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ABSTRACT

Despite the popularity and efficacy of knowledge distillation, there is limited un-
derstanding of why it helps. In order to study the generalization behavior of a dis-
tilled student, we propose a new theoretical framework that leverages supervision
complexity: a measure of alignment between teacher-provided supervision and
the student’s neural tangent kernel. The framework highlights a delicate interplay
among the teacher’s accuracy, the student’s margin with respect to the teacher pre-
dictions, and the complexity of the teacher predictions. Specifically, it provides
a rigorous justification for the utility of various techniques that are prevalent in
the context of distillation, such as early stopping and temperature scaling. Our
analysis further suggests the use of online distillation, where a student receives
increasingly more complex supervision from teachers in different stages of their
training. We demonstrate efficacy of online distillation and validate the theoretical
findings on a range of image classification benchmarks and model architectures.

1 INTRODUCTION

Knowledge distillation (KD) (Buciluǎ et al., 2006; Hinton et al., 2015) is a popular method of com-
pressing a large “teacher” model into a more compact “student” model. In its most basic form, this
involves training the student to fit the teacher’s predicted label distribution or soft labels for each
sample. There is strong empirical evidence that distilled students usually perform better than stu-
dents trained on raw dataset labels (Hinton et al., 2015; Furlanello et al., 2018; Stanton et al., 2021;
Gou et al., 2021). Multiple works have devised novel KD procedures that further improve the student
model performance (see Gou et al. (2021) and references therein). Simultaneously, several works
have aimed to rigorously formalize why KD can improve the student model performance. Some
prominent observations from this line of work are that (self-)distillation induces certain favorable
optimization biases in the training objective (Phuong & Lampert, 2019; Ji & Zhu, 2020), lowers
variance of the objective (Menon et al., 2021; Dao et al., 2021; Ren et al., 2022), increases reg-
ularization towards learning “simpler” functions (Mobahi et al., 2020), transfers information from
different data views (Allen-Zhu & Li, 2020), and scales per-example gradients based on the teacher’s
confidence (Furlanello et al., 2018; Tang et al., 2020).

Despite this remarkable progress, there are still many open problems and unexplained phenomena
around knowledge distillation; to name a few:

— Why do soft labels (sometimes) help? It is agreed that teacher’s soft predictions carry infor-
mation about class similarities (Hinton et al., 2015; Furlanello et al., 2018), and that this soft-
ness of predictions has a regularization effect similar to label smoothing (Yuan et al., 2020).
Nevertheless, KD also works in binary classification settings with limited class similarity infor-
mation (Müller et al., 2020). How exactly the softness of teacher predictions (controlled by a
temperature parameter) affects the student learning remains far from well understood.

— The role of capacity gap. There is evidence that when there is a significant capacity gap be-
tween the teacher and the student, the distilled model usually falls behind its teacher (Mirzadeh
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(a) Offline distillation (b) Online distillation
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Figure 1: Online vs. online distillation. Figures (a) and (b) illustrate possible teacher and student
function trajectories in offline and offline KD. The yellow dotted lines indicate KD. Figure (c) plots
adjusted supervision complexity of various targets with respect to NTKs at different stages of train-
ing (see §4 for more details).

et al., 2020; Cho & Hariharan, 2019; Stanton et al., 2021). It is unclear whether this is due to
difficulties in optimization, or due to insufficient student capacity.

— What makes a good teacher? Sometimes less accurate models are better teachers (Cho & Hari-
haran, 2019; Mirzadeh et al., 2020). Moreover, early stopped or exponentially averaged models
are often better teachers (Ren et al., 2022). A comprehensive explanation of this remains elusive.

The aforementioned wide range of phenomena suggest that there is a complex interplay between
teacher accuracy, softness of teacher-provided targets, and complexity of the distillation objective.

This paper provides a new theoretically grounded perspective on KD through the lens of supervision
complexity. In a nutshell, this quantifies why certain targets (e.g., temperature-scaled teacher prob-
abilities) may be “easier” for a student model to learn compared to others (e.g., raw one-hot labels),
owing to better alignment with the student’s neural tangent kernel (NTK) (Jacot et al., 2018; Lee
et al., 2019). In particular, we provide a novel theoretical analysis (§2, Thm. 3 and 4) of the role of
supervision complexity on kernel classifier generalization, and use this to derive a new generaliza-
tion bound for distillation (Prop. 5). The latter highlights how student generalization is controlled by
a balance of the teacher generalization, the student’s margin with respect to the teacher predictions,
and the complexity of the teacher’s predictions.

Based on the preceding analysis, we establish the conceptual and practical efficacy of a simple online
distillation approach (§4), wherein the student is fit to progressively more complex targets, in the
form of teacher predictions at various checkpoints during its training. This method can be seen as
guiding the student in the function space (see Fig. 1), and leads to better generalization compared
to offline distillation. We provide empirical results on a range of image classification benchmarks
confirming the value of online distillation, particularly for students with weak inductive biases.

Beyond practical benefits, the supervision complexity view yields new insights into distillation:

— The role of temperature scaling and early-stopping. Temperature scaling and early-stopping
of the teacher have proven effective for KD. We show that both of these techniques reduce
the supervision complexity, at the expense of also lowering the classification margin. Online
distillation manages to smoothly increase teacher complexity, without degrading the margin.

— Teaching a weak student. We show that for students with weak inductive biases, and/or with
much less capacity than the teacher, the final teacher predictions are often as complex as dataset
labels, particularly during the early stages of training. In contrast, online distillation allows the
supervision complexity to progressively increase, thus allowing even a weak student to learn.

— NTK and relational transfer. We show that online distillation is highly effective at matching the
teacher and student NTK matrices. This transfers relational knowledge in the form of example-
pair similarity, as opposed to standard distillation which only transfers per-example knowledge.

Problem setting. We focus on classification problems from input domain X to d classes. We are
given a training set of n labeled examples {(x1, y1), . . . , (xn, yn)}, with one-hot encoded labels
yi ∈ {0, 1}d. Typically, a model fθ : X → Rd is trained with the softmax cross-entropy loss:

Lce(fθ) = −
1

n

∑n

i=1
y⊤i log σ(fθ(xi)), (1)
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where σ(·) is the softmax function. In standard KD, given a trained teacher model g : X → Rd that
outputs logits, one trains a student model fθ : X → Rd to fit the teacher predictions. Hinton et al.
(2015) propose the following KD loss:

Lkd-ce(fθ; g, τ) = −
τ2

n

∑n

i=1
σ(g(xi)/τ)

⊤ log σ(fθ(xi)/τ), (2)

where temperature τ > 0 controls the softness of teacher predictions. To highlight the effect of KD
and simplify exposition, we assume that the student is not trained with the dataset labels.

2 SUPERVISION COMPLEXITY AND GENERALIZATION

One apparent difference between standard training and KD (Eq. 1 and 2) is that the latter modifies
the targets that the student attempts to fit. The targets used during distillation ensure a better gener-
alization for the student; what is the reason for this? Towards answering this question, we present
a new perspective on KD in terms of supervision complexity. To begin, we show how the general-
ization of a kernel-based classifier is controlled by a measure of alignment between the target labels
and the kernel matrix. We first treat binary kernel-based classifiers (Thm. 3), and later extend our
analysis to multiclass kernel-based classifiers (Thm. 4). Finally, by leveraging the neural tangent
kernel machinery, we discuss the implications of our analysis for neural classifiers in §2.2.

2.1 SUPERVISION COMPLEXITY CONTROLS KERNEL MACHINE GENERALIZATION

The notion of supervision complexity is easiest to introduce and study for kernel-based classifiers.
We briefly review some necessary background (Scholkopf & Smola, 2001). Let k : X ×X → R be
a positive semidefinite kernel defined over an input space X . Any such kernel uniquely determines a
reproducing kernel Hilbert space (RKHS)H of functions fromX to R. This RKHS is the completion
of the set of functions of form f(x) =

∑m
i=1 αik(xi, x), with xi ∈ X , αi ∈ R. Any f(x) =∑m

i=1 αik(xi, x) ∈ H has (RKHS) norm ∥f∥2H =
∑m

i=1

∑m
j=1 αiαjk(xi, xj) = α⊤Kα, where

α = (α1, . . . , αn)
⊤ and Ki,j = k(xi, xj). Intuitively, ∥f∥2H measures the smoothness of f , e.g.,

for a Gaussian kernel it measures the Fourier spectrum decay of f (Scholkopf & Smola, 2001).

