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Abstract
Large deep learning models have achieved state-
of-the-art performance across various natural
language processing (NLP) tasks and demon-
strated remarkable few-shot learning performance.
However, training them is often challenging and
resource-intensive. In this paper, we study an ef-
ficient approach to train language models using
few-shot learners. We show that, by leveraging
the fast learning nature of few-shot learners, one
can train language models efficiently in a stage-
wise manner. Our main insight is that stacking a
good few-shot learner on a good small language
model provides a good initializer for a larger lan-
guage model. Using this insight and building
upon progressive stacking approaches, we de-
velop novel approaches for training such networks
in a stagewise manner. Furthermore, we also pro-
vide a theoretical framework and accompanying
empirical studies to support our insights, thereby
creating a theoretical foundation for progressive
stacking. Finally, we provide empirical results to
demonstrate the effectiveness of our approach in
reducing the training time of few-shot learners.

1. Introduction
Large neural networks have completely revolutionized the
fields of computer vision and natural language processing.
(e.g. BERT, T5, GPT3) (Devlin et al., 2018; Raffel et al.,
2020; Brown et al., 2020). These models have demon-
strated remarkable performance across a wide variety of
tasks. These models are typically trained with a language
modeling objective like masked language modeling (e.g.
BERT) or span-corruption (e.g. T5) using adaptive variants
of SGD. However, in such large-scale regimes, even train-
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ing with highly efficient optimizers like SGD (or its adap-
tive variants) becomes computationally intractable, making
these large models challenging and resource-intensive to
train. On the other hand, when trained with these objec-
tives, a particularly intriguing property of these models
emerges — their ability to adapt to a new (related) task
using very few samples from the task (often referred to
as few-shot learning in the literature). For instance, the
BERT model achieves very competitive performance on
challenging question-answering datasets like SQuaD with
very few samples (Devlin et al., 2018; Brown et al., 2020).
Furthermore, such few-shot learning performance has been
demonstrated on a variety of NLP and mathematics reason-
ing tasks. Thus, improving the training efficiency of these
models is of paramount importance to reap these benefits.

Many training speedups achieved thus far came about by
introducing new optimizers, including Adam, Adafactor,
Shampoo, and LAMB (Kingma & Ba, 2015; Shazeer &
Stern, 2018; Anil et al., 2020; You et al., 2020). Recently, an
orthogonal approach was proposed to improve the training
efficiency of BERT models (Gong et al., 2019). The key
idea of this approach is to train the BERT model in stages:
begin training with a shallow BERT model and, in each
stage, double the model’s depth by “stacking” it on top of
itself (i.e., copying over the existing model’s parameters into
newly-created Transformer layers). The final stage involves
training the whole BERT model (but for fewer steps than
one otherwise would). Surprisingly, this simple algorithm,
called progressive stacking, improves the training efficiency
of BERT.

While training neural networks in parts has been extensively
studied in the deep learning literature (e.g. greedy layerwise
training of deep belief networks), such stacking approaches
have not been studied earlier. Gong et al. (2019) primar-
ily motivates progressive stacking by the similarity of the
distributions of the attention scores across layers. One short-
coming of progressive stacking, however, is that the network
size grows exponentially. Due to this, often the majority
of the training time is concentrated toward the final stage
of training, when the network is largest and thus takes the
longest to train. Furthermore, we argue that the similarity
of the attention scores does not fully explain the efficiency
gains due to stacking. Inspired by progressive stacking,
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some recent works also progressively increase the width
of the neural network (Gu et al., 2021; Shen et al., 2022).
However, none of these approaches provides any theoretical
basis for the approach.

Building upon progressive stacking, this paper studies a
generic approach to efficiently train language models. Our
key insight is that one can exploit the fast learning nature
of few-shot learners to train language models in a stage-
wise manner. In particular, we argue that stacking a good
few-shot learner on a good small language model can pro-
vide a good initializer for the larger model after just a few
iterations of training. This few-shot learning perspective
stands in contrast to recent papers related to stacking that
focus on growth operators that preserve the function value
of the loss after expanding the network. We argue that the
ability to train faster while growing the network is a more
important aspect than simply preserving the loss function
value. Through comprehensive experiments, we show that
this property enables fast staged training of large models.

Main Contributions. In light of the above discussion, we
highlight the following primary contributions of the paper.

• We develop a principled generic framework for training
few-shot learners in a staged manner. The key com-
ponent of this framework is to stack a good few-shot
learner on a good small language model to provide a
good initializer for the larger language model.

• We show that standard stacking approaches can be seen
as special instantiations of our framework and propose
several variants of stacking-based training.

• We provide a theoretical basis for our approach and
provide empirical evidence to support our hypothesis.
We show that better performance of few-shot learn-
ers on distributions used for training language models
correlates with better initializers for larger models.

• We conduct comprehensive experiments demonstrating
several variations of our approach and show that they
outperform the baselines.

Notation. We use ‖ · ‖TV and DKL(·‖·) to denote the total
variation distance and KL divergence, respectively, andH(·)
to denote entropy. For a matrix M , we use [M ]i and Mi to
denote the ith column and row, respectively. For a stochastic
iterative optimizerA, we useA(L, f) to denote the resultant
prediction function from applying a stochastic update to f
with objective function L. With slight abuse of notation, we
useA(L, f, t) to denote t iterations of the iterative optimizer
A. For any sequence x = (x1, · · · , xm), we use x−i to
denote the sequence (x1, · · · , xi−1, xi+1, · · ·xm) obtained
after removing the ith element of the sequence.

