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Abstract

This paper examines the efficacy of sampling-based low-rank approximation techniques when ap-

plied to large dense kernel matrices. We analyze two common approximate singular value decom-

position techniques, namely the Nyström and Column sampling methods. We present a theoretical

comparison between these two methods, provide novel insights regarding their suitability for vari-

ous tasks and present experimental results that support our theory. Our results illustrate the relative

strengths of each method. We next examine the performance of these two techniques on the large-

scale task of extracting low-dimensional manifold structure given millions of high-dimensional

face images. We address the computational challenges of non-linear dimensionality reduction via

Isomap and Laplacian Eigenmaps, using a graph containing about 18 million nodes and 65 million

edges. We present extensive experiments on learning low-dimensional embeddings for two large

face data sets: CMU-PIE (35 thousand faces) and a web data set (18 million faces). Our compar-

isons show that the Nyström approximation is superior to the Column sampling method for this

task. Furthermore, approximate Isomap tends to perform better than Laplacian Eigenmaps on both

clustering and classification with the labeled CMU-PIE data set.

Keywords: low-rank approximation, manifold learning, large-scale matrix factorization

1. Introduction

Kernel-based algorithms (Schölkopf and Smola, 2002) are a broad class of learning algorithms with

rich theoretical underpinnings and state-of-the-art empirical performance for a variety of problems,

for example, Support Vector Machines (SVMs) and Kernel Logistic Regression (KLR) for classifi-
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cation, Support Vector Regression (SVR) and Kernel Ridge Regression (KRR) for regression, Ker-

nel Principle Component Analysis (KPCA) for non-linear dimensionality reduction, SVM-Rank for

ranking, etc. Despite the favorable properties of kernel methods in terms of theory, empirical per-

formance and flexibility, scalability remains a major drawback. Given a set of n datapoints, these

algorithms require O(n2) space to store the kernel matrix. Furthermore, they often require O(n3)

time, requiring matrix inversion, Singular Value Decomposition (SVD) or quadratic programming

in the case of SVMs. For large-scale data sets, both the space and time requirements quickly become

intractable. Various optimization methods have been introduced to speed up kernel methods, for ex-

ample, SMO (Platt, 1999), shrinking (Joachims, 1999), chunking (Boser et al., 1992), parallelized

SVMs (Chang et al., 2008) and parallelized KLR (Mann et al., 2009). However for large-scale

problems, the storage and processing costs can nonetheless be intractable.

In this work,1 we focus on an attractive solution to this problem that involves efficiently gen-

erating low-rank approximations to the kernel matrix. Low-rank approximation appears in a wide

variety of applications including lossy data compression, image processing, text analysis and cryp-

tography, and is at the core of widely used algorithms such as Principle Component Analysis, Mul-

tidimensional Scaling and Latent Semantic Indexing. Moreover, kernel matrices can often be well

approximated by low-rank matrices, the latter of which are much easier to store and operate on.

Although SVD can be used to find ‘optimal’ low-rank approximations, SVD requires storage of the

full kernel matrix and the runtime is superlinear in n, and hence does not scale well for large-scale

applications.

For matrices of special form such as tridiagonal matrices, fast parallelized decomposition al-

gorithms exist (Dhillon and Parlett, 2004), but such methods are not generally applicable. Kernel

functions are sometimes chosen to yield sparse kernel matrices. When dealing with these sparse

matrices, iterative methods such as the Jacobi or Arnoldi techniques (Golub and Loan, 1983) can be

used to compute a compact SVD. More recent methods based on random projections (Halko et al.,

2009) and statistical leverage scores (Mahoney, 2011) can yield high-quality approximations more

efficiently than these standard iterative methods for sparse matrices. However, all of these methods

require operating on the full matrix, and in applications where the associated kernel matrices are

dense, working with full kernel matrix can be intractable. For instance, given a data set of 18M

data points, as in application presented in this work, storing a dense kernel matrix would require

1300TB, and even if we could somehow store it, performing O(n2) operations would be infeasible.

When working with large dense matrices, sampling-based techniques provide a powerful alter-

native, as they construct low-rank matrices that are nearly ‘optimal’ while also having linear space

and time constraints with respect to n. In this work, we focus on two commonly used sampling-

based techniques, the Nyström method (Williams and Seeger, 2000) and the Column sampling

method (Frieze et al., 1998). The Nyström approximation has been studied in the machine learn-

ing community (Williams and Seeger, 2000; Drineas and Mahoney, 2005), while Column sampling

techniques have been analyzed in the theoretical Computer Science community (Frieze et al., 1998;

Drineas et al., 2006; Deshpande et al., 2006). However, the relationship between these approxima-

tions had not been well studied. Here we provide an extensive theoretical analysis of these algo-

rithms, show connections between these approximations and provide a direct comparison between

their performances.

1. Portions of this work have previously appeared in preliminary forms in the Conference on Vision and Pattern Recog-

nition (Talwalkar et al., 2008) and the International Conference on Machine Learning (Kumar et al., 2009).
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We then examine the performance of these two low-rank approximation techniques on the task

of extracting low-dimensional manifold structure given millions of high-dimensional face images.

The problem of dimensionality reduction arises in many computer vision applications where it is

natural to represent images as vectors in a high-dimensional space. Manifold learning techniques

extract low-dimensional structure from high-dimensional data in an unsupervised manner. This

makes certain applications such as K-means clustering more effective in the transformed space.

Instead of assuming global linearity as in the case of linear dimensionality reduction techniques,

manifold learning methods typically make a weaker local-linearity assumption, that is, for nearby

points in high-dimensional input space, l2 distance is assumed to be a good measure of geodesic

distance, or distance along the manifold. Good sampling of the underlying manifold is essential

for this assumption to hold. In fact, many manifold learning techniques provide guarantees that the

accuracy of the recovered manifold increases as the number of data samples increases (Tenenbaum

et al., 2000; Donoho and Grimes, 2003). However, there is a trade-off between improved sampling

of the manifold and the computational cost of manifold learning algorithms, and we explore these

computational challenges in this work.

We focus on Isomap (Tenenbaum et al., 2000) and Laplacian Eigenmaps (Belkin and Niyogi,

2001), as both methods have good theoretical properties and the differences in their approaches

allow us to make interesting comparisons between dense and sparse methods. Isomap in particular

involves storing and operating on a dense similarity matrix, and although the similarity matrix is not

guaranteed to be positive definite,2 sampling-based low-rank approximation is a natural approach

for scalability, as previously noted by de Silva and Tenenbaum (2003) in the context of the Nyström

method. Hence, in this work we evaluate the efficacy of the Nyström method and the Column

sampling method on the task of large-scale manifold learning. We also discuss our efficient im-

plementation of a scalable manifold learning pipeline that leverages modern distributed computing

architecture in order to construct neighborhood graphs, calculate shortest paths within these graphs

and finally compute large-scale low-rank matrix approximations.