For simplicity, we start with the case of binary classification. Suppose {(Xi, Yi)}i∈[n] are n i.i.d.
examples sampled from some probability distribution on X × Y , with Y ⊂ R, where positive and
negative labels correspond to distinct classes. Let Ki,j = k(Xi, Xj) denote the kernel matrix, and
Y = (Y1, . . . , Yn)

⊤ be the concatenation of all training labels.
Definition 1 (Supervision complexity). The supervision complexity of targets Y1, . . . , Yn with re-
spect to a kernel k is defined to be Y ⊤K−1Y in cases when K is invertible, and +∞ otherwise.

We now establish how supervision complexity controls the smoothness of the optimal kernel classi-
fier. Consider a classifier obtained by solving a regularized kernel classification problem:

f∗ ∈ argmin
f∈H

1

n

∑n

i=1
ℓ(f(Xi), Yi) +

λ

2
∥f∥2H , (3)

where ℓ is a loss function and λ > 0. The following proposition shows whenever the supervision
complexity is small, the RKHS norm of any optimal solution f∗ will also be small (see Appendix B
for a proof). This is an important learning bias that shall help us explain certain aspects of KD.
Proposition 2. Assume that K is full rank almost surely; ℓ(y, y′) ≥ 0,∀y, y′ ∈ Y; and ℓ(y, y) =

0,∀y ∈ Y . Then, with probability 1, for any solution f∗ of (3), we have ∥f∗∥2H ≤ Y ⊤K−1Y .

Equipped with the above result, we now show how supervision complexity controls generalization.
In the following, let ϕγ : R→ [0, 1] be the margin loss (Mohri et al., 2018) with scale γ > 0:

ϕγ(α) = min{1,max{1− α/γ, 0}}. (4)
Theorem 3. Assume that κ = supx∈X k(x, x) < ∞ and K is full rank almost surely. Further,
assume that ℓ(y, y′) ≥ 0,∀y, y′ ∈ Y and ℓ(y, y) = 0,∀y ∈ Y . Let M0 = ⌈γ

√
n/(2
√
κ)⌉. Then,

with probability at least 1− δ, for any solution f∗ of problem in Eq. (3), we have

PX,Y (Y f∗(X) ≤ 0) ≤ 1

n

n∑
i=1

ϕγ(sign (Yi) f
∗(Xi)) +

2
√

Y ⊤K−1Y + 2

γn

√
Tr (K) + 3

√
ln (2M0/δ)

2n
. (5)
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The proof is available in Appendix B. One can compare Thm. 3 with the standard Rademacher
bound for kernel classifiers (Bartlett & Mendelson, 2002). The latter typically consider learning
over functions with RKHS norm bounded by a constant M > 0. The corresponding complexity
term then decays as O(

√
M · Tr (K) /n), which is data-independent. Consequently, such a bound

cannot adapt to the intrinsic “difficulty” of the targets Y . In contrast, Thm. 3 considers functions
with RKHS norm bounded by the data-dependent supervision complexity term. This results in a
more informative generalization bound, which captures the “difficulty” of the targets. Here, we note
that Arora et al. (2019) characterized the generalization of an overparameterized two-layer neural
network via a term closely related to the supervision complexity (see §5 for additional discussion).

The supervision complexity Y ⊤K−1Y is small whenever Y is aligned with top eigenvectors of K
and/or Y has small scale. Furthermore, one cannot make the bound close to zero by just reducing
the scale of targets, as one would need a small γ to control the margin loss that would otherwise
increase due to student predictions getting closer to zero (as the student aims to match Yi).

To better understand the role of supervision complexity, it is instructive to consider two special cases
that lead to a poor generalization bound: (1) uninformative features, and (2) uninformative labels.

Complexity under uninformative features. Suppose the kernel matrix K is diagonal, so that the
kernel provides no information on example-pair similarity; i.e., the kernel is “uninformative”. An
application of Cauchy-Schwarz reveals the key expression in the second term in (5) satisfies:

1

n

√
Y ⊤K−1Y Tr(K) =

1

n

√(∑n

i=1
Y 2
i · k(Xi, Xi)−1

)(∑n

i=1
k(Xi, Xi)

)
≥ 1

n

n∑
i=1

|Yi|.

Consequently, this term is least constant in order, and does not vanish as n→∞.

Complexity under uninformative labels. Suppose the labels Yi are purely random, and inde-
pendent from inputs Xi. Conditioned on {Xi}, Y ⊤K−1Y concentrates around its mean by the
Hanson-Wright inequality (Vershynin, 2018). Hence, ∃ ϵ(K, δ, n) such that with probability≥ 1−δ,
Y ⊤K−1Y ≥ E{Yi}

[
Y ⊤K−1Y

]
− ϵ = E

[
Y 2
1

]
Tr(K−1)− ϵ. Thus, with the same probability,

1

n

√
Y ⊤K−1Y Tr(K) ≥ 1

n

√
(E [Y 2

1 ] Tr(K
−1)− ϵ) Tr(K) ≥ 1

n

√
E [Y 2

1 ]n
2 − ϵTr(K),

where the last inequality is by Cauchy-Schwarz. For sufficiently large n, the quantity E
[
Y 2
1

]
n2

dominates ϵTr (K), rendering the bound of Thm. 3 close to a constant.

2.2 EXTENSIONS: MULTICLASS CLASSIFICATION AND NEURAL NETWORKS

We now show that a result similar to Thm. 3 holds for multiclass classification as well. In addition,
we also discuss how our results are instructive about the behavior of neural networks.

Extension to multiclass classification. Let {(Xi, Yi)}i∈[n] be drawn i.i.d. from a distribution over
X × Y , where Y ⊂ Rd. Let k : X × X → Rd×d be a matrix-valued positive definite kernel and H
be the corresponding vector-valued RKHS. As in the binary classification case, we consider a kernel
problem in Eq. (3). Let Y ⊤ = (Y ⊤

1 , . . . , Y ⊤
n ) and K be the kernel matrix of training examples:

K =

[
k(X1, X1) · · · k(X1, Xn)
· · · · · · · · ·

k(Xn, X1) · · · k(Xn, Xn)

]
∈ Rnd×nd. (6)

For f : X → Rd and a labeled example (x, y), let ρf (x, y) = f(x)y − maxy′ ̸=y f(x)y′ be the
prediction margin. Then, the following analogue of Thm. 3 holds (see Appendix C for the proof).
Theorem 4. Assume that κ = supx∈X ,y∈[d] k(x, x)y,y < ∞, and K is full rank almost surely.
Further, assume that ℓ(y, y′) ≥ 0,∀y, y′ ∈ Y and ℓ(y, y) = 0,∀y ∈ Y . Let M0 = ⌈γ

√
n/(4d

√
κ)⌉.

Then, with probability at least 1− δ, for any solution f∗ of problem in Eq. (3),

PX,Y (ρf∗(X,Y ) ≤ 0) ≤ 1

n

n∑
i=1

1{ρf∗(Xi, Yi) ≤ γ}+ 4d(Y ⊤K−1Y + 1)

γn

√
Tr (K) + 3

√
log(2M0/δ)

2n
. (7)
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Implications for neural classifiers. Our analysis has so far focused on kernel-based classifiers.
While neural networks are not exactly kernel methods, many aspects of their performance can be
understood via a corresponding linearized neural network (see Ortiz-Jiménez et al. (2021) and refer-
ences therein). We follow this approach, and given a neural network fθ with current weights θ0, we
consider the corresponding linearized neural network comprising the linear terms of the Taylor ex-
pansion of fθ(x) around θ0 (Jacot et al., 2018; Lee et al., 2019): f lin

θ (x) ≜ fθ0(x)+∇θfθ0(x)
⊤(θ−

θ0). Let ω ≜ θ−θ0. This network f lin
ω (x) is a linear function with respect to the parameters ω, but is

generally non-linear with respect to the input x. Note that∇θfθ0(x) acts as a feature representation,
and induces the neural tangent kernel (NTK) k0(x, x′) = ∇θfθ0(x)

⊤∇θfθ0(x
′) ∈ Rd×d.

Given a labeled dataset S = {(xi, yi)}i∈[n] and a loss function L(f ;S), the dynamics of gradient
flow with learning rate η > 0 for f lin

ω can be fully characterized in the function space, and depends
only on the predictions at θ0 and the NTK k0:

ḟ lin
t (x′) = −η ·K0(x

′, x1:n) ∇fL(f lin
t (x1:n);S), (8)

where f(x1:n) ∈ Rnd denotes the concatenation of predictions on training examples and
K0(x

′, x1:n) = ∇θfθ0(x
′)⊤∇θfθ0(x1:n). Lee et al. (2019) show that as one increases the width

of the network or when (θ − θ0) does not change much during training, the dynamics of the lin-
earized and original neural network become close.