1.1. Related Work

Improving the efficiency of training algorithms has been
extensively studied in the statistics, machine learning, and
deep learning literature (Robbins & Monro, 1951; McMa-
han & Streeter, 2010; Duchi et al., 2011; Kingma & Ba,
2015). In particular, SGD and its adaptive variants (e.g.
Adagrad, Adam) have become the de-facto algorithms for
training large language models like BERT (Devlin et al.,
2018; Chowdhery et al., 2022). However, even first-order
methods like Adam are inefficient and have high memory
requirements in large-scale settings. Adaptive variants like
Adafactor and SM3 have been proposed to partially address
these issues (Shazeer & Stern, 2018; Anil et al., 2019),
but backpropogation can still be quite expensive in these
settings, thereby placing limits on the scale of the model.
Improving the optimization algorithm itself is orthogonal to
our line of study in this paper.

The work most relevant to this paper is that of staged train-
ing, which was proposed to improve the training efficiency
of language models (Gong et al., 2019; Gu et al., 2021; Shen
et al., 2022). These methods start by training a smaller ver-
sion of the language model and increasing the network size
throughout the training process. In particular, Gong et al.
(2019) motivate their work by observing the attention matrix
patterns across layers of Transformer networks; they exploit
this observation by copying network layers to double the
size of the network. Gu et al. (2021) and Shen et al. (2022)
consider growth operators to increase the size of the network
and ensure that the loss function is preserved while growing
the network. However, all these methods typically increase
network size quickly, thus concentrating training time at
larger network sizes and unfortunately limiting the gains.
Furthermore, a theoretical framework for such an approach
is largely unexplored. Using our framework, we propose
several principled variants of stacking which outperform the
above methods.

2. Problem Setup
We consider the pretraining phase of a typical language
model. In particular, consider the following standard
masked language model setup. Consider a vocabulary of
wordsW and V = |W| denote the vocabulary size. We as-
sumeW includes a special word denoted by ∅, which will
be useful for defining the masking operation in the training
task. For a sequence x = (x1, · · · , xm) where xi ∈ W , we
use 1x ∈ {0, 1}V×m to denote the one-hot encoding of x,
and with some abuse of notation, 1xi ∈ RV to denote the
one-hot encoding of xi. We use PW to denote the distribu-
tion over input sequences of words with sequence length m.
Given this distribution, the pretraining task T consists of:

1. Random masking: Given a sequence x =
(x1, · · · , xm), we randomly choose an index i ∈ [m]
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and modify the input to x̃ as follows:

x̃i = ∅ and x̃−i = x−i.

We use Mi(x) to denote the masking operation on
input x on index i, i.e. Mi(x) = x̃ defined above.
Since Mi(·) only depends on x−i and not on xi, we
overload notation and use Mi(x

−i) to also denote the
same output, i.e. x̃.

2. Prediction: Predicting the input sequence given the
masked input sequence.

This setup is close to the masked language model setting
used in BERT (Devlin et al., 2018). However, our analysis
can be generalized for other language modeling objectives
(e.g. span corruption in (Raffel et al., 2020)). Let E ∈
RV×d denote fixed embeddings for the vocabulary where ith

row of E corresponds to the embedding for word wi ∈ W .
We assume that Ei 6= Ej for all i, j ∈ [V ]. For an injective
sequence-to-sequence function Φ : Wm → Rd×m, we
define the probability distribution QΦ over Rd×m such that
QΦ(Φ(x)) = PW(x) for all x ∈ Wm. For v ∈ Rd×m,
we define Γ(v) to be the V × m matrix whose columns
are obtained from those of Ev by applying the softmax
operation to each column of Ev. Interpreting the columns
of Ev as giving embeddings for the words in an m-length
sequence, Γ(v) gives predicted distributions over W for
each position in the m-length sequence represented by v.

Given embeddings E, we define the sequence-to-sequence
mapping 1 : Wm → Rd×m as 1(x) = E>1x. Since
Ei 6= Ej for i, j ∈ [V ] with i 6= j, this is an injective
function. Hence, this defines a probability distribution Q1

over Rd×m as specified above (i.e. Q1(1(x)) = PW(x)).

Consider a prediction function f : Rd×m → Rd×m. Ideally,
a good prediction function should be able to predict xi given
x−i. In other words, [Γ(f ◦ 1(Mi(x)))]i should be close to
1xi . This is ensured in language models by minimizing the
cross-entropy loss as follows, for a given function class F :

min
f∈F

LQ1(f) := Ex∼PWEi∼[m] − 1>xi log[Γ(f ◦ 1(Mi(x))]i

(1)

More generally, if the masked input Mi(x) is processed via
a sequence-to-sequence function Φ : Wm → Rd×m, the
effective input distribution becomes QΦ, and we define the
loss as

LQΦ
(f) := Ex∼PWEi∼[m] − 1>xi log[Γ(f ◦ Φ(Mi(x))]i

(2)
An equivalent formulation of the loss above is given below,
which follows immediately from the definition of the loss,
and is hence given without proof:

Algorithm 1 Few-Shot Stacking

1: Input: Target layer sizeK, per-stage network increment
{∆p}kp=0 such that

∑
i ∆i = K, per-stage optimization

iterations {tp}kp=0, iterative optimizer A
2: Initial Phase: Train an initial language model f0 of

size ∆0 for t0 iterations with A on LQ1
3: for p = 1 to k do
4: Train a few-shot learner hp such that S(hp) = ∆p.
5: f0

p = hp ◦ fp−1

6: for t = 1 to tp do
7: f tp ← A(LQ1 , f

t−1
p )

8: end for
9: fp ← f

tp
p

10: end for
11: Output: Final prediction function fk

Lemma 2.1. The loss LQΦ
(f) equals

E
i∼[m]

E
x−i∼P−i

W

DKL(P|x
−i

W || [Γ(f ◦ Φ(Mi(x
−i)))]i) + L∗,

where
L∗ = Ei∼[m]Ex−i∼P−i

W
H(P|x

−i

W ). (3)

Here, P−iW is the marginal distribution on x−i, and P|x
−i

W is
the distribution of xi conditioned on x−i.