We now summarize our main contributions. First, we show connections between two random

sampling based singular value decomposition algorithms and provide the first direct comparison of

their performances on a variety of approximation tasks. In particular, we show that the Column

sampling method is superior for approximating singular values, singular vectors and matrix pro-

jection approximations (defined in Section 3.2), while the Nyström method is better for spectral

reconstruction approximations (also defined in Section 3.2), which are most relevant in the context

of low-rank approximation of large dense matrices. Second, we apply these two algorithms to the

task of large-scale manifold learning and present the largest scale study so far on manifold learning,

using 18M data points. To date, the largest manifold learning study involves the analysis of music

data using 267K points (Platt, 2004).

2. Preliminaries

In this section, we introduce notation and present basic definitions of two of the most common

sampling-based techniques for matrix approximation.

2. In the limit of infinite samples, Isomap can be viewed as an instance of Kernel PCA (Ham et al., 2004).
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2.1 Notation and Problem Setting

For a matrix T ∈ R
a×b, we define T( j), j = 1 . . .b, as the jth column vector of T and T(i), i =

1 . . .a, as the ith row vector of T. We denote by Tk the ‘best’ rank-k approximation to T, that is,

Tk = argminV∈Ra×b,rank(V)=k‖T−V‖ξ, where ξ ∈ {2,F}, ‖·‖2 denotes the spectral norm and ‖·‖F

the Frobenius norm of a matrix. Assuming that rank(T) = r, we can write the compact Singular

Value Decomposition (SVD) of this matrix as T = UTΣT V⊤
T where ΣT is diagonal and contains the

singular values of T sorted in decreasing order and UT ∈ R
a×r and VT ∈ R

b×r are corresponding

the left and right singular vectors of T. We can then describe Tk in terms of its SVD as Tk =
UT,kΣT,kV⊤

T,k. Let K ∈ R
n×n be a symmetric positive semidefinite (SPSD) kernel or Gram matrix

with rank(K) = r ≤ n. We will write the SVD of K as K = UΣU⊤, and the pseudo-inverse of

K as K+ = ∑r
t=1 σ−1

t U(t)U(t)⊤. For k < r, Kk = ∑k
t=1 σtU

(t)U(t)⊤ = UkΣkU⊤
k is the ‘best’ rank-k

approximation to K.

We focus on generating an approximation K̃ of K based on a sample of l ≪ n of its columns. We

assume that we sample columns uniformly without replacement as suggested by Kumar et al. (2012)

and motivated by the connection between uniform sampling and matrix incoherence (Talwalkar and

Rostamizadeh, 2010; Mackey et al., 2011), though various methods have been proposed to select

columns (see Chapter 4 of Talwalkar (2010) for more details on various sampling schemes). Let C

denote the n× l matrix formed by these columns and W the l× l matrix consisting of the intersection

of these l columns with the corresponding l rows of K. Note that W is SPSD since K is SPSD.

Without loss of generality, the columns and rows of K can be rearranged based on this sampling so

that K and C be written as follows:

K =

[
W K⊤

21

K21 K22

]
and C =

[
W

K21

]
. (1)

The approximation techniques discussed next use the SVD of W and C to generate approximations

for K.

2.2 Nyström Method

The Nyström method was first introduced as a quadrature method for numerical integration, used to

approximate eigenfunction solutions (Nyström, 1928). More recently, it was presented in Williams

and Seeger (2000) to speed up kernel algorithms and has been used in applications ranging from

manifold learning to image segmentation (Platt, 2004; Fowlkes et al., 2004; Talwalkar et al., 2008).

The Nyström method uses W and C from (1) to approximate K. Assuming a uniform sampling of

the columns, the Nyström method generates a rank-k approximation K̃ of K for k < n defined by:

K̃
nys
k = CW+

k C⊤ ≈ K, (2)

where Wk is the best k-rank approximation of W with respect to the spectral or Frobenius norm and

W+
k denotes the pseudo-inverse of Wk. If we write the SVD of W as W = UWΣW U⊤

W , then from

(2) we can write

K̃
nys
k = CUW,kΣ

+
W,kU⊤

W,kC⊤ =

(√
l

n
CUW,kΣ

+
W,k

)(
n

l
ΣW,k

)(√
l

n
CUW,kΣ

+
W,k

)⊤

,
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and hence the Nyström method approximates the top k singular values and vectors of K as:

Σ̃nys =
(n

l

)
ΣW,k and Ũnys =

√
l

n
CUW,kΣ

+
W,k. (3)

The time complexity of compact SVD on W is in O(l2k) and matrix multiplication with C takes

O(nlk), hence the total complexity of the Nyström approximation is in O(nlk).

2.3 Column Sampling Method

The Column sampling method was introduced to approximate the SVD of any rectangular matrix

(Frieze et al., 1998). It generates approximations of K by using the SVD of C.3 If we write the SVD

of C as C = UCΣCV⊤
C then the Column sampling method approximates the top k singular values

(Σk) and singular vectors (Uk) of K as:

Σ̃col =

√
n

l
ΣC,k and Ũcol = UC = CVC,kΣ

+
C,k. (4)

The runtime of the Column sampling method is dominated by the SVD of C. The algorithm takes

O(nlk) time to perform compact SVD on C, but is still more expensive than the Nyström method as

the constants for SVD are greater than those for the O(nlk) matrix multiplication step in the Nyström

method.

3. Nyström Versus Column Sampling

Given that two sampling-based techniques exist to approximate the SVD of SPSD matrices, we pose

a natural question: which method should one use to approximate singular values, singular vectors

and low-rank approximations? We next analyze the form of these approximations and empirically

evaluate their performance in Section 3.3.

3.1 Singular Values and Singular Vectors

As shown in (3) and (4), the singular values of K are approximated as the scaled singular values

of W and C, respectively. The scaling terms are quite rudimentary and are primarily meant to

compensate for the ‘small sample size’ effect for both approximations. Formally, these scaling

terms make the approximations in (3) and (4) unbiased estimators of the true singular values. The

form of singular vectors is more interesting. The Column sampling singular vectors (Ũcol) are

orthonormal since they are the singular vectors of C. In contrast, the Nyström singular vectors

(Ũnys) are approximated by extrapolating the singular vectors of W as shown in (3), and are not

orthonormal. As we show in Section 3.3, this adversely affects the accuracy of singular vector

approximation from the Nyström method. It is possible to orthonormalize the Nyström singular

vectors by using QR decomposition. Since Ũnys ∝ CUWΣ
+
W , where UW is orthogonal and ΣW is

diagonal, this simply implies that QR decomposition creates an orthonormal span of C rotated by

UW . However, the complexity of QR decomposition of Ũnys is the same as that of the SVD of C.

Thus, the computational cost of orthogonalizing Ũnys would nullify the computational benefit of the

Nyström method over Column sampling.