When fθ is sufficiently overparameterized and L is convex with respect to ω, then ωt converges to
an interpolating solution. Furthermore, for the mean squared error objective, the solution has the
minimum Euclidean norm (Gunasekar et al., 2017). As the Euclidean norm of ω corresponds to
norm of f lin

ω (x) − fθ0(x) in the vector-valued RKHS H corresponding to k0, training a linearized
network to interpolation is equivalent to solving the following with a small λ > 0:

h∗ = argmin
h∈H

1

n

∑n

i=1
(fθ0(xi) + h(xi)− yi)

2 +
λ

2
∥h∥2H . (9)

Therefore, the generalization bounds of Thm. 3 and 4 apply to h∗ with supervision complexity of
residual targets yi − fθ0(xi). However, we are interested in the performance of fθ0 + h∗. As the
proofs of these results rely on bounding the Rademacher complexity of hypothesis sets of form
{h ∈ H : ∥h∥ ≤M}, and shifting a hypothesis set by a constant function does not change the
Rademacher complexity (see Remark 7), these proofs can be easily modified to handle hypothe-
ses shifted by the constant function fθ0 .

3 KNOWLEDGE DISTILLATION: A SUPERVISION COMPLEXITY LENS

We now turn to KD, and explore how supervision complexity affects student’s generalization. We
show that student’s generalization depends on three terms: the teacher generalization, the student’s
margin with respect to the teacher predictions, and the complexity of the teacher’s predictions.

3.1 TRADE-OFF BETWEEN TEACHER ACCURACY, MARGIN, AND COMPLEXITY

Consider the binary classification setting of §2, and a fixed teacher g : X → R that outputs a logit.
Let {(Xi, Y

∗
i )}i∈[n] be n i.i.d. labeled examples, where Y ∗

i ∈ {−1, 1} denotes the ground truth
labels. For temperature τ > 0, let Yi ≜ 2 σ(g(Xi)/τ) − 1 ∈ [−1,+1] denote the teacher’s soft
predictions, for sigmoid function σ : z 7→ (1 + exp(−z))−1. Our key observation is: if the teacher
predictions Yi are accurate enough and have significantly lower complexity compared to ground
truth labels Y ∗

i , then a student kernel method (cf. Eq. (3)) trained with Yi can generalize better than
the one trained with Y ∗

i . The following result quantifies the trade-off between teacher accuracy,
student prediction margin, and teacher prediction complexity (see Appendix B.3 for a proof).

Proposition 5. Assume that κ = supx∈X k(x, x) < ∞ and K is full rank almost surely,
ℓ(y, y′) ≥ 0,∀y, y′ ∈ Y , and ℓ(y, y) = 0,∀y ∈ Y . Let Yi and Y ∗

i be defined as above. Let

5
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M0 = ⌈γ
√
n/(2
√
κ)⌉. Then, with probability at least 1− δ, any solution f∗ of problem (3) satisfies

PX,Y ∗(Y ∗f∗(X) ≤ 0)︸ ︷︷ ︸
student risk

≤ PX,Y ∗(Y ∗g(X) ≤ 0)︸ ︷︷ ︸
teacher risk

+
1

n

∑n

i=1
ϕγ(sign (Yi) f

∗(Xi))︸ ︷︷ ︸
student’s empirical margin loss w.r.t. teacher predictions

+
(
2
√
Y ⊤K−1Y + 2

)√
Tr (K)/(γn)︸ ︷︷ ︸

complexity of teacher’s predictions

+3
√
ln (2M0/δ)/(2n).

Note that a similar result is easy to establish for multiclass classification using Thm. 4. The first term
in the above accounts for the misclassification rate of the teacher. While this term is not irreducible
(it is possible for a student to perform better than its teacher), generally a student performs worse that
its teacher, especially when there is a significant teacher-student capacity gap. The second term is
student’s empirical margin loss w.r.t. teacher predictions. This captures the price of making teacher
predictions too soft. Intuitively, the softer (i.e., closer to zero) teacher predictions are, the harder it is
for the student to learn the classification rule. The third term accounts for the supervision complexity
and the margin parameter γ. Thus, one has to choose γ carefully to achieve a good balance between
empirical margin loss and margin-normalized supervision complexity.

The effect of temperature. For a fixed margin parameter γ > 0, increasing the temperature τ
makes teacher’s predictions Yi softer. On the one hand, the reduced scale decreases the supervision
complexity Y ⊤K−1Y . Moreover, we shall see that in the case of neural networks the complexity
decreases even further due to Y becoming more aligned with top eigenvectors of K. On the other
hand, the scale of predictions of the (possibly interpolating) student f∗ will decrease too, increasing
the empirical margin loss. This suggests that setting the value of τ is not trivial: the optimal value
can be different based on the kernel k and teacher logits g(Xi).

3.2 FROM OFFLINE TO ONLINE KNOWLEDGE DISTILLATION

We identified that supervision complexity plays a key role in determining the efficacy of a distillation
procedure. The supervision from a fully trained teacher model can prove to be very complex for a
student model in an early stage of its training (Fig. 1c). This raises the question: is there value in
providing progressively difficult supervision to the student? In this section, we describe a simple
online distillation method, where the the teacher is updated during the student training.

Over the course of their training, neural models learn functions of increasing complexity (Kalimeris
et al., 2019). This provides a natural way to construct a set of teachers with varying prediction
complexities. Similar to Jin et al. (2019), for practical considerations of not training the teacher and
the student simultaneously, we assume the availability of teacher checkpoints over the course of its
training. Given m teacher checkpoints at times T = {ti}i∈[m], during the t-th step of distillation,
the student receives supervision from the teacher checkpoint at time min{t′ ∈ T : t′ > t}. Note that
the student is trained for the same number of epochs in total as in offline distillation. Throughout
the paper we use the term “online distillation” for this approach (cf. Algorithm 1 of Appendix A).

Online distillation can be seen as guiding the student network to follow the teacher’s trajectory
in function space (see Fig. 1). Given that NTK can be interpreted as a principled notion of ex-
ample similarity and controls which examples affect each other during training (Charpiat et al.,
2019), it is desirable for the student to have an NTK similar to that of its teacher at each time
step. To test whether online distillation also transfers NTK, we propose to measure similarity
between the final student and final teacher NTKs. For computational efficiency we work with
NTK matrices corresponding to a batch of b examples (bd × bd matrices). Explicit computation
of even batch NTK matrices can be costly, especially when the number of classes d is large.
We propose to view student and teacher batch NTK matrices (denoted by Kf and Kg respec-
tively) as operators and measure their similarity by comparing their behavior on random vectors:
sim(Kf ,Kg) = Ev∼N (0,I) [⟨Kfv,Kgv⟩/ (∥Kfv∥ ∥Kgv∥)] . Note that the cosine distance is used
to account for scale differences of Kg and Kf . The kernel-vector products appearing in this similar-
ity measure above can be computed efficiently without explicitly constructing the kernel matrices.
For example, Kfv = ∇θfθ(x1:b)

⊤ (∇θfθ(x1:b)v) can be computed with one vector-Jacobian prod-
uct followed by a Jacobian-vector product. The former can be computed efficiently using backprop-
agation, while the latter can be computed efficiently using forward-mode differentiation.
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Table 1: Results on CIFAR-100.

Setting No KD Offline KD Online KD Teacher
τ = 1 τ = 4 τ = 1 τ = 4

ResNet-56 → LeNet-5x8 47.3 ± 0.6 50.1 ± 0.4 59.9 ± 0.2 61.9 ± 0.2 66.1 ± 0.4 72.0
ResNet-56 → ResNet-20 67.7 ± 0.5 68.2 ± 0.3 71.6 ± 0.2 69.6 ± 0.3 71.4 ± 0.3 72.0
ResNet-110 → LeNet-5x8 47.2 ± 0.5 48.6 ± 0.8 59.0 ± 0.3 60.8 ± 0.2 65.8 ± 0.2 73.4
ResNet-110 → ResNet-20 67.8 ± 0.3 67.8 ± 0.2 71.2 ± 0.0 69.0 ± 0.3 71.4 ± 0.0 73.4

Table 2: Results on Tiny ImageNet.