For the purpose of this discussion, we mainly focus on
a neural network model where FK denotes a sequence-
to-sequence neural network with K layers (e.g. standard
Transformer network). For any neural network f , we use
S(f) to denote the size (i.e., number of layers) of the neural
network. Note that the aforementioned objective is the pop-
ulation version of the loss that is typically used in practice.

3. Algorithm
We describe our stagewise training approach as follows.
Specifically, we consider the setting where the goal is to
learn a K-layer sequence-to-sequence neural network in
FK . The training is divided into k stages. We start with
training a very small network. At each stage, we increase
the size of the network in a gradual manner. The algorithm
is presented in Algorithm 1. Our approach has the following
key components:

• Initial few-shot learner. Train an initial few-shot
learner. Usually, this will be a much smaller model
compared to the target few-shot learner.

• Training a smaller few-shot learner. In the first step,
we train a (or reuse existing) small few-shot learner hp.
This few-shot learner can potentially be trained in a
recursive manner using Algorithm 1 or could possibly
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be obtained from fp−1. We will revisit this in a later
section (see Section 3.2).

• Stacking few-shot learners. Stack hp on the language
model learned in the previous stage and train the resul-
tant network for several iterations using any standard
iterative optimizer.

The main intuition for our approach is that, at the pth stage,
if hp is a reasonably good few-shot learner, then the stacked
network hp ◦ fp−1 will be a good initializer for the pth-
stage network after just a few iterations of training. As we
shall see shortly, there are two key ingredients for a good
initializer hp ◦ fp−1 for the network at stage p:

1. hp needs to be a reasonably good few-shot learner on
distributions close to PW (Definition 3.2). This enables
fast learning of the stacked component.

2. fp−1 must be a good language model with respect to
objective (1). This ensures that the input distribution to
few-shot learner hp in the stacked network hp ◦ fp−1

(which is fp−1 ◦ 1(Mi(x)) is close to PW .

By using an effective optimizer (e.g. SGD or Adam) com-
bined with the few-shot learning nature of the network, one
can ensure a good initializer for the larger network. We
formalize this intuition in the section below.

3.1. Theoretical Analysis

We present our theoretical analysis in this section. We start
with formally defining the notions of a “good” few-shot
learner, optimizer and better initializer. A few-shot learner
can only be expected to perform well on input distributions
that are not far from the distribution that was used to train
the few-shot learner. This is quantified as follows:

Definition 3.1 (Distribution Distortion). We say an injec-
tive function Φ : PW → Rd×m induces an ε-distribution
distortion if

E
i∼[m]

E
x−i∼P−i

W

∥∥∥[Γ(Φ(Mi(x
−i)))]i − P|x

−i

W

∥∥∥
TV
≤ ε. (4)

The definition provides the distance measure between
PW and the distribution induced by embeddings obtained
through Φ. We can now define a good few-shot learner:

Definition 3.2 (Good Few-Shot Learner). A few-shot
learner h is (ε, δ, c)-good with iterative optimizer A if
for any injective function Φ : PW → Rd×m that in-
duces an ε-distribution distortion, the following holds: Sup-
pose h is trained for c steps with A, then the resulting
function h′ is such that LQΦ

(h′) − LQΦ
(h∗) ≤ δ where

h∗ = arg minh̄∈FS(h)
L(h̄).

Proposition 3.3. If h is an (ε, δ, c)-good few-shot learner,
then h is an (ε′, δ′, c)-good few-shot learner for all ε′ < ε
and δ′ > δ.

This follows as a simple consequence of Definition 3.2.
Thus, larger ε and smaller δ imposes a stronger condition
on the few-shot learner. We also define the notion of an
“effective” optimization algorithm.

Definition 3.4 (Effective Optimizer). Let f ′2 ◦f ′1 and f ′′2 ◦
f1 be the predictors obtained after training f2 ◦f1 for t steps
on objective (1) using iterative optimizer A by training both
f1 & f2 and just f2 respectively. We call A “effective” if
for any t ≥ 1 and function Φ, we have LQΦ

(f ′2 ◦ f ′1) ≤
LQΦ(f ′′2 ◦ f1).

This definition highlights that training the whole network
rather than part of the network does not hurt the training.
Almost all standard deep learning optimizers (e.g. Adam,
RMSProp, SGD) exhibit this property in practice. Finally,
we need the following definition for optimal initialization.

Definition 3.5 (δ-optimal Initializer). Consider the pth

stage of the training process where initializer fp is of the
form h ◦ fp−1 for some h ∈ F∆p

. Then an initializer f ′ is
called δ-optimal if LQ1(f ′) ≤ LQ1(h ◦ fp−1) + δ for all
h ∈ F∆p

.

In this definition, δ-optimality captures the notion of a good
initialization compared to any possible stacked network. We
now state the main result of the paper.

Theorem 3.6. Consider the pth stage (where p ∈ [k]) of
Algorithm 1. Suppose the following conditions hold for
few-shot learner hp, iterations tp, function class F∆p and
optimizer A:

1. hp in Algorithm 1 is a (
√

2(LQ1(fp−1)− L∗), δ, c)-
good few-shot learner (see Definition 3.2 and (3)),

2. A is an effective optimizer (see Definition 3.4),
3. The number of iterations in pth stage tp > c for all
p ∈ [k].

Then f cp , the predictor after training f0
p using A for c steps,

is a δ-optimal initializer for the pth stage.