3. The Nyström method also uses sampled columns of K, but the Column sampling method is named so because it uses

direct decomposition of C, while the Nyström method decomposes its submatrix, W.
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3.2 Low-rank Approximation

Several studies have empirically shown that the accuracy of low-rank approximations of kernel ma-

trices is tied to the performance of kernel-based learning algorithms (Williams and Seeger, 2000;

Talwalkar and Rostamizadeh, 2010). Furthermore, the connection between kernel matrix approx-

imation and the hypothesis generated by several widely used kernel-based learning algorithms has

been theoretically analyzed (Cortes et al., 2010). Hence, accurate low-rank approximations are of

great practical interest in machine learning. As discussed in Section 2.1, the optimal Kk is given by,

Kk = UkΣkU⊤
k = UkU⊤

k K = KUkU⊤
k

where the columns of Uk are the k singular vectors of K corresponding to the top k singular values

of K. We refer to UkΣkU⊤
k as Spectral Reconstruction, since it uses both the singular values and

vectors of K, and UkU⊤
k K as Matrix Projection, since it uses only singular vectors to compute the

projection of K onto the space spanned by vectors Uk. These two low-rank approximations are

equal only if Σk and Uk contain the true singular values and singular vectors of K. Since this is

not the case for approximate methods such as Nyström and Column sampling these two measures

generally give different errors. Thus, we analyze each measure separately in the following sections.

3.2.1 MATRIX PROJECTION

For Column sampling using (4), the low-rank approximation via matrix projection is

K̃col
k = Ũcol,kŨ⊤

col,kK = UC,kU⊤
C,kK = C((C⊤C)k)

+C⊤K, (5)

where (C⊤C)−1
k = VC,k(Σ

2
C,k)

+V⊤
C,k. Clearly, if k = l, (C⊤C)k = C⊤C. Similarly, using (3), the

Nyström matrix projection is

K̃
nys
k = Ũnys,kŨ⊤

nys,kK =
l

n
C(W2

k)
+C⊤K. (6)

As shown in (5) and (6), the two methods have similar expressions for matrix projection, except

that C⊤C is replaced by a scaled W2. The scaling term appears only in the expression for the

Nyström method. We now present Theorem 1 and Observations 1 and 2, which provide further

insights about these two methods in the context of matrix projection.

Theorem 1 The Column sampling and Nyström matrix projections are of the form UCRU⊤
C K, where

R ∈ R
l×l is SPSD. Further, Column sampling gives the lowest reconstruction error (measured in

‖·‖F) among all such approximations if k = l.

Observation 1 For k = l, matrix projection for Column sampling reconstructs C exactly. This can

be seen by block-decomposing K as: K = [C C̄], where C̄ = [K21 K22]
⊤, and using (5):

K̃col
l = C(C⊤C)+C⊤K = [C C(C⊤C)+C⊤C̄] = [C C̄].

Observation 2 For k = l, the span of the orthogonalized Nyström singular vectors equals the span

of Ũcol , as discussed in Section 3.1. Hence, matrix projection is identical for Column sampling and

Orthonormal Nyström for k = l.

Matrix projection approximations are not necessarily symmetric and require storage of and mul-

tiplication with K. Hence, although matrix projection is often analyzed theoretically, for large-scale

problems, the storage and computational requirements may be inefficient or even infeasible.
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Data Set Data n d Kernel

PIE-2.7K faces 2731 2304 linear

PIE-7K faces 7412 2304 linear

MNIST digits 4000 784 linear

ESS proteins 4728 16 RBF

ABN abalones 4177 8 RBF

Table 1: Description of the data sets used in our experiments comparing sampling-based matrix

approximations (Sim et al., 2002; LeCun and Cortes, 1998; Talwalkar et al., 2008). ‘n’

denotes the number of points and ‘d’ denotes the data dimensionality, that is, the number

of features in input space.

3.2.2 SPECTRAL RECONSTRUCTION

Using (3), the Nyström spectral reconstruction is:

K̃
nys
k = Ũnys,kΣ̃nys,kŨ⊤

nys,k = CW+
k C⊤. (7)

When k= l, this approximation perfectly reconstructs three blocks of K, and K22 is approximated

by the Schur Complement of W in K. The Column sampling spectral reconstruction has a similar

form as (7):

K̃col
k = Ũcol,kΣ̃col,kŨ⊤

col,k =
√

n/l C
(
(C⊤C)

1
2

k

)+
C⊤. (8)

In contrast with matrix projection, the scaling term now appears in the Column sampling reconstruc-

tion. To analyze the two approximations, we consider an alternative characterization using the fact

that K = X⊤X for some X ∈ R
N×n. We define a zero-one sampling matrix, S ∈ R

n×l , that selects l

columns from K, that is, C = KS. Further, W = S⊤KS = X′⊤X′, where X′ ∈ R
N×l contains l sam-

pled columns of X and X′ = UX ′ΣX ′V⊤
X ′ is the SVD of X′. We now present two results. Theorem 2

shows that the optimal spectral reconstruction is data dependent and may differ from the Nyström

and Column sampling approximations. Moreover, Theorem 3 reveals that in certain instances the

Nyström method is optimal, while the Column sampling method enjoys no such guarantee.

Theorem 2 Column sampling and Nyström spectral reconstructions of rank k are of the form

X⊤UX ′,kZU⊤
X ′,kX, where Z ∈R

k×k is SPSD. Further, among all approximations of this form, neither

the Column sampling nor the Nyström approximation is optimal (in ‖·‖F).

Theorem 3 Let r = rank(K)≤ k ≤ l and rank(W) = r. Then, the Nyström approximation is exact

for spectral reconstruction. In contrast, Column sampling is exact iff W =
(
(l/n)C⊤C

)1/2
.

3.3 Empirical Comparison

To test the accuracy of singular values/vectors and low-rank approximations for different methods,

we used several kernel matrices arising in different applications, as described in Table 3.3. We

worked with data sets containing less than ten thousand points to be able to compare with exact

SVD. We fixed k to be 100 in all the experiments, which captures more than 90% of the spectral

energy for each data set.
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For singular values, we measured percentage accuracy of the approximate singular values with

respect to the exact ones. For a fixed l, we performed 10 trials by selecting columns uniformly at

random from K. We show in Figure 1(a) the difference in mean percentage accuracy for the two

methods for l = n/10, with results bucketed by groups of singular values, that is, we sorted the

singular values in descending order, grouped them as indicated in the figure, and report the average

percentage accuracy for each group. The empirical results show that the Column sampling method

generates more accurate singular values than the Nyström method. A similar trend was observed

for other values of l.

For singular vectors, the accuracy was measured by the dot product, that is, cosine of principal

angles between the exact and the approximate singular vectors. Figure 1(b) shows the difference in

mean accuracy between Nyström and Column sampling methods, once again bucketed by groups of

singular vectors sorted in descending order based on their corresponding singular values. The top

100 singular vectors were all better approximated by Column sampling for all data sets. This trend

was observed for other values of l as well. Furthermore, even when the Nyström singular vectors

are orthogonalized, the Column sampling approximations are superior, as shown in Figure 1(c).
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Figure 1: Comparison of singular values and vectors (values above zero indicate better performance

of Nyström). (a) Top 100 singular values with l = n/10. (b) Top 100 singular vectors with

l = n/10. (c) Comparison using orthogonalized Nyström singular vectors.