Setting No KD Offline KD Online KD Teacher
τ = 1 τ = 2 τ = 1 τ = 2

MobileNet-V3-125 → MobileNet-V3-35 58.5 ± 0.2 59.2 ± 0.1 60.2 ± 0.2 60.7 ± 0.2 62.3 ± 0.3 62.7
ResNet-101 → MobileNet-V3-35 58.5 ± 0.2 59.4 ± 0.5 61.6 ± 0.2 61.1 ± 0.3 62.0 ± 0.3 66.0
MobileNet-V3-125 → VGG-16 48.9 ± 0.3 54.1 ± 0.4 59.4 ± 0.4 58.9 ± 0.7 62.3 ± 0.3 62.7
ResNet-101 → VGG-16 48.6 ± 0.4 53.1 ± 0.4 60.6 ± 0.2 60.4 ± 0.2 64.0 ± 0.1 66.0

4 EXPERIMENTAL RESULTS

We now present experimental results to showcase the importance of supervision complexity in dis-
tillation, and to establish efficacy of online distillation.

4.1 EXPERIMENTAL SETUP

We consider standard image classification benchmarks: CIFAR-10, CIFAR-100, and Tiny-
ImageNet. Additionally, we derive a binary classification task from CIFAR-100 by grouping the
first and last 50 classes into two meta-classes. We consider teacher and student architectures that
are ResNets (He et al., 2016), VGGs (Simonyan & Zisserman, 2015), and MobileNets (Howard
et al., 2019) of various depths. As a student architecture with relatively weaker inductive biases,
we also consider the LeNet-5 (LeCun et al., 1998) with 8 times wider hidden layers. We use stan-
dard hyperparameters (Appendix A) to train these models. We compare (1) regular one-hot training
(without any distillation), (2) regular offline distillation using the temperature-scaled softmax cross-
entropy, and (3) online distillation using the same loss. For CIFAR-10 and binary CIFAR-100, we
also consider training with mean-squared error (MSE) loss and its corresponding KD loss:

Lmse(fθ) =
1

2n

n∑
i=1

∥yi − fθ(xi)∥22 , Lkd-mse(fθ; g, τ) =
τ

2n

n∑
i=1

∥σ(g(xi)/τ)− fθ(xi)∥22 . (10)

The MSE loss allows for interpolation in case of one-hot labels yi, making it amenable to the analysis
in §2 and §3. Moreover, Hui & Belkin (2021) show that under standard training, the CE and MSE
losses perform similarly; as we shall see, the same is true for distillation as well.

As mentioned in Sec. 1, in all KD experiments student networks receive supervision only through a
knowledge distillation loss (i.e., dataset labels are not used). This choice help us decrease differences
between the theory and experiments. Furthermore, in our preliminary experiments we observed that
this choice does not result in student performance degradation (see Appendix D).

4.2 RESULTS AND DISCUSSION

Tables 1, 2, 3 and Table 5 (Appendix D) present the results (mean and standard deviation of test
accuracy over 3 random trials). First, we see that online distillation with proper temperature scaling
typically yields the most accurate student. The gains over regular distillation are particularly pro-
nounced when there is a large teacher-student gap. For example, on CIFAR-100, ResNet to LeNet
distillation with temperature scaling appears to hit a limit of ∼ 60% accuracy. Online distillation
however manages to further increase accuracy by +6%, which is a ∼ 20% increase compared to
standard training. Second, the similar results on binary CIFAR-100 shows that “dark knowledge” in
the form of membership information in multiple classes is not necessary for distillation to succeed.

The results also demonstrate that knowledge distillation with the MSE loss of (10) has a qualita-
tively similar behavior to KD with CE objective. We use these MSE models to highlight the role of
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Table 3: Results on binary CIFAR-100. Every second line is an MSE student.

Setting No KD Offline KD Online KD Teacher
τ = 1 τ = 4 τ = 1 τ = 4

ResNet-56 → LeNet-5x8 71.5 ± 0.2 72.4 ± 0.1 73.6 ± 0.2 74.7 ± 0.2 76.1 ± 0.2 77.9
ResNet-56 → LeNet-5x8 71.5 ± 0.4 71.9 ± 0.3 73.0 ± 0.3 75.1 ± 0.3 75.1 ± 0.1 77.9

ResNet-56 → ResNet-20 75.8 ± 0.5 76.1 ± 0.2 77.1 ± 0.6 77.8 ± 0.3 78.1 ± 0.1 77.9
ResNet-56 → ResNet-20 76.1 ± 0.5 76.0 ± 0.2 77.4 ± 0.3 78.0 ± 0.2 78.4 ± 0.3 77.9

ResNet-110 → LeNet-5x8 71.4 ± 0.4 71.9 ± 0.1 72.9 ± 0.3 74.3 ± 0.3 75.4 ± 0.3 78.4
ResNet-110 → LeNet-5x8 71.6 ± 0.2 71.5 ± 0.4 72.6 ± 0.4 74.8 ± 0.4 74.6 ± 0.2 78.4

ResNet-110 → ResNet-20 76.0 ± 0.3 76.0 ± 0.2 77.0 ± 0.1 77.3 ± 0.2 78.0 ± 0.4 78.4
ResNet-110 → ResNet-20 76.1 ± 0.2 76.4 ± 0.3 77.6 ± 0.3 77.9 ± 0.2 78.1 ± 0.1 78.4
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Figure 2: Supervision complexity for various targets. On the left: Normalized adjusted supervision
complexities of various targets with respect to a LeNet-5x8 network at different stages of its training.
In the middle: The effect of temperature on the supervision complexity of an offline teacher for a
LeNet-5x8 after training for 25 epochs. On the right: The effect of averaging teacher predictions.

supervision complexity. As an instructive case, we consider a LeNet-5x8 network trained on binary
CIFAR-100 with the standard MSE loss function. For a given checkpoint of this network and a given
set of m labeled (test) examples {(Xi, Yi)}i∈[m], we compute the adjusted supervision complex-

ity 1/n
√

(Y − f(X1:m))⊤K−1(Y − f(X1:m)) · Tr (K), where f denotes the current prediction
function, and K is derived from the current NTK. Note that the subtraction of initial predictions is
the appropriate way to measure complexity given the form of the optimization problem (9). As the
training NTK matrix becomes aligned with dataset labels during training (see Baratin et al. (2021)
and Fig. 7 of Appendix D), we pick {Xi}i∈m to be a set of 212 test examples.

Comparison of supervision complexities. We compare the adjusted supervision complexities of
random labels, dataset labels, and predictions of an offline and online ResNet-56 teacher predictions
with respect to various checkpoints of the LeNet-5x8 network. The results presented in Fig. 1c
indicate that the dataset labels and offline teacher predictions are as complex as random labels in
the beginning. After some initial decline, the complexity of these targets increases as the network
starts to overfit. Given the lower bound on the supervision complexity of random labels (see §2),
this increase means that the NTK spectrum becomes less uniform (see Fig. 6 of Appendix D).

In contrast to these static targets, the complexity of the online teacher predictions smoothly increases,
and is significantly smaller for most of the epochs. To account for softness differences of the various
targets, we consider plotting the adjusted supervision complexity normalized by the target norm√
m ∥Y ∥2. As shown in Fig. 2a, the normalized complexity of offline and online teacher predictions

is smaller compared to the dataset labels, indicating a better alignment with top eigenvectors of
the LeNet NTK. Importantly, we see that the predictions of an online teacher have significantly
lower normalized complexity in the critical early stages of training. Similar observations hold when
complexities are measured with respect to a ResNet-20 network (see Appendix D).

Average teacher complexity. Ren et al. (2022) observed that teacher predictions fluctuate over
time, and showed that using exponentially averaged teachers improves knowledge distillation.
Fig. 2c demonstrates that the supervision complexity of an online teacher predictions is always
slightly larger than that of the average of predictions of teachers of the last 10 preceding epochs.

Effect of temperature scaling. As discussed earlier, higher temperature makes the teacher predic-
tions softer, decreasing their norm. This has a large effect on supervision complexity (Fig. 2b). Even
when one controls for the norm of the predictions, the complexity still decreases (Fig. 2b).

8



Published as a conference paper at ICLR 2023

50 55 60 65
Test accuracy

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

n 
NT

K 
sim

ila
rit

y

correlation: 0.93
No KD
offline KD
online KD

(a) LeNet-5x8 student

68 69 70 71
Test accuracy

0.40

0.45

0.50

0.55

Tr
ai

n 
NT

K 
sim

ila
rit

y

correlation: 0.87
No KD
offline KD
online KD

(b) ResNet-20 student

72 74 76
Test accuracy

0.980

0.982

0.984

0.986

0.988

0.990

0.992

0.994

Tr
ai

n 
fid

el
ity

correlation: -0.57

No KD
offline KD
online KD

(c) LeNet-5x8 student

Figure 3: Relationship between test accuracy, train NTK similarity, and train fidelity for CIFAR-100
students training with either ResNet-56 teacher (panels (a) and (c)) or ResNet-110 (panel (b)).