The proof of the theorem appears in Appendix A. The re-
sult shows that stacking can provide a good initializer in a
few steps of training. It also provides the trade-off between
the language model performance of fp−1 and the few-shot
learning performance of hp. In particular, if the perfor-
mance of the language model is weak (i.e., LQ1(fp−1)−L∗
is large), we may need to use a stronger few-shot learner
hp to obtain a good initialization. On the other hand, sup-
pose the language model performance of fp−1 is good, then
LQ1(fp−1)− L∗ is small. In this case, one can use a weak
few-shot learner hp to ensure a good intializer.
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3.2. Progressive Stacking as an Instantiation of
Few-Shot Stacking

It is often observed that training sequence-to-sequence mod-
els on objective (1) also yields strong few-shot learners.
GPT, BERT and T5 are prime examples of this phenomenon.
One natural instantiation of Algorithm 1 leveraging this few-
shot learning capability of the language models is in the pth

stage, where fp−1 (or some part it) can be used as hp, thus
using the same network as a few-shot learner and language
model. This yields a very simple procedure to incrementally
learn a language model: in each stage, the non-embedding
layers are copied and stacked on top of the existing model.
This approach reduces to progressive stacking, which works
reasonably well in practice. However, a formal justification
for this approach is fairly limited. Our approach provides a
theoretical grounding for progressive stacking. In particular,
we obtain the following corollary.

Corollary 3.7. Suppose fp−1 is a
(
√

2(LQ1(fp−1)− L∗), δ, c)-good few-shot learner
and A is an effective optimizer. Then progressive stacking
after c steps provides a δ-optimal initializer for the pth

stage.

Thus, if the language model is also a good few shot learner,
then progressive stacking provides an efficient way to learn
the network in a stagewise manner. Note that progressive
stacking doubles the size of the network at each stage, which
is usually not desirable. Below, we discuss alternate stacking
approaches to increase the network size in a gradual manner.

3.3. Gradual Stacking

An alternative stacking approach is to use only part of the
network (instead of the whole network) as a few-shot learner.
As noted above, standard stacking approaches increase the
network size exponentially. By stacking only part of the
network, one increases the network in a linear or sub-linear
manner. We study two different ways of stacking:

• Pre-stack: Select the bottom layers (layers closer to
the input) and copy them. For instance, if the earlier
network is f2 ◦ f1, then the new network is f2 ◦ f1 ◦ f1.

• Post-stack: An alternate approach is to post-stack,
where the top layers (layers closer to the output) are
replicated. In particular, the network f2 ◦ f1 is trans-
formed to the new network f2 ◦ f2 ◦ f1.

If f2 and f1 are identity layers, then pre-stack and post-stack
respectively reduce to progressive stacking. The primary
assumption in pre-stack and post-stack approaches is that
the bottom and top layers are reasonably good language
models and few-shot learners, respectively.

Algorithm 2 Independent LM & Few-shot learner

1: Input: Target size K, per-stage increment ∆, per-stage
iterations {tp}kp=0, optimizer A, few-shot iterations t,

2: Initial Phase: Train an initial LM f0 of size ∆0 for t0
with A on LQ1 . Initialize few-shot learners {h0

p}kp=1 of
size ∆

3: for p = 1 to k do
4: hp ← A(LQ1 , h

0
p, t)

5: f0
p = hp ◦ fp−1

6: fp ← A(LQ1 , f
0
p , tp)

7: end for
8: Output: Final prediction function fk

3.4. Single-shot Stacking

In the previous section, we examined an approach that in-
creases the network in a gradual manner. An alternate ap-
proach is to train a small network and stack it multiple times
until we reach the desired model size, which we refer to
as “single-shot stacking”. The key intuition behind this
approach is to generalize the few-shot stacking framework
in Algorithm 1 by stacking multiple few-shot learners. In
particular, suppose f0 is the initial few-shot learner trained.
Then single shot stacking involves initializing the network to
f0 ◦ · · · ◦f0 (r times) as the initializer for the larger network.
This larger network is then trained for a few iterations to
obtain the final network. This is analogous to the fine-tuning
step usually used in downstream tasks.

3.5. Independent Stacking

Recall that in stacking, we use the smaller network as both
the language model and few-shot learner. One advantage
of our framework is that we could use arbitrary pretrained
sequence-to-sequence language models and few-shot learn-
ers for training. This allows us to independently train multi-
ple models and use one as a language model and the other
for few-shot learning purposes. The pseudocode for this
particular variant is listed in Algorithm 2.

4. Experiments
Experimental Setup For our experiments, we use origi-
nal BERT models following Devlin et al. (2019) with batch
size and sequence length of 256 and 512, respectively. More
specifically, BERT-BASE and BERT-LARGE will constitute
our baselines. For all the experiments with BERT-BASE
and BERT-LARGE (baselines, compared methods, and our
method) the total number of training steps is set to 675K
and 1M steps, respectively. The goal of our experiments
is twofold: (i) compare the performance of our approach
with baselines using different step allocation strategies (Sec-
tion 4.3) and (ii) provide empirical evidence for few-shot
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Speedup Pretrain Loss
BERT-BASE

Baseline 1x 1.739
Progressive Stacking 1.29x 1.737
Gradual Stacking 1.50x 1.689

BERT-LARGE

Baseline 1x 1.443
Progressive Stacking 1.24x 1.403
Gradual Stacking 1.64x 1.384

Table 1. Performance and speedup of different stacking methods.
The second and third columns denote the speedup over baseline and
pretraining loss respectively. The results indicate gradual stacking
outperforms the baseline and progressive stacking in both speedup
and quality. Training curves are presented in Appendix B.3.

learning in various stacking approaches (Section 4.6).

Our primary baseline is progressive stacking (Gong et al.,
2019). As discussed in Section 3.2, we apply progressive
stacking to BERT-BASE and BERT-LARGE. Starting with
a 3-layer network, we double the size of the network by
stacking the network on itself in stages and continue training.
In the final stage, we have a full 12-layer model for BERT-
BASE or 24-layer model for BERT-LARGE. The number of
steps that are allocated to each stage will have an effect on
the performance. The proposed strategy by the authors is
to allocate 2/3 of the total steps to the last stage and divide
1/3 of the total steps equally between remaining stages. For
a fair comparison, we include this allocation along with all
strategies mentioned in Section 4.3.1 and report the best
performance among them (see Appendix B.2).

