8
l=-k+j
l=___. ->|-1+8=7

Arithmetic:

-3+2=-1

-6+1=-5

+9-7=2

-6-4=-10

-6-1=-7

+1+9=|10

B.2 Fine-tuning details

For fine-tuning, we use the “code” variant of the variable assignment task, depths 1 and 2, in 0-shot
form (i.e., no in-context examples). Due to the randomness of the data generation process and
the rather small size of each dataset (64 examples), we randomly generate 3 different 64-example
fine-tuning datasets (consisting of 32 depth-1 examples and 32 depth-2 examples), fine tune on each,
and report our results as an average across the 3 runs. Table 7 reports the standard deviations as well.

Regarding hyperparameters, we continue to use AdaFactor [Shazeer and Stern, 2018] with the same
hyperparameters as in the pretraining phase, with the exception of learning rate and batch size. We use
a constant learning rate of 0.001, which was chosen to match the final learning rate of the pretraining
phase. We use full-batch training with our 64-example datasets. We then evaluate performance
separately on depth 1 and depth 2.

For every step i ∈ {200, . . . , 300}, chosen to be significantly after training has converged to 100%
accuracy (we do not observe overfitting in this range as training continues), we evaluate performance
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on a 1000-example holdout set. For smoothing purposes, we average over steps 200 through 300 and
report the final averaged performance.

B.3 Full 5-shot and fine-tuning results

5-shot. Table 6 includes 5-shot evaluation results for all contextual reasoning primitives. Rows 1, 9,
10, 11, and 14 are the rows which appear in Figure 5.

When performance is better than random guessing, MIDAS consistently outperforms the baseline in
rows 1-11.

For pre-school math (rows 12-14), the value we report in Figure 5 is “with calculator”. This is because
the pre-school math task actually combines two capabilities: reasoning and arithmetic. Arithmetic
can be thought of as a memorization task. We evaluate arithmetic for MIDAS and baseline training,
and we see that arithmetic is quite poor for both models (7.8% and 9.6%, respectively, in Table 6).
However, by evaluating PSM with chain-of-thought and only assessing the accuracy of the reasoning
chain itself, i.e., “-6+5” vs. “-1”, we can successfully disentangle reasoning and memorization in our
evaluation. This is equivalent to having access to a calculator, so we call it “PSM with calculator” or
“PSM-calc” in Figure 5.

Task MIDAS (%) Baseline (%) Random guessing(%)
Copying (random-letter words) 24.3 14.9 10

Copying (real words) 17.8 10.3 10
Variable assignment depth 0 (basic) 35.6 32.1 20
Variable assignment depth 1 (basic) 20.6 21.9 20
Variable assignment depth 2 (basic) 18.9 17.7 20
Variable assignment depth 0 (math) 92.8 50.1 20
Variable assignment depth 1 (math) 26.5 19.2 20
Variable assignment depth 2 (math) 20.4 18.8 20
Variable assignment depth 0 (code) 86.0 49.7 20
Variable assignment depth 1 (code) 28.3 21.6 20
Variable assignment depth 2 (code) 19.5 19 20

Pre-school math (PSM), no calculator 7.8 9.6 n/a
Arithmetic-only accuracy 9.7 10.3 n/a

Pre-school math (PSM), with calculator 69.5 62 n/a

Table 6: 5-shot results for all variants of the contextual reasoning primitives. This is an expanded set
compared to Figure 5.

Fine tuning. Table 7 presents the fine-tuning results from Figure 5 along with corresponding
standard deviations (across the 3 trials).

Task MIDAS (%) Baseline (%) Random guessing(%)
Variable assignment depth 1 (code) 68.54 ± 7.69 43.75 ± 5.54 20
Variable assignment depth 2 (code) 44.97 ± 7.26 23.88 ± 1.56 20

Table 7: Fine-tuning results corresponding to Figure 5’s 2 fine-tuning tasks. Additionally, this table
reports the standard deviation across the 3 runs with ± std dev.
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