NTK similarity. Remarkably, we observe that across all of our experiments, the final test accuracy
of the student is strongly correlated with the similarity of final teacher and student NTKs (see Figures
3,9, and 10). This cannot be explained by better matching the teacher predictions. In fact, we see
that the final fidelity (the rate of classification agreement of a teacher-student pair) measured on
training set has no clear relationship with test accuracy. Furthermore, we see that online KD results
in better NTK transfer without an explicit regularization loss enforcing such transfer.

5 RELATED WORK

Due to space constraints, we briefly discuss the existing works that are the most closely related to
our exploration in this paper (see Appendix E for a more comprehensive account of related work.)

Supervision complexity. The key quantity in our work is supervision complexity Y ⊤K−1Y . Cris-
tianini et al. (2001) introduced a related quantity Y ⊤KY called kernel-target alignment (KTA) and
derived a generalization bound with it for expected Parzen window classifiers. Deshpande et al.
(2021) use KTA for model selection in transfer learning. Ortiz-Jiménez et al. (2021) demonstrate
that when NTK-target alignment is high, learning is faster and generalizes better. Arora et al. (2019)
prove a generalization bound for overparameterized two-layer neural networks with NTK parame-
terization, trained with gradient flow. Their bound is roughly

(
Y ⊤(K∞)−1Y

)1/2
/
√
n, where K∞

is the expected NTK matrix at a random initialization. Our bound of Thm. 3 can be seen as a gener-
alization of this result for all kernel methods, including linearized neural networks of any depth and
sufficient width, with the only difference of using the empirical NTK matrix. Belkin et al. (2018)
warns that bounds based on RKHS complexity of the learned function can fail to explain the good
generalization of kernel methods under label noise.

Mobahi et al. (2020) prove that for kernel methods with RKHS norm regularization, self-distillation
increases regularization strength. Phuong & Lampert (2019), while studying self-distillation of deep
linear networks, derive a bound of the transfer risk that depends on the distribution of the acute angle
between teacher parameters and data points. This is in spirit related to supervision complexity as it
measures an “alignment ” between the distillation objective and data. Ji & Zhu (2020) extend this
results to linearized neural networks, showing that ∆⊤

z K
−1∆z , where ∆z is the logit change during

training, plays a key role in estimating the bound. Their bound is qualitatively different than ours,
and ∆⊤

z K
−1∆z becomes ill-defined for hard labels.

Non-static teachers. Multiple works consider various approaches that train multiple students si-
multaneously to distill either from each other or from an ensemble (see, e.g., Zhang et al., 2018;
Anil et al., 2018; Guo et al., 2020). Zhou et al. (2018) and Shi et al. (2021) train teacher and student
together while having a common architecture trunk and regularizing teacher predictions to close that
of students, respectively. Jin et al. (2019) study route constrained optimization which is closest to
the online distillation in §3.2. They employ a few teacher checkpoints to perform a multi-round
KD. We complement this line of work by highlighting the role of supervision complexity and by
demonstrating that online distillation can be very powerful for students with weak inductive biases.
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Algorithm 1 Online knowledge distillation.

Require: Training sample S; teacher checkpoints {g(t1), . . . , g(tm)}; temperature τ > 0; training
steps T ; minibatch size b

1: for t = 1, . . . , T do
2: Draw random b-sized minibatch S′ from S
3: Compute nearest teacher checkpoint t∗ = min{i ∈ [m] : ti > t}
4: Update student θ ← θ − ηt · ∇θLkd−ce(fθ; g

(t∗), τ) over S′

5: end for
6: return fθ

A HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Dataset Model Learning rate

CIFAR-10, CIFAR-100, binary CIFAR-100

ResNet-56 (teacher) 0.1
ResNet-110 (teacher) 0.1
ResNet-20 (CE or MSE students) 0.1
LeNet-5x8 (CE or MSE students) 0.04

Tiny ImageNet
MobileNet-V3-125 (teacher) 0.04
ResNet-101 (teacher) 0.1
MobileNet-V3-35 (student) 0.04
VGG-16 (student) 0.01

Table 4: Initial learning rates for different dataset and model pairs.

In all experiments we use stochastic gradient descent optimizer with 128 batch size and 0.9 Nesterov
momentum. The starting learning rates are presented in Table 4. All models for CIFAR datasets are
trained for 256 epochs, with a learning schedule that divides the learning rate by 10 at epochs 96,
192, and 224. All models for Tiny ImageNet are trained for 200 epochs, with a learning rate schedule
that divides the learning rate by 10 at epochs 75 and 135. The learning rate is warmed-up linearly to
its initial value in the first 10 and 5 epochs for CIFAR and Tiny ImageNet models respectively. All
VGG and ResNet models use 2e-4 weight decay, while MobileNet models use 1e-5 weight decay.

The LeNet-5 uses ReLU activations. We use the CIFAR variants of ResNets in experiments with
CIFAR-10 or (binary) CIFAR-100 datasets. Tiny ImageNet examples are resized to 224x224 res-
olution to suit the original ResNet, VGG and MobileNet architectures. In all experiments we use
standard data augmentation – random cropping and random horizontal flip. In all online learning
methods we consider one teacher checkpoint per epoch.

B PROOFS

In this appendix we present the deferred proofs. We use the following definition of Rademacher
complexity (Mohri et al., 2018).

Definition 6 (Rademacher complexity). Let G be a family of functions fromZ to R, and Z1, . . . , Zn

be n i.i.d. examples from a distribution P on Z . Then, the empirical Rademacher complexity of G
with respect to (Z1, . . . , Zn) is defined as

R̂n(G) = Eσ1,...,σn

[
sup
g∈G

1

m

n∑
i=1

σig(Zi)

]
, (11)

where σi are independent Rademacher random variables (i.e., uniform random variables taking val-
ues in {−1, 1}). The Rademacher complexity of G is then defined as

Rn(G) = EZ1,...,Zn

[
R̂n(G)

]
. (12)
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Remark 7. Shifting the hypothesis class G by a constant function does not change the empirical
Rademacher complexity:

R̂n ({f + g : g ∈ G}) = Eσ1,...,σn

[
sup
g∈G

1

m

n∑
i=1

σi (f(Zi) + g(Zi))

]
(13)

= Eσ1,...,σn

[
1

m

n∑
i=1

σif(Zi) + sup
g∈G

1

m

n∑
i=1

σig(Zi)

]
(14)

= Eσ1,...,σn

[
sup
g∈G

1

m

n∑
i=1

σig(Zi)

]
= R̂n(G). (15)

Given the kernel classification setting described in Sec. 2.1, we first prove a slightly more general
variant of a classical generalization gap bound in Bartlett & Mendelson (2002, Theorem 21).
Theorem 8. Assume supx∈X k(x, x) <∞. Fix any constant M > 0. Then with probability at least
1− δ, every function f ∈ H with ∥f∥H ≤M satisfies

PX,Y (Y f(X) ≤ 0) ≤ 1

n

n∑
i=1

ϕγ(sign (Yi) f(Xi)) +
2M

γn

√
Tr (K) + 3

√
ln (2/δ)

2n
. (16)

Proof. Let F = {f ∈ H : ∥f∥ ≤M} and consider the following class of functions:

G = {(x, y) 7→ ϕγ(sign(y)f(x)) : f ∈ F} . (17)

By the standard Rademacher complexity classification generalization bound (Mohri et al., 2018,
Theorem 3.3), for any δ > 0, with probability at least 1− δ, the following holds for all f ∈ F :

EX,Y [ϕγ(sign(Y )f(X))] ≤ 1

n

n∑
i=1

ϕγ(sign(Yi)f(Xi)) + 2R̂n(G) + 3

√
log(2/δ)

2n
. (18)

Therefore, with probability at least 1− δ, for all f ∈ F

PX,Y (Y f(X) ≤ 0) ≤ 1

n

n∑
i=1

ϕγ(sign(Yi)f(Xi)) + 2R̂n(G) + 3

√
log(2/δ)

2n
. (19)

To finish the proof, we upper bound R̂n(G):

R̂n(G) = Eσ1,...,σn

[
sup
g∈G

1

n

n∑
i=1

σig(Xi, Yi)

]
(20)

= Eσ1,...,σn

[
sup
f∈F

1

n

n∑
i=1

σiϕγ (sign(Yi)f(Xi))

]
(21)

≤ 1

γ
Eσ1,...,σn

[
sup
f∈F

1

n

n∑
i=1

σi sign(Yi)f(Xi)

]
(22)

=
1

γ
Eσ1,...,σn

[
sup
f∈F

1

n

n∑
i=1

σif(Xi)

]
(23)

=
1

γ
R̂n(F), (24)

where the third line is due to Ledoux & Talagrand (1991). By Lemma 22 of Bartlett & Mendelson
(2002), we thus conclude that

R̂n(F) ≤
M

n

√
Tr (K). (25)
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B.1 PROOF OF PROPOSITION 2

Proof of Proposition 2. As K is a full rank matrix almost surely, then with probability 1 there exists
a vector α ∈ Rn, such that Kα = Y . Consider the function f(x) =

∑n
i=1 αik(Xi, x) ∈ H.