For gradual stacking (Section 3.3), we only use a small
part of the network as the few-shot learner for stacking. In
particular, we fix the stack size (number of layers stacked
at each stage) and in each stage we copy and stack those
many layers either from the top on top of the network (post-
stack) or from the bottom to the bottom of the network (pre-
stack). To provide a comprehensive empirical analysis, we
study different choices of the following parameters: steps
allocation per stage (Section 4.3.1), stack size (Section 4.3.2)
and post-stack vs. pre-stack (Section 4.3.3). For BERT
experiments, our best recipe starts with a 3-layer network
and stack size of 3 for BERT-BASE and starts with a 4-layer
network and stack size of 4 for BERT-LARGE. In addition,
our best recipe uses the post-stack approach and divides the
total number of steps equally between stages.

Results. We start with showing the best performing results
for progressive and gradual stacking. This comparison is
shown in Table 1. Gradual stacking achieves speedups
of 1.50x and 1.64x in BERT-BASE and BERT-LARGE,
respectively1. We observe that gradual stacking outperforms

1Speedup is defined as speed(experiment)/speed(baseline)
where speed is defined as total number of steps divided by total
wall-clock time of the experiment

# Layers × Steps Speedup Pretrain Loss
BERT-BASE

Baseline
12 ×675K 1x 1.739

Single-shot Stacking
3 ×200K 1.24x 1.85
3 ×400K 1.66x 1.849
4 ×200K 1.21x 1.798
4 ×400K 1.52x 1.813

BERT-LARGE

Baseline
24 ×1M 1x 1.443

Single-shot Stacking
4 × 200K 1.19x 7.917
4 × 400K 1.46x 7.363
4 × 600K 1.90x 1.609
6 × 200K 1.16x 1.46
6 × 400K 1.39x 1.402
6 × 600K 1.74x 1.487
8 × 200K 1.15x 1.483
8 × 400K 1.34x 1.389
8 × 600K 1.62x 1.486

Table 2. Performance and speedup of different single-shot stacking
parameters applied to BERT-BASE and BERT-LARGE. In the first
column, # Layers refers to the number of layers in the base network
and Steps refers to the number of steps used to train the base
network. Despite outperforming the baseline in some scenarios,
it appears that single-shot stacking is sub-optimal compared to
gradual stacking method in terms of both speed and quality.

progressive stacking both in terms of speedup and quality.

4.1. Single-shot Stacking

We also provide empirical results for single-shot stacking
(Section 3.4). Recall that in single-shot stacking, a small
part of the network (base network) is first trained (first stage)
and then stacked using as many copies as needed to create
the full network. This network is trained end-to-end for a
few steps to generate the model (second stage). The perfor-
mance of this approach crucially depends on the choice of
the base network size and the number of steps used to train
it in the first stage. We perform a sweep of these parameters
on BERT-BASE and BERT-LARGE. For BERT-BASE, our
hyperparameter sweep is {3, 4}× {200K, 400K} followed
by training the full network for 475K and 275K steps, re-
spectively. For BERT-LARGE, our hyperparameter sweep is
{4, 6, 8} × {200K, 400K, 600K} followed by training the
full network for 800K, 600K and 400K steps, respectively.

Results. The results of the single-shot stacking experiments
are summarized in Table 2. Overall, it appears that single-
shot stacking produces slightly sub-optimal models com-
pared to gradual stacking. It is also worth remarking that
when the size of the base network is small (in the case of
BERT-LARGE, 4 or smaller), it causes the training in the
2nd stage (of the full network) to diverge.
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Figure 1. Independent Stacking (Algorithm 2) vs. Gradual Stack-
ing on BERT-BASE in the final stage of two-stage training. We
see that independent stacking outperforms gradual stacking.

Strategy Fraction of total steps in Stage i
Equal 1/k

Proportional i/(
∑k

j=1 j)

Inv. proportional ( 1
i )/(

∑k
j=1

1
j )

Table 3. Allocation strategies: Steps per-stage for k stages.

4.2. Independent Stacking vs. Gradual Stacking

In the previous sections, we observed that gradual stacking
is consistently better. Based upon independent stacking in
Algorithm 2, we present results when we train BERT-BASE
in two stages. For gradual stacking, we train 6 layers in
the first stage and stack it to obtain an initializer for 12
layers for just 100K steps. For independent stacking, we
train two 6 layer networks independently and stack them
(Algorithm 1), and train for 100K steps. The results for this
are presented in Figure 1. Remarkably, we see that indepen-
dent stacking improves over gradual stacking, reminiscent
of ensembling but in the stacking framework. Exploring
this further constitutes an important future direction.

4.3. Ablation Studies & Analysis

In this section, we comprehensively study the effect of the
steps allocation strategy (Section 4.3.1), stack size (Sec-
tion 4.3.2), and post-stack versus pre-stack (Section 4.3.3)
on the performance of gradual stacking.

4.3.1. STEPS ALLOCATION

In this section, we study the effect of the steps allocation
strategy (i.e., number of steps we allocate to each stage in the
stacking approach). For all experiments in this section we
use the post-stack approach with a stack size of 3 and 4 for
BERT-BASE and BERT-LARGE, respectively. We evaluate
the performance of gradual stacking using the allocation
strategies in Table 3. The results of this ablation are shown
in Table 4. It is obvious that strategies that allocate more
steps to the initial stages result in improved speedup. One
would expect that strategies that allocate more steps to the
later stages would have better quality (e.g. pretraining loss);
however, this is not necessarily true (e.g. gradual stacking

Allocation Speedup Pretrain Loss
BERT-BASE

Baseline
- 1x 1.739

Gradual Stacking
Equal 1.50x 1.689

Proportional 1.29x 1.671
Inv. Proportional 1.77x 1.801

BERT-LARGE

Baseline
- 1x 1.443

Gradual Stacking
Equal 1.64x 1.384

Proportional 1.35x 1.416
Inv. Proportional 2.11x 1.435

Table 4. The performance of gradual stacking under different steps
allocation strategy. The results suggest that equal allocation works
the best amongst all allocations strategies defined in Table 3.