Next we compared the low-rank approximations generated by the two methods using matrix

projection and spectral reconstruction. We measured the accuracy of reconstruction relative to the

optimal rank-k approximation, Kk, via relative accuracy = ‖K−Kk‖F

‖K−K̃
nys/col

k ‖F

, which will approach one

for good approximations. As motivated by Theorem 1, Column sampling generates better recon-

structions via matrix projection (Figure 2(a)). In contrast, the Nyström method produces superior

results for spectral reconstruction (Figure 2(b)). These results may appear somewhat surprising

given the relatively poor quality of the singular values/vectors for the Nyström method, but they are

in agreement with the consequences of Theorem 3 and the fact that the kernel matrices we consider

(aside from ‘DEXT’) are nearly low-rank. Moreover, the performance of these two approximations

are indeed tied to the spectrum of K as stated in Theorem 2. Indeed, we found that the two ap-

proximations were roughly equivalent for a sparse kernel matrix with slowly decaying spectrum

(‘DEXT’ in Figure 2(b)), while the Nyström method was superior for dense kernel matrices with

exponentially decaying spectra arising from the other data sets used in the experiments.
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Figure 2: Plots (a)-(e) compare performance of various matrix approximations, and in all cases

values above zero indicate better performance of the first listed method. (a) Matrix pro-

jection, Nyström versus Column sampling, k = 100. (b) Spectral reconstruction, Nyström

versus Column sampling, k = 100. (c) Matrix projection, Orthonormal Nyström versus

Column sampling, k = 100. (d) Spectral reconstruction, Nyström versus Orthonormal

Nyström, k = 100. (e) Spectral reconstruction, Nyström versus Column sampling vary-

ing ranks. (f) Percentage of columns (l/n) needed to achieve 75% relative accuracy for

Nyström spectral reconstruction as a function of n.

The non-orthonormality of the Nyström method’s singular vectors (Section 3.1) is one factor

that impacts its accuracy for some tasks. When orthonormalized, the Nyström matrix projection

error is reduced considerably as shown in Figure 2(c), and supported by Observation 2. Also, the

accuracy of Orthonormal Nyström spectral reconstruction is worse relative to the standard Nyström

approximation, as shown in Figure 2(d). This result can be attributed to the fact that orthonormal-

ization of the singular vectors leads to the loss of some of the unique properties described in Section

3.2.2. For instance, Theorem 3 no longer holds and the scaling terms do not cancel out, that is,

K̃
nys
k 6= CW+

k C⊤.

We next tested the accuracy of spectral reconstruction for the two methods for varying values of

k and a fixed l. We found that the Nyström method outperforms Column sampling across all tested

values of k, as shown in Figure 2(e). Next, we addressed another basic issue: how many columns

do we need to obtain reasonable reconstruction accuracy? We performed an experiment in which

we fixed k and varied the size of our data set (n). For each n, we performed grid search over l to find

the minimal l for which the relative accuracy of Nyström spectral reconstruction was at least 75%.
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Figure 2(f) shows that the required percentage of columns (l/n) decreases quickly as n increases,

lending support to the use of sampling-based algorithms for large-scale data.

Finally, we note another important distinction between the Nyström method and Column sam-

pling, namely, out-of-sample extension. Out-of-sample extension is often discussed in the context

of manifold learning, in which case it involves efficiently deriving a low-dimensional embedding for

an arbitrary test point given embeddings from a set of training points (rather than rerunning the en-

tire manifold learning algorithm). The Nyström method naturally lends itself to such out-of-sample

extension, as a new point can be processed based on extrapolating from the sampled points (de Silva

and Tenenbaum, 2003). Moreover, it is possible to use Column sampling to learn embeddings on the

initial sample, and then use the Nyström method for subsequent out-of-sample-extension. Hence,

given a large set of samples, both the Nyström method and Column sampling are viable options to

enhance the scalability of manifold learning methods, as we will explore in Section 4.

4. Large-scale Manifold Learning

In the previous section, we discussed two sampling-based techniques that generate approximations

for kernel matrices. Although we analyzed the effectiveness of these techniques for approximat-

ing singular values, singular vectors and low-rank matrix reconstruction, we have yet to discuss

the effectiveness of these techniques in the context of actual machine learning tasks. In fact, the

Nyström method has been shown to be successful on a variety of learning tasks including Support

Vector Machines (Fine and Scheinberg, 2002), Gaussian Processes (Williams and Seeger, 2000),

Spectral Clustering (Fowlkes et al., 2004), Kernel Ridge Regression (Cortes et al., 2010) and more

generally to approximate regularized matrix inverses via the Woodbury approximation (Williams

and Seeger, 2000). In this section, we will discuss how approximate embeddings can be used in the

context of manifold learning, relying on the sampling based algorithms from the previous section

to generate an approximate SVD. We present the largest study to date for manifold learning, and

provide a quantitative comparison of Isomap and Laplacian Eigenmaps for large scale face manifold

construction on clustering and classification tasks.

4.1 Manifold Learning

Manifold learning aims to extract low-dimensional structure from high-dimensional data. Given

n input points, X = {xi}
n
i=1 and xi ∈ R

d , the goal is to find corresponding outputs Y = {yi}
n
i=1,

where yi ∈ R
k, k ≪ d, such that Y ‘faithfully’ represents X. Several manifold learning techniques

have been proposed, for example, Isomap (Tenenbaum et al., 2000), Laplacian Eigenmaps (Belkin

and Niyogi, 2001), Local Linear Embedding (LLE) (Roweis and Saul, 2000), Hessian Eigenmaps

(Donoho and Grimes, 2003), Structural Preserving Embedding (SPE) (Shaw and Jebara, 2009) and

Semidefinite Embedding (SDE) (Weinberger and Saul, 2006). Isomap aims to preserve all pair-wise

geodesic distances, whereas LLE, Laplacian Eigenmaps and Hessian Eigenmaps focus on preserv-

ing local neighborhood relationships. SDE and SPE are both formulated as instances of semidefi-

nite programming, and are prohibitively expensive for large-scale problems. We will focus on the

Isomap and Laplacian Eigenmaps algorithms as they are well-studied and highlight the differences

between global versus local manifold learning techniques. We next briefly review the main com-

putational efforts required for both algorithms, which involve neighborhood graph construction and

manipulation and SVD of a symmetric similarity matrix.
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4.1.1 ISOMAP

Isomap aims to extract a low-dimensional data representation that best preserves all pairwise dis-

tances between input points, as measured by their geodesic distances along the manifold (Tenen-

baum et al., 2000). It approximates the geodesic distance assuming that input space distance pro-

vides good approximations for nearby points, and for faraway points it estimates distance as a series

of hops between neighboring points. Isomap involves three steps: i) identifying t nearest neigh-

bors for each point and constructing the associated undirected neighborhood graph in O(n2) time,

ii) computing approximate geodesic distances via the neighborhood graph and converting these dis-

tances into a similarity matrix K via double centering, which overall requires O(n2 logn) time, and

iii) calculating the final embedding of the form Y = (Σk)
1/2U⊤

k , where Σk is the diagonal matrix

of the top k singular values of K and Uk are the associated singular vectors, which requires O(n2)

space for storing K, and O(n3) time for its SVD. The time and space complexities for all three steps

are intractable for n = 18M.