Clearly, f(Xi) = Yi, ∀i ∈ [n]. Furthermore, ∥f∥2H = α⊤Kα = Y ⊤K−1Y . The existence of
such f ∈ H with zero empirical loss and the assumptions on the loss function imply that any optimal
solution of problem (3) has a norm at most Y ⊤K−1Y .1

B.2 PROOF OF THM. 3

Proof. To get a generalization bound for f∗ it is tempting to use Thm. 8 with M = ∥f∗∥. However,
∥f∗∥ is a random variable depending on the training data and is an invalid choice for the constant
M . This issue can be resolved by paying a small logarithmic penalty.

For any M ≥ M0 =
⌈
γ
√
n

2
√
κ

⌉
the bound of Thm. 8 is vacuous. Let us consider the set of integers

M = {1, 2, . . . ,M0} and write Thm. 8 for each element ofM with δ/M0 failure probability. By
union bound, we have that with probability at least 1 − δ, all instances of Thm. 8 with M chosen
fromM hold simultaneously.

If Y ⊤K−1Y ≥ M0, then the desired bound holds trivially, as the right-hand side becomes at least
1. Otherwise, we set M =

⌈√
Y ⊤K−1Y

⌉
∈ M and consider the corresponding part of the union

bound. We thus have that with at least 1 − δ probability, every function f ∈ F with ∥f∥ ≤ M
satisfies

PX,Y (Y f(X) ≤ 0) ≤ 1

n

n∑
i=1

ϕγ(sign (Yi) f(Xi)) +
2M

γn

√
Tr (K) + 3

√
ln (2M0/δ)

2n
.

As by Prop. 2 any optimal solution f∗ has norm at most
√
Y ⊤K−1Y and M ≤

√
Y ⊤K−1Y +1,

we have with probability at least 1− δ,

PX,Y (Y f∗(X) ≤ 0) ≤ 1

n

n∑
i=1

ϕγ(sign (Yi)f
∗(Xi)) +

2
√
Y ⊤K−1Y + 2

γn

√
Tr (K)

+ 3

√
ln (2M0/δ)

2n
.

B.3 PROOF OF PROP. 5

Prop. 5 is a simple corollary of Thm. 3.

Proof. We have that

PX,Y ∗(Y ∗f∗(X) ≤ 0) = PX,Y ∗(Y ∗f∗(X) ≤ 0 ∧ Y ∗g(X) ≤ 0)

+ PX,Y ∗(Y ∗f∗(X) ≤ 0 ∧ Y ∗g(X) > 0)

≤ PX,Y ∗(Y ∗g(X) ≤ 0) + PX(g(X)f∗(X) ≤ 0).

The rest follows from bounding PX(g(X)f∗(X) ≤ 0) using Thm. 3.

C EXTENSION TO MULTICLASS CLASSIFICATION

Let us now consider the case of multiclass classification with d classes. Let k : X × X → Rd×d be
a matrix-valued positive definite kernel. For every x ∈ X and a ∈ Rd, let kxa = k(·, x)a be the
function from X to Rd defined the following way:

kxa(x
′) = k(x′, x)a, for all x′ ∈ X . (26)

1For [0, 1]-bounded loss functions, it also holds that ∥f∗∥2H ≤ 2/λ. This is not of direct relevance to us, as
we will be interested in cases with small λ > 0.
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With any such kernel k there is a unique vector-valued RKHS H of functions from X to Rd. This
RKHS is the completion of span

{
kxa : x ∈ X , a ∈ Rd

}
, with the following inner product:〈

n∑
i=1

kxi
ai,

m∑
j=1

kx′
j
a′j

〉
H

=

n∑
i=1

m∑
j=1

a⊤i k(xi, x
′
j)a

′
j . (27)

For any f ∈ H, the norm ∥f∥H is defined as
√
⟨f, f⟩H. Therefore, if f(x) =

∑n
i=1 kxiai then

⟨f, f⟩2H =

n∑
i,j=1

a⊤i k(xi, xj)aj (28)

= a⊤Ka, (29)

where a⊤ = (a⊤1 , . . . , a
⊤
n ) ∈ Rnd and

K =

[
k(x1, x1) · · · k(x1, xn)
· · · · · · · · ·

k(xn, x1) · · · k(xn, xn)

]
∈ Rnd×nd. (30)

Suppose {(Xi, Yi)}i∈[n] are n i.i.d. examples sampled from some probability distribution on X ×Y ,
where Y ⊂ Rd. As in the binary classification case, we consider the regularized kernel problem (3).
Let Y ⊤ = (Y ⊤

1 , . . . , Y ⊤
n ) be the concatenation of targets. The following proposition is the analog

of Prop. 2 in this vector-valued setting.
Proposition 9. Assume K is full rank almost surely. Assume also ℓ(y, y′) ≥ 0,∀y, y′ ∈ Y, and
ℓ(y, y) = 0,∀y ∈ Y . Then, with probability 1, for any solution f∗ of (3), we have that

∥f∗∥2H ≤ Y ⊤K−1Y . (31)

Proof. With probability 1, the kernel matrix K is full rank. Therefore, there exists a vector
a⊤ = (a⊤1 , . . . , a

⊤
n ) ∈ Rnd, with ai ∈ Rd, such that Ka = Y . Consider the function

f(x) =
∑n

i=1 kXi
ai ∈ H. Clearly, f(Xi) = Yi, ∀i ∈ [n]. Furthermore,

∥f∥2H = a⊤Ka (32)

= Y ⊤K−1Y . (33)
The existence of such f(x) ∈ H with zero empirical loss and assumptions on the loss function imply
that any optimal solution of problem (3) has a norm at most Y ⊤K−1Y .

As in the main text, for a hypothesis f : X → Rd and a labeled example (x, y), let ρf (x, y) =
f(x)y −maxy′ ̸=y f(x)y′ be the prediction margin. We now restate Thm. 4 and present a proof.
Theorem 10 (Thm. 4 restated). Assume that κ = supx∈X ,y∈[d] k(x, x)y,y < ∞, and K is full
rank almost surely. Further, assume that ℓ(y, y′) ≥ 0,∀y, y′ ∈ Y and ℓ(y, y) = 0,∀y ∈ Y . Let
M0 = ⌈γ

√
n/(4d

√
κ)⌉. Then, with probability at least 1 − δ, for any solution f∗ of problem in

Eq. (3),

PX,Y (ρf∗(X,Y ) ≤ 0) ≤ 1

n

n∑
i=1

1{ρf∗(Xi, Yi) ≤ γ}+ 4d(Y ⊤K−1Y + 1)

γn

√
Tr (K)

+ 3

√
log(2M0/δ)

2n
. (34)

Proof. Consider the class of functions F = {f ∈ H : ∥f∥ ≤M} for some M > 0. By Theorem 2
of Kuznetsov et al. (2015), for any γ > 0 and δ > 0, with probability at least 1 − δ, the following
bound holds for all f ∈ F :2

PX,Y (ρf (X,Y ) ≤ 0) ≤ 1

n

n∑
i=1

1{ρf (Xi, Yi) ≤ γ}+ 4d

γ
R̂n(F̃) + 3

√
log(2/δ)

2n
, (35)

2Note that their result is in terms of Rademacher complexity rather than empirical Rademacher complexity.
The variant we use can be proved with the same proof, with a single modification of bounding R(g) with
empirical Rademacher complexity of G̃ using Theorem 3.3 of Mohri et al. (2018).
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where F̃ = {(x, y) 7→ f(x)y : f ∈ F , y ∈ [d]}. Next we upper bound the empirical Rademacher
complexity of F̃ :

R̂n(F̃) = Eσ1,...,σn

[
sup

y∈[d],h∈H,∥h∥≤M

1

n

n∑
i=1

σih(Xi)y

]
(36)

= Eσ1,...,σn

[
sup

y∈[d],h∈H,∥h∥≤M

1

n

n∑
i=1

σih(Xi)
⊤y

]
(y is the one-hot enc. of y) (37)

= Eσ1,...,σn

[
sup

y∈[d],h∈H,∥h∥≤M

〈
h,

1

n

n∑
i=1

σikXiy

〉
H

]
(reproducing property) (38)

≤ M

n
Eσ1,...,σn

[
sup
y∈[d]

∥∥∥∥∥
n∑

i=1

σikXi
y

∥∥∥∥∥
H

]
(Cauchy-Schwarz) (39)

=
M

n

√√√√√Eσ1,...,σn

 sup
y∈[d]

∥∥∥∥∥
n∑

i=1

σikXi
y

∥∥∥∥∥
2

H

 (Jensen’s inequality) (40)

≤ M

n

√√√√√Eσ1,...,σn

 d∑
y=1

∥∥∥∥∥
n∑

i=1

σikXi
y

∥∥∥∥∥
2

H

 (41)

=
M

n

√√√√√ d∑
y=1

Eσ1,...,σn

 n∑
i=1

∥σikXi
y∥2H +

∑
i ̸=j

〈
σikXi

y, σjkXj
y
〉 (42)

=
M

n

√√√√ d∑
y=1

Eσ1,...,σn

[
n∑

i=1

∥σikXiy∥
2
H

]
(independence of σi) (43)

=
M

n

√√√√ d∑
y=1

[
n∑

i=1

y⊤k(Xi, Xi)y

]
(44)

=
M

n

√
Tr (K). (45)

The proof is concluded with the same reasoning of the proof of Thm. 3.