Stack Size Speedup Pretrain Loss
BERT-BASE

Baseline
- 1x 1.739

Gradual Stacking
1 1.71x 1.873
2 1.61x 1.803
3 1.50x 1.689
4 1.43x 1.746
6 1.29x 1.775

BERT-LARGE

Baseline
- 1x 1.443

Gradual Stacking
1 1.81x 1.615
2 1.75x 1.421
4 1.64x 1.384
6 1.53x 1.385
12 1.30x 1.438

Table 5. The performance of gradual stacking using different
choices of stacked network size. We observe that using a stack
size which is neither too small nor too large works the best.

for Equal vs. Proportional in BERT-LARGE). Our results
demonstrate that allocating too many steps to the initial
stages or later stages could have a negative impact on the
quality and, overall, equal allocation works well. Also note
that, if we aim to just match the baseline quality, one could
use other allocation strategies with improved speedup. For
example, for BERT-LARGE, using the inverse proportional
allocation strategy results in 2.11x speedup over the baseline
while still outperforming it in terms of quality.

4.3.2. STACK SIZE

In this section, we evaluate the performance of the gradual
stacking method based on different choices of stack size.
For all these experiments, we use the post-stack approach
and equal allocation strategy. The results have been shown
in Table 5. Unsurprisingly, smaller stack sizes yield im-
proved speedup. Also, our results indicate that there is
a quality-speedup tradeoff with respect to the stack size.
Overall, using a stack size which is neither too small nor

7
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{Post,Pre}-Stack Speedup Pretrain Loss
BERT-BASE

Baseline
- 1x 1.739

Gradual Stacking
Post-Stack 1.50x 1.689
Pre-Stack 1.50x 1.731

BERT-LARGE

Baseline
- 1x 1.443

Gradual Stacking
Post-Stack 1.64x 1.384
Pre-Stack 1.64x 1.415

Table 6. The performance of post-stack vs. pre-stack for gradual
stacking. We observe post-stack typically works better.

Speedup Pretrain Loss
BERT-LARGE

Baseline 1x 1.443
Gradual Stacking 1.64x 1.384

Gradual Stacking +
Varying sequence length 2.44x 1.429

Table 7. Performance and speedup of varying sequence length in
stagewise pretraining. Results suggest that we could achieve addi-
tional speedup; although with slightly worse quality.

large works best. It is worth noting that most of the stack
size choices either outperform or are competitive with the
baseline, showing the robustness of the method to stack size.

4.3.3. POST-STACK VS PRE-STACK

In this section we compare the performance of post-stack
versus pre-stack for gradual stacking. For all these experi-
ments, stack size 3 and 4 has been chosen for BERT-BASE
and BERT-LARGE, respectively. In addition, the steps allo-
cation strategy is to equally divide the total number of steps
between stages. The results have been shown in Table 6.
Since both approaches achieve the same speedup, the results
suggest that post-stack typically works better.

4.4. Varying Sequence Length

An additional axis where we can generate additional per-
formance gains is by varying the sequence length in the
masked LM task. The main idea is to train the earlier stages
in stacking with smaller sequence length (shorter contexts)
which is significantly faster than using the final sequence
lengths. Of course, varying the sequence length is not tied
to gradual stacking and can be used in conjunction with any
other strategy to speed up BERT pre-training. In this study,
we compared our best performing gradual stacking setup for
BERT-LARGE, which uses a 4-layer network and a stack
size of 4. For the 1st two stages, we use a sequence length
of 128, followed by two stages with sequence length of 256,
and in the final two stages, we use the desired sequence
length of 512. Table 7 summarizes the performance and
speedup provided by varying sequence length along with

Pretrain Loss MNLI SQuAD2.0
BERT-BASE

Baseline 1.739 0.8407 0.8962
Gradual Stacking 1.689 0.8463 0.8952

BERT-LARGE

Baseline 1.443 0.8637 0.921
Gradual Stacking 1.384 0.8721 0.9247

Table 8. Performance of gradual stacking on the downstream tasks
MNLI and SQuAD2.0. The results indicates that gradual stacking,
while being significantly faster in the pretraining, achieves better
or similar downstream performance in BERT-BASE and BERT-
LARGE.
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Figure 2. Stacking quality (pretraining loss) at 25K iterations after
stacking vs. MNLI performance of the stacked network. The
results demonstrate a strong correlation between few-shot learning
quality and stacking quality, beyond just the correlation between
model size and stacking quality.

our gradual stacking algorithm. We can see that this mod-
ification gets a significant speedup over gradual stacking,
even though the final loss is slightly higher.

4.5. Downstream Performance of Gradual Stacking

In this section, we demonstrate that the improvement in the
pretraining loss that we have achieved by gradual stacking
translates into an improved downstream performance. We
evaluated the performance of gradual stacking on MNLI
(Williams et al., 2018) and SQuAD2.0 (Rajpurkar et al.,
2018) and the results have been shown in Table 8. The grad-
ual stacking is either competitive or better than the baseline
on the downstream tasks while significantly improving the
pretraining time (1.50x and 1.64x speedup in BERT-BASE
and BERT-LARGE, respectively).