4.1.2 LAPLACIAN EIGENMAPS

Laplacian Eigenmaps aims to find a low-dimensional representation that best preserves local neigh-

borhood relations (Belkin and Niyogi, 2001). The algorithm first computes t nearest neighbors for

each point, from which it constructs a sparse weight matrix W.4 It then minimizes an objective

function that penalizes nearby inputs for being mapped to faraway outputs, with ‘nearness’ mea-

sured by the weight matrix W, and the solution to the objective is the bottom singular vectors of

the symmetrized, normalized form of the graph Laplacian, L . The runtime of this algorithm is

dominated by computing nearest neighbors, since the subsequent steps involve sparse matrices. In

particular, L can be stored in O(tn) space, and iterative methods, such as Lanczos, can be used to

compute its compact SVD relatively quickly.

4.2 Approximation Experiments

Since we use sampling-based SVD approximation to scale Isomap, we first examined how well the

Nyström and Column sampling methods approximated our desired low-dimensional embeddings,

that is, Y = (Σk)
1/2U⊤

k . Using (3), the Nyström low-dimensional embeddings are:

Ỹnys = Σ̃
1/2

nys,kŨ⊤
nys,k =

(
(ΣW )

1/2

k

)+
U⊤

W,kC⊤.

Similarly, from (4) we can express the Column sampling low-dimensional embeddings as:

Ỹcol = Σ̃
1/2

col,kŨ⊤
col,k =

4

√
n

l

(
(ΣC)

1/2

k

)+
V⊤

C,kC⊤.

Both approximations are of a similar form. Further, notice that the optimal low-dimensional

embeddings are in fact the square root of the optimal rank k approximation to the associated SPSD

matrix, that is, Y⊤Y = Kk, for Isomap. As such, there is a connection between the task of approx-

imating low-dimensional embeddings and the task of generating low-rank approximate spectral

reconstructions, as discussed in Section 3.2.2. Recall that the theoretical analysis in Section 3.2.2

4. The weight matrix should not be confused with the subsampled SPSD matrix, W, associated with the Nyström

method. Since sampling-based approximation techniques will not be used with Laplacian Eigenmaps, the notation

should be clear from the context.
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Figure 3: Comparison of embeddings (values above zero indicate better performance of Nyström).

as well as the empirical results in Section 3.3 both suggested that the Nyström method was superior

in its spectral reconstruction accuracy. Hence, we performed an empirical study using the data sets

from Table 3.3 to measure the quality of the low-dimensional embeddings generated by the two

techniques and see if the same trend exists.

We measured the quality of the low-dimensional embeddings by calculating the extent to which

they preserve distances, which is the appropriate criterion in the context of manifold learning. For

each data set, we started with a kernel matrix, K, from which we computed the associated n× n

squared distance matrix, D, using the fact that ‖xi−x j‖
2 = Kii+K j j −2Ki j. We then computed the

approximate low-dimensional embeddings using the Nyström and Column sampling methods, and

then used these embeddings to compute the associated approximate squared distance matrix, D̃. We

measured accuracy using the notion of relative accuracy defined in Section 3.3.

In our experiments, we set k = 100 and used various numbers of sampled columns, ranging

from l = n/50 to l = n/5. Figure 3 presents the results of our experiments. Surprisingly, we do not

see the same trend in our empirical results for embeddings as we previously observed for spectral

reconstruction, as the two techniques exhibit roughly similar behavior across data sets. As a result,

we decided to use both the Nyström and Column sampling methods for our subsequent manifold

learning study.

4.3 Large-scale Learning

In this section, we outline the process of learning a manifold of faces. We first describe the data sets

used in our experiments. We then explain how to extract nearest neighbors, a common step between

Laplacian Eigenmaps and Isomap. The remaining steps of Laplacian Eigenmaps are straightfor-

ward, so the subsequent sections focus on Isomap, and specifically on the computational efforts

required to generate a manifold using Webfaces-18M.5

4.3.1 DATA SETS

We used two faces data sets consisting of 35K and 18M images. The CMU PIE face data set (Sim

et al., 2002) contains 41,368 images of 68 subjects under 13 different poses and various illumination

conditions. A standard face detector extracted 35,247 faces (each 48×48 pixels), which comprised

our 35K set (PIE-35K). Being labeled, this set allowed us to perform quantitative comparisons. The

5. To run Laplacian Eigenmaps, we generated W from nearest neighbor data for the largest component of the neighbor-

hood graph and used a sparse eigensolver to compute the bottom eigenvalues of L .
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second data set, named Webfaces-18M, contains 18.2 million images extracted from the Web using

the same face detector. For both data sets, face images were represented as 2304 dimensional pixel

vectors that were globally normalized to have zero mean and unit variance. No other pre-processing,

for example, face alignment, was performed. In contrast, He et al. (2005) used well-aligned faces

(as well as much smaller data sets) to learn face manifolds. Constructing Webfaces-18M, including

face detection and duplicate removal, took 15 hours using a cluster of 500 machines. We used this

cluster for all experiments requiring distributed processing and data storage.

4.3.2 NEAREST NEIGHBORS AND NEIGHBORHOOD GRAPH

The cost of naive nearest neighbor computation is O(n2), where n is the size of the data set. It

is possible to compute exact neighbors for PIE-35K, but for Webfaces-18M this computation is

prohibitively expensive. So, for this set, we used a combination of random projections and spill

trees (Liu et al., 2004) to get approximate neighbors. Computing 5 nearest neighbors in parallel with

spill trees took ∼2 days on the cluster. Figure 4(a) shows the top 5 neighbors for a few randomly

chosen images in Webfaces-18M. In addition to this visualization, comparison of exact neighbors

and spill tree approximations for smaller subsets suggested good performance of spill trees.

We next constructed the neighborhood graph by representing each image as a node and con-

necting all neighboring nodes. Since Isomap and Laplacian Eigenmaps require this graph to be

connected, we used depth-first search to find its largest connected component. These steps re-

quired O(tn) space and time. Constructing the neighborhood graph for Webfaces-18M and finding

the largest connected component took 10 minutes on a single machine using the OpenFST library

(Allauzen et al., 2007).