D ADDITIONAL RESULTS AND DISCUSSION

In this appendix we present additional results and discussion to support the main findings of this
work.

On early stopped teachers. Cho & Hariharan (2019) observe that sometimes offline KD works bet-
ter with early stopped teachers. Such teachers have worse accuracy and perhaps results in a smaller
student margin, but they also have a significantly smaller supervision complexity (see Fig. 2a), which
provides a possible explanation for this phenomenon.

Teaching students with weak inductive biases. As we saw earlier, a fully trained teacher can have
predictions as complex as random labels for a weak student at initialization. This low alignment
of student NTK and teacher predictions can result in memorization. In contrast, an early stopped
teacher captures simple patterns and has a better alignment with the student NTK, allowing the
student to learn these patterns in a generalizable fashion. This feature learning improves the student
NTK and allows learning more complex patterns in future iterations. We hypothesize that this is the
mechanism that allows online distillation to outperform offline distillation in some cases.
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Table 5: Results on CIFAR-10. Every second line is an MSE student.

Setting No KD Offline KD Online KD Teacher
τ = 1 τ = 4 τ = 1 τ = 4

ResNet-56 → LeNet-5x8 81.8 ± 0.5 82.4 ± 0.5 86.0 ± 0.2 86.8 ± 0.2 88.6 ± 0.1 93.2
ResNet-56 → LeNet-5x8 83.4 ± 0.3 83.1 ± 0.2 84.9 ± 0.1 85.6 ± 0.1 87.1 ± 0.1 93.2

ResNet-110 → LeNet-5x8 81.7 ± 0.3 81.9 ± 0.5 85.8 ± 0.1 86.5 ± 0.1 88.8 ± 0.1 93.9
ResNet-110 → LeNet-5x8 83.2 ± 0.4 83.2 ± 0.1 85.0 ± 0.3 85.6 ± 0.1 87.1 ± 0.2 93.9

ResNet-110 → ResNet-20 91.4 ± 0.2 91.4 ± 0.1 92.8 ± 0.0 92.2 ± 0.3 93.1 ± 0.1 93.9
ResNet-110 → ResNet-20 90.9 ± 0.1 90.9 ± 0.2 91.6 ± 0.2 91.2 ± 0.1 92.1 ± 0.2 93.9
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Figure 4: Adjusted supervision complexities* of various targets with respect to a LeNet-5x8 network
at different stages of its training. The experimental setup of the left and right plots matches that of
Fig. 1c and Fig. 2a respectively.

CIFAR-10 results. Table 5 presents the comparison of standard training, offline distillation, and
online distillation on CIFAR-10. We see that the results are qualitatively similar to CIFAR-100
results.

Comparison of supervision complexities. In the main text, we have introduced the notion of
adjusted supervision complexity, which for a given neural network f(x) with NTK k and a set of
labeled examples {(Xi, Yi)}i∈[m] is defined as:

1

n

√
(Y − f(X1:m))⊤K−1(Y − f(X1:m)) · Tr (K). (46)

As discussed earlier, the subtraction of initial predictions is the appropriate way to measure com-
plexity given the form of the optimization problem (9). Nevertheless, it is meaningful to consider
the following quantity as well:

1

n

√
Y ⊤K−1Y · Tr (K), (47)

in order to measure “alignment” of targets Y with the NTK k. We call this quantity adjusted
supervision complexity*. We compare the adjusted supervision complexities* of random labels,
dataset labels, and predictions of an offline and online ResNet-56 teacher predictions with respect
to various checkpoints of the LeNet-5x8 network. The results presented in Fig. 4 are remarkably
similar to the results with adjusted supervision complexity (Fig. 1c and Fig. 2a). We therefore,
focus only on adjusted supervision complexity of (46) when comparing various targets. The only
other experiment where we compute adjusted supervision complexities* (i.e., without subtracting
the current predictions from labels) is presented in Fig. 7, where the goal is to demonstrate that
training labels become aligned with the training NTK matrix over the course of training.

Fig. 5 presents the comparison of adjusted supervision complexities, but with respect to a ResNet-20
network, instead of a LeNet-5x8 network. Again, we see that in the early epochs dataset labels and
offline teacher predictions are almost as complex as random labels. Unlike the case of the LeNet-
5x8 network, random labels, dataset labels, and offline teacher predictions do not exhibit a U-shaped
behavior. As for the LeNet-5x8 network, the shape of these curves is in agreement with the behavior
of the condition number of the NTK (Fig. 6). Importantly, we still observe that the complexity of
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Figure 5: Adjusted supervision complexities of various targets with respect to a ResNet-20 network
at different stages of its training. Besides the network choice, the experimental setup of the left and
right plots matches that of Fig. 1c and Fig. 2a respectively. Note that the y-axes are in logarithmic
scale.
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Figure 6: Condition number of the NTK matrix of a LeNet5x8 (a) and ResNet-20 (b) students trained
with MSE loss on binary CIFAR-100. The NTK matrices are computed on 212 test examples.

the online teacher predictions is significantly smaller compared to the other targets, even when we
account for the norm of predictions.

The effect of frequency of teacher checkpoints. As mentioned earlier, throughout this paper
we used one teacher checkpoint per epoch. While this served our goal of establishing efficacy of
online distillation, this choice is prohibitive for large teacher networks. To understand the effect
of the frequency of teacher checkpoints, we conduct an experiment on CIFAR-100 with ResNet-56
and LeNet-5x8 student with varying frequency of teacher checkpoints. In particular, we consider
checkpointing the teacher once in every {1, 2, 4, 8, 16, 32, 64, 128} epochs. The results presented in
Fig. 8 show that reducing the teacher checkpointing frequency to once in 16 epochs results in only
a minor performance drop for online distillation with τ = 4.

On label supervision in KD. So far in all distillation methods dataset labels were not used as an
additional source of supervision for students. However, in practice it is common to train a student
with a convex combination of knowledge distillation and standard losses: (1− α)Lce + αLkd-ce. To
verify that the choice of α = 1 does not produce unique conclusions regarding efficacy of online
distillation, we do experiments on CIFAR-100 with varying values of α. The results presented in
Table 6 confirm our main conclusions on online distillation. Furthermore, we observe that picking
α = 1 does not result in significant degradation of student performance.

The effect of τ . To confirm that our main conclusions regarding online distillation do not depend
on the temperature value, we present additional experiments on CIFAR-100 with τ = 2 in Table 7.

NTK similarity. Figures 9 and 10 presents additional evidence that (a) training NTK similarity of
the final student and the teacher is correlated with the final student test accuracy; and (b) that online
distillation manages to transfer teacher NTK better.
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Figure 7: Adjusted supervision complexity* of dataset labels measured on a subset of 212 training
examples of binary CIFAR-100. Complexities are measured with respect to either a LeNet-5x8
(on the left) or ResNet-20 (on the right) models trained with MSE loss and without knowledge
distillation. Note that the plot on the right is in logarithmic scale.

Teacher update period Online KD
in epochs τ = 1 τ = 4

1 (the default value) 61.9 ± 0.2 66.1 ± 0.4
2 61.5 ± 0.4 66.0 ± 0.3
4 61.4 ± 0.2 65.6 ± 0.2
8 60.0 ± 0.3 65.4 ± 0.0
16 59.3 ± 0.6 65.4 ± 0.0
32 56.9 ± 0.0 64.1 ± 0.4
64 55.5 ± 0.4 62.8 ± 0.7
128 51.4 ± 0.5 61.3 ± 0.1

1 2 4 8 16 32 64 128
Teacher update period in epochs

55

60

65

Te
st

 a
cc

ur
ac

y

Online KD τ= 1
Online KD τ= 4

Figure 8: Online KD results for a LeNet-5x8 student on CIFAR-100 with varying frequency of a
ResNet-56 teacher checkpoints.