4.6. Effect of Few-Shot Learner Quality

Finally, we empirically explore the correlation between
the quality of few-shot learner (measured by the down-
stream fine-tuning tasks MNLI (Williams et al., 2018) and
SQuAD2.0 (Rajpurkar et al., 2018) and stacking quality
(measured by the pretraining loss after a few iterations of
optimization post stacking). Our theory suggests that better
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few-shot learning quality enables better stacking quality,
which we verify here. To this end, we generate several
BERT models of different sizes and few-shot learning qual-
ity. In particular, we generate models of different sizes (3,
6, and 9 layers) by training them for different numbers of
steps (from 150K to 675K), which induces a reasonable
range of few-shot learning quality. To generate the final
network, the Transformer layers of the above networks are
stacked on top of a fixed (partially-trained) 3-layer BERT
model. After stacking, the final model is then trained for
100K iterations, and we examine its training loss at 10K,
25K, and 100K iterations. Figure 2 here and Figure 5 in
the Appendix display the correlation between (a) the down-
stream fine-tuning performance on MNLI and SQuAD2.0
of the network that was stacked (few-shot learning quality)
and (b) the pretraining loss at 25K iterations after stacking
(stacking quality).

Our experiments show a strong correlation between few-
shot learning and stacking quality. In particular, we ob-
serve that better few-shot learning quality usually yields
better stacking quality, even beyond the correlation between
model size and stacking quality. For instance, as seen in
Figure 2, there are several instances where larger models
trained for fewer steps have worse few-shot learning quality
than smaller models trained for more steps, and, in these
cases, the larger models also display worse stacking quality
(see Appendix B for more details). Overall, these experi-
mental results provide strong support for our hypothesis that
few-shot learning ability is a key factor in the success of
stacking-based approaches.

5. Conclusion & Future Work
In this work, we proposed a general framework to effectively
train language models via few-shot learning. Based on our
framework, we examined several variants of stacking and
developed a theoretical foundation for stacking. Our experi-
ments demonstrate the strong performance of our approach
over the baselines. Finally, inspired by the encouraging
results with independent stacking, we plan to investigate it
further as future work.
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Appendix

A. Proof of Theorem 3.6
Proof. Consider the case where hp ◦ fp−1 is trained for c
steps with A and fp−1 fixed. Let the resultant predictor
function be h′p ◦ fp−1. We first observe that

LQ1(f cp) ≤ LQ1(h′p ◦ fp−1). (5)

This follows from effective optimizer property of A. In
order to show δ-optimality of f ′p, it is enough to show that

LQ1(h′p ◦ fp−1) ≤ LQ1(h ◦ fp−1) + δ, (6)

for all h ∈ F∆p
. Combining this with the Equation (5) gives

us the required result. To prove the above result, we use the
few-shot learning capability of hp. Consider the function
Φ(x) = fp−1(1(x)). We first observe that

LQΦ(h) = LQ1(h ◦ fp−1).

for any h. This simply follows from the definition of LQΦ
in

Equation (2). Thus, showing the inequality in Equation (6)
is equivalent to

LQΦ
(h′p) ≤ LQΦ

(h) + δ, (7)

for all h ∈ F∆p . To this end, we first show that Φ satisfies
the condition in Equation (4). Let I : Rd×m → Rd×m be
the identity mapping. We observe the following:

Ei∼[m]Ex−i∼P−i
W

∥∥∥[Γ(Φ(Mi(x)))]i − P|x
−i

W

∥∥∥
TV

≤ Ei∼[m]Ex−i∼P−i
W

√
2DKL(P|x

−i

W || Γ(Φ(Mi(x)))]i)

≤
√

2Ei∼[m]Ex−i∼P−i
W
DKL(P|x

−i

W || Γ(Φ(Mi(x)))]i)

=
√

2(LQΦ
(I)− L∗)

=
√

2(LQ1(fp−1)− L∗)

The first inequality is due to Pinsker’s inequal-
ity. The second follows from Jensen’s inequality.
The first equality is due to Lemma 2.1. Since
hp is a (

√
2(LQ1(fp−1)− L∗), δ, c)-good few-shot

learner and since Φ satisfies Equation (4) with
ε =

√
2(LQ1(fp−1)− L∗), then we have

LQΦ(h′p) ≤ LQΦ(h) + δ.

This provides the desired result.

B. Additional Experimental Results
We use the standard BERT pretraining setup; In particular,
BERT is trained on the BooksCorpus (800M words) and
Wikipedia (2,500M words). We use the same dataset for the
experiments.

Steps Allocation Speedup Pretrain Loss
BERT-BASE

Baseline
- 1x 1.739

Progressive Stacking
Original 1.23x 1.81

Equal 1.59x 1.777
Proportional 1.29x 1.737

Inv. Proportional 2.02x 1.853
BERT-LARGE

Baseline
- 1x 1.443

Progressive Stacking
Original 1.24x 1.403

Equal 1.77x 1.486
Proportional 1.28x 1.673

Inv. Proportional 2.72x 1.65

Table 9. The performance of progressive stacking under different
steps allocation strategies.

B.1. Shared Hyperparameter Settings

Unless explicitly stated otherwise, all BERT-BASE and
BERT-LARGE experiments used the following hyperparam-
eter settings. Each stage began with 10,000 linear warmup
steps (from a learning rate of 0 to a learning rate of 0.0001).
After warmup, the learning rate was held constant through-
out the stage, for all stages other than the final stage. In
the final stage, after warmup, the learning rate was linearly
decayed to 0. AdamW was used as the optimizer, with
β1 = 0.9, β2 = 0.999, ε = 10−7, and 0 weight decay.

B.2. Steps Allocation Strategy for Progressive Stacking

In Table 9, we can see the performance of progressive stack-
ing under different steps allocation strategies. The Original
refers to authors’ proposed strategy of allocating 2/3 of the
total steps to the last stage and dividing 1/3 of the total steps
equally between the remaining stages.