For neighborhood graph construction, an ’appropriate’ choice of number of neighbors, t, is

crucial. A small t may give too many disconnected components, while a large t may introduce

unwanted edges. These edges stem from inadequately sampled regions of the manifold and false

positives introduced by the face detector. Since Isomap needs to compute shortest paths in the

neighborhood graph, the presence of bad edges can adversely impact these computations. This is

known as the problem of leakage or ‘short-circuits’ (Balasubramanian and Schwartz, 2002). Here,

we chose t = 5 and also enforced an upper limit on neighbor distance to alleviate the problem

of leakage. We used a distance limit corresponding to the 95th percentile of neighbor distances

in the PIE-35K data set. Figure 4(b) shows the effect of choosing different values for t with and

without enforcing the upper distance limit. As expected, the size of the largest connected component

increases as t increases. Also, enforcing the distance limit reduces the size of the largest component.

See Appendix D for visualizations of various components of the neighborhood graph.

4.3.3 APPROXIMATING GEODESICS

To construct the similarity matrix K in Isomap, one approximates geodesic distance by shortest-path

lengths between every pair of nodes in the neighborhood graph. This requires O(n2 logn) time and

O(n2) space, both of which are prohibitive for 18M nodes. However, since we use sampling-based

approximate decomposition, we need only l ≪ n columns of K, which form the submatrix C. We

thus computed geodesic distance between l randomly selected nodes (called landmark points) and

the rest of the nodes, which required O(ln logn) time and O(ln) space. Since this computation can

easily be parallelized, we performed geodesic computation on the cluster and stored the output in a

distributed fashion. The overall procedure took 60 minutes for Webfaces-18M using l = 10K. The
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No Upper Limit Upper Limit Enforced

t # Comp % Largest # Comp % Largest

1 1.7M 0.05 % 4.3M 0.03 %

2 97K 97.2 % 285K 80.1 %

3 18K 99.3 % 277K 82.2 %

5 1.9K 99.9 % 275K 83.1 %

(a) (b)

Figure 4: (a) Visualization of neighbors for Webfaces-18M. The first image in each row is the input,

and the next five are its neighbors. (b) Number of components in the Webfaces-18M

neighbor graph and the percentage of images within the largest connected component

(‘% Largest’) for varying numbers of neighbors (t) with and without an upper limit on

neighbor distances.

bottom four rows in Figure 5 show sample shortest paths for images within the largest component

for Webfaces-18M, illustrating smooth transitions between images along each path.6

4.3.4 GENERATING LOW-DIMENSIONAL EMBEDDINGS

Before generating low-dimensional embeddings using Isomap, one needs to convert distances into

similarities using a process called centering (Tenenbaum et al., 2000). For the Nyström approxima-

tion, we computed W by double centering D, the l× l matrix of squared geodesic distances between

all landmark nodes, as W = − 1
2
HDH, where H = Il −

1
l
11⊤ is the centering matrix, Il is the l × l

identity matrix and 1 is a column vector of all ones. Similarly, the matrix C was obtained from

squared geodesic distances between the landmark nodes and all other nodes using single-centering

as described in de Silva and Tenenbaum (2003).

For the Column sampling approximation, we decomposed C⊤C, which we constructed by per-

forming matrix multiplication in parallel on C. For both approximations, decomposition on an l× l

matrix (C⊤C or W) took about one hour. Finally, we computed low-dimensional embeddings by

multiplying the scaled singular vectors from approximate decomposition with C. For Webfaces-

18M, generating low dimensional embeddings took 1.5 hours for the Nyström method and 6 hours

for the Column sampling method.

4.4 Manifold Evaluation

Manifold learning techniques typically transform the data such that Euclidean distance in the trans-

formed space between any pair of points is meaningful, under the assumption that in the original

space Euclidean distance is meaningful only in local neighborhoods. Since K-means clustering

computes Euclidean distances between all pairs of points, it is a natural choice for evaluating these

techniques. We also compared the performance of various techniques using nearest neighbor classi-

fication. Since CMU-PIE is a labeled data set, we first focused on quantitative evaluation of different

6. Our techniques for approximating geodesic distances via shortest path are used by Google for its “People Hopper”

application which runs on the social networking site Orkut (Kumar and Rowley, 2010).
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Methods Purity (%) Accuracy (%)

PCA 54.3 (±0.8) 46.1 (±1.4)
Isomap 58.4 (±1.1) 53.3 (±4.3)
Nys-Iso 59.1 (±0.9) 53.3 (±2.7)
Col-Iso 56.5 (±0.7) 49.4 (±3.8)

Lap. Eig. 35.8 (±5.0) 69.2 (±10.8)

Methods Purity (%) Accuracy (%)

PCA 54.6 (±1.3) 46.8 (±1.3)
Nys-Iso 59.9 (±1.5) 53.7 (±4.4)
Col-Iso 56.1 (±1.0) 50.7 (±3.3)

Lap. Eig. 39.3 (±4.9) 74.7 (±5.1)

(a) (b)

Table 2: K-means clustering of face poses. Results are averaged over 10 random K-means initial-

izations. (a) PIE-10K. (b) PIE-35K.

embeddings using face pose as class labels. The PIE set contains faces in 13 poses, and such a fine

sampling of the pose space makes clustering and classification tasks very challenging. In all the

experiments we fixed the dimension of the reduced space, k, to be 100.

We first compared different Isomap approximations to exact Isomap, using a subset of PIE

with 10K images (PIE-10K) so that exact SVD required by Isomap was feasible. We fixed the

number of clusters in our experiments to equal the number of pose classes, and measured clustering

performance using two measures, Purity and Accuracy. Purity measures the frequency of data

belonging to the same cluster sharing the same class label, while Accuracy measures the frequency

of data from the same class appearing in a single cluster. Table 2(a) shows that clustering with

Nyström Isomap with just l=1K performs almost as well as exact Isomap on this data set. Column

sampling Isomap performs slightly worse than Nyström Isomap. The clustering results on the full

PIE-35K set (Table 2(b)) with l = 10K affirm this observation. As illustrated by Figure 7 (Appendix

E), the Nyström method separates the pose clusters better than Column sampling verifying the

quantitative results in Table 2.

One possible reason for the poor performance of Column sampling Isomap is due to the form of

the similarity matrix K. When using a finite number of data points for Isomap, K is not guaranteed

to be SPSD (Ham et al., 2004). We verified that K was not SPSD in our experiments, and a sig-

nificant number of top eigenvalues, that is, those with largest magnitudes, were negative. The two

approximation techniques differ in their treatment of negative eigenvalues and the corresponding

eigenvectors. The Nyström method allows one to use eigenvalue decomposition (EVD) of W to

yield signed eigenvalues, making it possible to discard the negative eigenvalues and the correspond-

ing eigenvectors. It is not possible to discard these in the Column-based method, since the signs of

eigenvalues are lost in the SVD of the rectangular matrix C (or EVD of C⊤C). Thus, the presence

of negative eigenvalues deteriorates the performance of Column sampling method more than the

Nyström method.