Table 6: Knowledge distillation results on CIFAR-100 with varying loss mixture coefficient α.

Setting α No KD Offline KD Online KD Teacher
τ = 1 τ = 4 τ = 1 τ = 4

ResNet-56 →
LeNet-5x8

0.2

47.3 ± 0.6

47.6 ± 0.7 57.6 ± 0.2 54.3 ± 0.7 59.0 ± 0.6

72.0
0.4 48.9 ± 0.3 58.9 ± 0.4 56.7 ± 0.5 62.5 ± 0.2
0.6 49.4 ± 0.5 59.7 ± 0.0 61.1 ± 0.0 65.3 ± 0.2
0.8 49.8 ± 0.1 60.1 ± 0.1 62.0 ± 0.1 65.9 ± 0.2
1.0 50.1 ± 0.4 59.9 ± 0.2 61.9 ± 0.2 66.1 ± 0.4

ResNet-56 →
ResNet-20

0.2

67.7 ± 0.5

67.9 ± 0.3 70.3 ± 0.3 68.2 ± 0.3 70.3 ± 0.1

72.0
0.4 67.9 ± 0.1 71.0 ± 0.2 68.7 ± 0.2 71.4 ± 0.2
0.6 68.1 ± 0.3 71.3 ± 0.1 69.6 ± 0.4 71.5 ± 0.2
0.8 68.3 ± 0.2 71.4 ± 0.4 69.8 ± 0.3 71.1 ± 0.3
1.0 68.2 ± 0.3 71.6 ± 0.2 69.6 ± 0.3 71.4 ± 0.3

Table 7: Results on CIFAR-100.

Setting No KD Offline KD Online KD Teacher
τ = 1 τ = 2 τ = 1 τ = 2

ResNet-56 → LeNet-5x8 47.3 ± 0.6 50.1 ± 0.4 55.2 ± 0.1 61.9 ± 0.2 64.7 ± 0.2 72.0
ResNet-56 → ResNet-20 67.7 ± 0.5 68.2 ± 0.3 70.4 ± 0.3 69.6 ± 0.3 70.8 ± 0.3 72.0
ResNet-110 → LeNet-5x8 47.2 ± 0.5 48.6 ± 0.8 54.0 ± 0.5 60.8 ± 0.2 63.9 ± 0.2 73.4
ResNet-110 → ResNet-20 67.8 ± 0.3 67.8 ± 0.2 69.3 ± 0.2 69.0 ± 0.3 70.5 ± 0.3 73.4
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E EXPANDED DISCUSSION ON RELATED WORK

The key contributions of this work are the demonstration of the role of supervision complexity
in student generalization, and the establishment of online knowledge distillation as a theoretically
grounded and effective method. Both supervision complexity and online distillation have a number
of relevant precedents in the literature that are worth comment.

Transferring knowledge beyond logits. In the seminal works of Buciluǎ et al. (2006); Hinton et al.
(2015) transferred “knowledge” is in the form of output probabilities. Later works suggest other
notions of “knowledge“ and other ways of transferring knowledge (Gou et al., 2021). These include
activations of intermediate layers (Romero et al., 2015), attention maps (Zagoruyko & Komodakis,
2017), classifier head parameters (Chen et al., 2022), and various notions of example similarity (Pas-
salis & Tefas, 2018; Park et al., 2019; Tung & Mori, 2019; Tian et al., 2020; He & Ozay, 2021).
Transferring teacher NTK matrix belongs to this latter category of methods. Zhang et al. (2022)
propose to transfer a low-rank approximation of a feature map corresponding the teacher NTK.

Non-static teachers. Some works on KD consider non-static teachers. In order to bridge teacher-
student capacity gap, Mirzadeh et al. (2020) propose to perform a few rounds of distillation with
teachers of increasing capacity. In deep mutual learning (Zhang et al., 2018; Chen et al., 2020),
codistillation (Anil et al., 2018), and collaborative learning (Guo et al., 2020), multiple students
are trained simultaneously, distilling from each other or from an ensemble. In Zhou et al. (2018)
and Shi et al. (2021), the teacher and the student are trained together. In the former they have a
common architecture trunk, while in the latter the teacher is penalized to keep its predictions close
to the student’s predictions. The closest method to the online distillation method of this work is
route constrained optimization (Jin et al., 2019), where a few teacher checkpoints are selected for
a multi-round distillation. Rezagholizadeh et al. (2022) employ a similar procedure but with an
annealed temperature that decreases linearly with training time, followed by a phase of training
with dataset labels only. The idea of distilling from checkpoints also appears in Yang et al. (2019),
where a network is trained with a cosine learning rate schedule, simultaneously distilling from the
checkpoint of the previous learning rate cycle.

Fundamental understanding of distillation. The effects of temperature, teacher-student capacity gap,
optimization time, data augmentations, and other training details is non-trivial (Cho & Hariharan,
2019; Beyer et al., 2022; Stanton et al., 2021). It has been hypothesized and shown to some extent
that teacher soft predictions capture class similarities, which is beneficial for the student (Hinton
et al., 2015; Furlanello et al., 2018; Tang et al., 2020). Yuan et al. (2020) demonstrate that this
softness of teacher predictions also has a regularization effect, similar to label smoothing. Menon
et al. (2021) argue that teacher predictions are sometimes closer to the Bayes classifier than the
hard labels of the dataset, reducing the variance of the training objective. The vanilla knowledge
distillation loss also introduces some optimization biases. Mobahi et al. (2020) prove that for kernel
methods with RKHS norm regularization, self-distillation increases regularization strength, resulting
in smaller norm RKHS norm solutions.

Phuong & Lampert (2019) prove that in a self-distillation setting, deep linear networks trained with
gradient flow converge to the projection of teacher parameters into the data span, effectively recov-
ering teacher parameters when the number of training points is large than the number of parameters.
They derive a bound of the transfer risk that depends on the distribution of the acute angle between
teacher parameters and data points. This is in spirit related to supervision complexity as it measures
an “alignment ” between the distillation objective and data Ji & Zhu (2020) extend this results to
linearized neural networks, showing that the quantity ∆⊤

z K
−1∆z , where ∆z is the logit change dur-

ing training, plays a key role in estimating the bound. The resulting bound is qualitatively different
compared to ours, and the ∆⊤

z K
−1∆z becomes ill-defined for hard labels.

Supervision complexity. The key quantity in our work is Y ⊤K−1Y . Cristianini et al. (2001) in-
troduced a related quantity Y ⊤KY called kernel-target alignment and derived a generalization
bound with it for expected Parzen window classifiers. As an easy-to-compute proxy to supervi-
sion complexity, Deshpande et al. (2021) use kernel-target alignment for model selection in transfer
learning. Ortiz-Jiménez et al. (2021) demonstrate that when NTK-target alignment is high, learning
is faster and generalizes better. Arora et al. (2019) prove a generalization bound for overparameter-
ized two-layer neural networks with NTK parameterization trained with gradient flow. Their bound

22



Published as a conference paper at ICLR 2023

is approximately
√
Y ⊤(K∞)−1Y /

√
n, where K∞ is the expected NTK matrix at a random initial-

ization. Our bound of Thm. 3 can be seen as a generalization of this result for all kernel methods,
including linearized neural networks of any depth and sufficient width, with the only difference of
using the empirical NTK matrix. Belkin et al. (2018) warns that bounds based on RKHS complexity
of the learned function can fail to explain the good generalization capabilities of kernel methods in
presence of label noise.

Future work. There are several potential directions for future work. Adaptive temperature scaling
for online distillation, where the teacher predictions are smoothened so as to ensure low target com-
plexity, is one such direction. Another avenue is to explore alternative ways to smoothen teacher
prediction besides temperature scaling; e.g., can one perform sample-dependent scaling? There is
large potential for improving online KD by making more informed choices for the frequency and
positions of teacher checkpoints, and controlling how much the student is trained in between teacher
updates. Finally, while we demonstrated that online distillation results in a better alignment with the
teacher’s NTK matrix, understanding why this happens is an open and interesting problem.
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Figure 9: Relationship between test accuracy, train NTK similarity, and train fidelity for various
teacher, student, and dataset configurations.
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Figure 10: Relationship between test accuracy, train NTK similarity, and train fidelity for various
teacher, student, and dataset configurations.
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