B.3. Training Curves for Table 1

In Figure 3 and Figure 4, we present the training curves
for BERT-BASE and BERT-LARGE, respectively, corre-
sponding to results presented in Table 1. The figures clearly
show that our approach outperforms the baseline and the
compared method (progressive stacking) in terms of both
speed and quality.

B.4. Effect of Few-Shot Learner Quality

Here, we present the experimental settings used in Sec-
tion 4.6 (including optimizer settings for both pre-training
and fine-tuning). We also present Figure 5, which repeats
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Figure 3. Training curves for gradual stacking (our method), progressive stacking (compared method), and baseline for BERT-BASE. The
x-axis corresponds to wall-clock time and y-axis shows the pretrain loss. The dashed lines represent the final pretrain loss value for the
different experiments.
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Figure 4. Training curves for gradual stacking (our method), progressive stacking (compared method), and baseline for BERT-LARGE.
The x-axis corresponds to wall-clock time and y-axis shows the pretrain loss. The dashed lines represent the final pretrain loss value for
the different experiments.
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Figure 5. Stacking quality at 25K iterations vs. SQuAD 2.0 perfor-
mance.

Figure 2 with SQuAD2.0 instead of MultiNLI, as well as
Figures 6, 7, 8, and 9, which repeat Figures 2 and 5 with
10K and 100K stacking steps (instead of 25K).

The 3-layer subnetwork was generated according to Sec-
tion B.1 (including learning rate decay, since it was only
one stage). This single stage lasted 675K steps, and models
at 150K, 300K, 450K, and 675K steps were saved to be
examined for their fine-tuning and stacking quality. The 6-
layer model was trained by stacking two 3-layer 150K-step
models and training them together for 675K steps, following
Section B.1 (including learning rate decay, since it was only
one stage); models at 150K, 300K, 450K, and 675K steps
were saved to be examined for their fine-tuning and stacking
quality. The 9-layer model was trained by stacking three
3-layer 150K-step models and training them together for
675K steps, following Section B.1 (including learning rate
decay, since it was only one stage); models at 150K, 300K,
450K, and 675K steps were saved to be examined for their
fine-tuning and stacking quality.

Each to-be-stacked subnetwork was stacked upon the 3-layer
150K-step model. The whole model was jointly trained
according to Section B.1, but with a warmup period of 50K
steps instead of 10K steps and no learning rate decay.

Deviating slightly from Section B.1, fine-tuning on MNLI
involved 3681 warmup steps to a learning rate of 3× 10−5,
followed by learning rate decay to 0 (36813 steps total).
Fine-tuning on SQuAD 2.0 involved 544 warmup steps to a
learning rate of 8× 10−5, followed by learning rate decay
to 0 (5440 steps total).

B.5. Analysis of Gradients and Parameter Movement

One of our observations is that there is more than just “simi-
larity to the previous subnetwork in parameter space” driv-
ing the success of stacking. Here, we present some empirical
results comparing gradual stacking to incremental network
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Figure 6. Stacking quality at 10K iterations vs. MNLI perfor-
mance.
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Figure 7. Stacking quality at 100K iterations vs. MNLI perfor-
mance.

growth with random initialization of the new layers (we will
use stacking and random to denote these two procedures,
respectively). Figure 10 compares the loss curves of the
two approaches when training BERT-BASE using a stack
size of 3 and 150K steps per stage, with the exception of
the last stage (225K steps). We note that much of the final
gap between the two curves already appears in the 3-to-6-
layer transition. Therefore, we zoom in and examine what
is actually happening between steps 150K and 170K of Fig-
ure 10. Figure 11 displays the loss curves, demonstrating
how stacking’s loss drops below random’s loss at around
158K steps.

Examining the gradients, we see that stacking yields much
larger gradients for the the key and query matrices of the
new layers than does random (Figure 12). This is in contrast
to Figure 13, where the gradient norms of stacking and
random are comparable.

This does not necessarily imply larger overall movement,
though. Figure 14 shows the `2 distance traveled by each
layer in stacking vs. random. We see that, in the later
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Figure 8. Stacking quality at 10K iterations vs. SQuAD 2.0 perfor-
mance.
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Figure 9. Stacking quality at 100K iterations vs. SQuAD 2.0 per-
formance.

layers, stacking’s parameters do move less than random’s,
though the gap between stacking and random is perhaps
smaller than one might suspect if “parameter similarity”
were behind the success of stacking. In Figure 15, we see
the `2 distance traveled for the key and query matrices of
the newly-added layers. Despite the larger gradients in
stacking, the overall change in weight matrices (measured
in `2 distance) is not larger.
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Figure 10. Loss curves for stacking vs. random (BERT-BASE).
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Figure 11. Loss curves for stacking vs. random, zooming in on
steps 150K-170K of Figure 10 (renumbered 0-20K here, for ease
of visualization). The top plot shows all 20K steps, and the bottom
plot further zooms in on steps 5K-20K, equivalent to steps 155K-
170K of Figure 10.
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Figure 12. Average gradient norms of the key and query matrices
of the new Transformer layers (layer 4-6) in stacking and random.
The x-axis spans steps 0 to 20K, corresponding to steps 150K-
170K in Figure 10.
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Figure 13. Average gradient norms of the key and query matrices
of the existing Transformer layers (layer 1-3) in stacking and
random. The x-axis spans steps 0 to 20K, corresponding to steps
150K-170K in Figure 10.
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Figure 14. `2 distance from layer-specific initialization (one curve
per layer), for stacking vs. random.
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Figure 15. `2 distance from initialization over time for the key and
query matrices of the new Transformer layers. The x-axis spans
steps 0 to 20K, corresponding to steps 150K-170K in Figure 10.
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