Table 2(a) and 2(b) also show a significant difference in the Isomap and Laplacian Eigenmaps

results. The 2D embeddings of PIE-35K (Figure 7 in Appendix E) reveal that Laplacian Eigenmaps

projects data points into a small compact region. When used for clustering, these compact embed-

dings lead to a few large clusters and several tiny clusters, thus explaining the high accuracy and low

purity of the clusters. This indicates poor clustering performance of Laplacian Eigenmaps, since one

can achieve even 100% Accuracy simply by grouping all points into a single cluster. However, the

Purity of such clustering would be very low. Finally, the improved clustering results of Isomap over

PCA for both data sets verify that the manifold of faces is not linear in the input space.
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Methods K = 1 K = 3 K = 5

Isomap 10.9 (±0.5) 14.1 (±0.7) 15.8 (±0.3)
Nys-Iso 11.0 (±0.5) 14.0 (±0.6) 15.8 (±0.6)
Col-Iso 12.0 (±0.4) 15.3 (±0.6) 16.6 (±0.5)

Lap. Eig. 12.7 (±0.7) 16.6 (±0.5) 18.9 (±0.9)

Nys-Iso Col-Iso Lap. Eig.

9.8 (±0.2) 10.3 (±0.3) 11.1 (±0.3)

(a) (b)

Table 3: Nearest neighbor face pose classification error (%). Results are averaged over 10 random

splits of training and test sets. (a) PIE-10K with K = {1,3,5} neighbors. (b) PIE-35K with

K = 1 neighbors.

(a) (b)

(c)

Figure 5: 2D embedding of Webfaces-18M using Nyström Isomap (Top row). Darker areas indicate

denser manifold regions. (a) Face samples at different locations on the manifold. (b)

Approximate geodesic paths between celebrities. (c) Visualization of paths shown in (b).

Moreover, we compared the performance of Laplacian Eigenmaps and Isomap embeddings on

pose classification.7 The data was randomly split into a training and a test set, and K-Nearest Neigh-

7. KNN only uses nearest neighbor information for classification. Since neighborhoods are considered to be locally

linear in the input space, we expect KNN to perform well in the input space. Hence, using KNN to compare low-

level embeddings indirectly measures how well nearest neighbor information is preserved.
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bor (KNN) was used for classification. K = 1 gives lower error than higher K as shown in Table

3(a). Also, the classification error is lower for both exact and approximate Isomap than for Lapla-

cian Eigenmaps, suggesting that neighborhood information is better preserved by Isomap (Table

3). Note that, similar to clustering, the Nyström approximation performs as well as Exact Isomap

(Table 3(a)). Better clustering and classification results (along with superior 2D visualizations as

shown in Appendix E), imply that approximate Isomap outperforms exact Laplacian Eigenmaps.

Moreover, the Nyström approximation is computationally cheaper and empirically more effective

than the Column sampling approximation. Thus, we used Nyström Isomap to generate embeddings

for Webfaces-18M.

After learning a face manifold from Webfaces-18M, we analyzed the results with various visu-

alizations. The top row of Figure 5 shows the 2D embeddings from Nyström Isomap. The top left

figure shows the face samples from various locations in the manifold. It is interesting to see that

embeddings tend to cluster the faces by pose. These results support the good clustering performance

observed using Isomap on PIE data. Also, two groups (bottom left and top right) with similar poses

but different illuminations are projected at different locations. Additionally, since 2D projections

are very condensed for 18M points, one can expect more discrimination for higher k, for example,

k = 100.

In Figure 5, the top right figure shows the shortest paths on the manifold between different

public figures. The images along the corresponding paths have smooth transitions as shown in the

bottom of the figure. In the limit of infinite samples, Isomap guarantees that the distance along the

shortest path between any pair of points will be preserved as Euclidean distance in the embedded

space. Even though the paths in the figure are reasonable approximations of straight lines in the

embedded space, these results suggest that either (i) 18M faces are perhaps not enough samples to

learn the face manifold exactly, or (ii) a low-dimensional manifold of faces may not actually exist

(perhaps the data clusters into multiple low dimensional manifolds). It remains an open question as

to how we can measure and evaluate these hypotheses, since even very large scale testing has not

provided conclusive evidence.

5. Conclusion

We have studied sampling based low-rank approximation algorithms, presenting an analysis of two

techniques for approximating SVD on large dense SPSD matrices and providing a theoretical and

empirical comparison. Although the Column sampling method generates more accurate singu-

lar values, singular vectors and low-rank matrix projections, the Nyström method constructs better

low-rank approximations, which are of great practical interest as they do not use the full matrix. Fur-

thermore, our large-scale manifold learning studies illustrate the applicability of these algorithms

when working with large dense kernel matrices, reveal that Isomap coupled with the Nyström ap-

proximation can effectively extract low-dimensional structure from data sets containing millions of

images.

Appendix A. Proof of Theorem 1

Proof From (5), it is easy to see that

K̃col
k =UC,kU⊤

C,kK = UCRcolU
⊤
C K,
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where Rcol =
[

Ik 0
0 0

]
. Similarly, from (6) we can derive

K̃
nys
k = UCRnysU

⊤
C K where Rnys = Y(Σ2

W,k)
+Y⊤,

and Y =
√

l/nΣCV⊤
C UW,k. Note that both Rcol and Rnys are SPSD matrices. Furthermore, if k = l,

Rcol = Il . Let E be the (squared) reconstruction error for an approximation of the form UCRU⊤
C K,

where R is an arbitrary SPSD matrix. Hence, when k = l, the difference in reconstruction error

between the generic and the Column sampling approximations is

E−Ecol =‖K−UCRU⊤
C K‖2

F −‖K−UCU⊤
C K‖2

F

=Tr
[
K⊤(In −UCRU⊤

C )
⊤(In −UCRU⊤

C )K
]

−Tr
[
K⊤(In −UCU⊤

C )
⊤(In −UCU⊤

C )K
]

=Tr
[
K⊤(UCR2U⊤

C −2UCRU⊤
C +UCU⊤

C )K
]

=Tr
[
((R− In)U

⊤
C K)⊤((R− In)U

⊤
C K)

]

≥ 0.

We used the facts that U⊤
C UC = In and A⊤A is SPSD for any matrix A.

Appendix B. Proof of Theorem 2

Proof If α =
√

n/l, then starting from (8) and expressing C and W in terms of X and S, we have

K̃col
k =αKS((S⊤K2S)

1/2

k )+S⊤K⊤

=αX⊤X′
(
(VC,kΣ

2
C,kV⊤

C,k)
1/2

)+
X′⊤X

=X⊤UX ′,kZcolU
⊤
X ′,kX,

where Zcol = αΣX ′V⊤
X ′VC,kΣ

+
C,kV⊤

C,kVX ′ΣX ′ . Similarly, from (7) we have:

K̃
nys
k =KS(S⊤KS)+k S⊤K⊤

=X⊤X′
(
X′⊤X′

)+
k

X′⊤X

=X⊤UX ′,kU⊤
X ′,kX. (9)

Clearly, Znys = Ik. Next, we analyze the error, E, for an arbitrary Z, which yields the approximation

K̃Z
k :

E = ‖K− K̃Z
k ‖

2
F = ‖X⊤(IN −UX ′,kZU⊤

X ′,k)X‖2
F .

Let X = UXΣX V⊤
X and Y = U⊤

X UX ′,k. Then,

E =Tr
[(

UXΣX U⊤
X (IN −UX ′,kZU⊤

X ′,k)UXΣX U⊤
X

)2]

=Tr
[(

UXΣX(IN −YZY⊤)ΣX U⊤
X

)2]

=Tr
[
ΣX(IN −YZY⊤)Σ2

X(IN −YZY⊤)ΣX

)]

=Tr
[
Σ

4
X −2Σ2

X YZY⊤
Σ

2
X +ΣX YZY⊤

Σ
2
X YZY⊤

ΣX

)]
. (10)
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(a)

(b)

(c)

Figure 6: (a) A few random samples from the largest connected component of the Webfaces-18M

neighborhood graph. (b) Visualization of disconnected components of the neighborhood

graphs from Webfaces-18M (top row) and from PIE-35K (bottom row). The neighbors

for each of these images are all within this set, thus making the entire set disconnected

from the rest of the graph. Note that these images are not exactly the same. (c) Visual-

ization of disconnected components containing exactly one image. Although several of

the images above are not faces, some are actual faces, suggesting that certain areas of the

face manifold are not adequately sampled by Webfaces-18M.

To find Z∗, the Z that minimizes (10), we use the convexity of (10) and set:

∂E/∂Z =−2Y⊤
Σ

4
X Y+2(Y⊤

Σ
2
X Y)Z∗(Y⊤

Σ
2
X Y) = 0

and solve for Z∗, which gives us:

Z∗ = (Y⊤
Σ

2
X Y)+(Y⊤

Σ
4
X Y)(Y⊤

Σ
2
X Y)+.

Z∗ = Znys = Ik if Y = Ik, though Z∗ does not in general equal either Zcol or Znys, which is clear by

comparing the expressions of these three matrices.8 Furthermore, since Σ
2
X =ΣK , Z∗ depends on

8. This fact is illustrated in our experimental results for the ‘DEXT’ data set in Figure 2(b).
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Figure 7: Optimal 2D projections of PIE-35K where each point is color coded according to its pose

label. (a) PCA projections tend to spread the data to capture maximum variance. (b)

Isomap projections with Nyström approximation tend to separate the clusters of different

poses while keeping the cluster of each pose compact. (c) Isomap projections with Col-

umn sampling approximation have more overlap than with Nyström approximation. (d)

Laplacian Eigenmaps projects the data into a very compact range.

the spectrum of K.

Appendix C. Proof of Theorem 3

Proof Since K = X⊤X, rank(K) = rank(X) = r. Similarly, W = X′⊤X′ implies rank(X′) = r.

Thus the columns of X′ span the columns of X and UX ′,r is an orthonormal basis for X, that is,

IN −UX ′,rU
⊤
X ′,r ∈ Null(X). Since k ≥ r, from (9) we have

‖K− K̃
nys
k ‖F = ‖X⊤(IN −UX ′,rU

⊤
X ′,r)X‖F = 0,

which proves the first statement of the theorem. To prove the second statement, we note that

rank(C) = r. Thus, C = UC,rΣC,rV
⊤
C,r and (C⊤C)

1/2

k = (C⊤C)1/2 = VC,rΣC,rV
⊤
C,r since k ≥ r.

If W = (1/α)(C⊤C)1/2, then the Column sampling and Nyström approximations are identical and
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hence exact. Conversely, to exactly reconstruct K, Column sampling necessarily reconstructs C

exactly. Using C⊤ = [W K⊤
21] in (8) we have:

K̃col
k = K =⇒ αC

(
(C⊤C)

1
2

k

)+
W = C

=⇒ αUC,rV
⊤
C,rW = UC,rΣC,rV

⊤
C,r

=⇒ αVC,rV
⊤
C,rW = VC,rΣC,rV

⊤
C,r (11)

=⇒ W =
1

α
(C⊤C)1/2. (12)

In (11) we use U⊤
C,rUC,r = Ir, while (12) follows since VC,rV

⊤
C,r is an orthogonal projection onto the

span of the rows of C and the columns of W lie within this span implying VC,rV
⊤
C,rW = W.

Appendix D. Visualization of Connected Components in Neighborhood Graph

Figure 6(a) shows a few random samples from the largest component of the neighborhood graph we

generate for Webfaces-18M. Images not within the largest component are either part of a strongly

connected set of images (Figure 6(b)) or do not have any neighbors within the upper distance limit

(Figure 6(c)). There are significantly more false positives in Figure 6(c) than in Figure 6(a), although

some of the images in Figure 6(c) are actually faces. Clearly, the distance limit introduces a trade-off

between filtering out non-faces and excluding actual faces from the largest component.

Appendix E. Visualization of 2D Embeddings of PIE-35K

Figure 7 shows the optimal 2D projections from different methods for PIE-35K.
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E. Nyström. Über die praktische auflösung von linearen integralgleichungen mit anwendungen

auf randwertaufgaben der potentialtheorie. Commentationes Physico-Mathematicae, 4(15):1–52,

1928.

J. Platt. Fast training of Support Vector Machines using sequential minimal optimization. In Neural

Information Processing Systems, 1999.

J. Platt. Fast embedding of sparse similarity graphs. In Neural Information Processing Systems,

2004.

S. Roweis and L. Saul. Nonlinear dimensionality reduction by Locally Linear Embedding. Science,

290(5500), 2000.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press: Cambridge, MA, 2002.

B. Shaw and T. Jebara. Structure preserving embedding. In International Conference on Machine

Learning, 2009.

T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and expression database. In Conference

on Automatic Face and Gesture Recognition, 2002.

A. Talwalkar. Matrix Approximation for Large-scale Learning. Ph.D. thesis, Computer Science

Department, Courant Institute, New York University, New York, NY, 2010.

A. Talwalkar and A. Rostamizadeh. Matrix coherence and the Nyström method. In Conference on

Uncertainty in Artificial Intelligence, 2010.

A. Talwalkar, S. Kumar, and H. Rowley. Large-scale manifold learning. In Conference on Vision

and Pattern Recognition, 2008.

J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimen-

sionality reduction. Science, 290(5500), 2000.

K. Weinberger and L. Saul. An introduction to nonlinear dimensionality reduction by maximum

variance unfolding. In AAAI Conference on Artificial Intelligence, 2006.

3151



TALWALKAR, KUMAR, MOHRI AND ROWLEY

C. K. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In Neural

Information Processing Systems, 2000.

3152


