
Published as a conference paper at ICLR 2023

SERVING GRAPH COMPRESSION FOR GRAPH NEURAL
NETWORKS

Si Si1, Felix Yu1, Ankit Singh Rawat1, Cho-Jui Hsieh2, Sanjiv Kumar1
1Google Research
2University of California, Los Angeles
{sisidaisy, felixyu, ankitsrawat, sanjivk}@google.com
{chohsieh}@ucla.cs.edu

ABSTRACT

Serving a GNN model online is challenging — in many applications when testing
nodes are connected to training nodes, one has to propagate information from train-
ing nodes to testing nodes to achieve the best performance, and storing the whole
training set (including training graph and node features) during inference stage is
prohibitive for large-scale problems. In this paper, we study graph compression
to reduce the storage requirement for GNN in serving. Given a GNN model to
be served, we propose to construct a compressed graph with a smaller number of
nodes. In serving time, one just needs to replace the original training set graph by
this compressed graph, without the need of changing the actual GNN model and
the forward pass. We carefully analyze the error in the forward pass and derive
simple ways to construct the compressed graph to minimize the approximation
error. Experimental results on semi-supervised node classification demonstrate that
the proposed method can significantly reduce the serving space requirement for
GNN inference.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2016) have been widely used for graph-based
applications, such as node property predictions (Kipf & Welling, 2016), link predictions (Zhang &
Chen, 2018), and recommendation (Wu et al., 2020). Given a graph that encodes relationships between
pairs of entities, the graph convolution operation in GNN iteratively refines entity representations by
aggregating features from neighbors, which enables information to propagate through the graph and
boosts the performance on uncertain nodes.

It has been well recognized that GNN training on large-scale input graphs is challenging, and many
scalable training methods have been proposed (Hamilton et al., 2017; Chiang et al., 2019; Chen et al.,
2018a; Zeng et al., 2019). However, the problem of how to efficiently serve a GNN model in online
applications remain unsolved. In fact, for applications when testing nodes are connected with the
training nodes, such as semi-supervised node classification, serving a GNN is very challenging and
has hindered the deployment of GNN in real world. To conduct predictions on a batch of incoming
testing nodes, GNN has to propagate information not only within the testing nodes but also from
training nodes to testing nodes, which implies that the serving system needs to store graph and node
features in memory. Unfortunately, it is almost impossible to store the training graph and node
features in many real systems such as embedded and low-resource devices. For example, for the
Reddit dataset with more than 150k training nodes, it needs 370.7MB storage for the training node
features, 86.0MB for the graph, and only 7.6MB for the GNN model itself. In Table 1, we break down
the serving space requirements for four public datasets (with statistics in the experiment section)
with GNN model size, training graph space, and training node features size. From this table, we can
see that the space bottleneck is on the training graph and node features. We define the problem of
reducing the size of training graph and node features as serving graph compression for GNNs.

Unfortunately, naively discarding all or a large portion of training nodes will significantly hurt the
inference performance, since GNN has extracted very powerful node representations of training
nodes, and propagating those information to testing nodes is crucial for prediction. Figure 1 illustrates

1

Published as a conference paper at ICLR 2023

Table 1: Model size and serving space of several GNN models.
Datasets Model size Training graph size Training feature size Total serving size
Arxiv 1.4MB 5.9MB 46.5MB 53.8MB
Reddit 7.6MB 86.0MB 370.7MB 464.3MB
Product 4.8MB 87.2MB 78.6MB 170.6MB
Amazon2M 3.0MB 485.4MB 684.0MB 1.17GB

this problem, where we show that when discarding some part of training data, the performance of
GNN will significantly reduce even on a standard node classification task.

Figure 1: Random nodes dropping rate vs.
accuracy on Reddit dataset. The red line is the
accuracy of inference using the entire graph
and features; purple line is the accuracy of
inference without graph; blue line is accuracy
for randomly dropping nodes in the graph
with different dropping rate.

Although the problem of serving graph compression
has not been formally studied before, at the first
glance the problem seems to be solvable by adopting
existing approaches. The first approach one can eas-
ily come up with is to treat training node features as
a weight matrix and apply existing model compres-
sion techniques such as sparse or low-rank approx-
imation (Han et al., 2015; Frankle & Carbin, 2018;
Sainath et al., 2013; Chen et al., 2018b). However,
existing model compression methods are not able to
exploit graph information, and we will show in the
experiments that they tend to perform poorly for serv-
ing graph compression. Another straightforward idea
is to treat the problem as a core-set selection prob-
lem, where many algorithms have been developed to
select a subset of important samples from massive
data (Mirzasoleiman et al., 2020; Wang et al., 2018;
Zhao et al., 2020). However, core-set selection meth-
ods are trying to obtain a small subset such that the
model trained on the subset still achieves reasonable
performance, and this goal is different from serving
compression. For example, Jin et al. (2021) showed it’s possible to extract a small synthesized
graph for training, but they still require the whole training set in the inference phase to achieve good
performance.

In this paper, we propose a simple and effective method for GNN serving graph compression via a
virtual nodes graph (VNG). Given a GNN model to be served online, our method aims to construct a
small set of virtual nodes, with artificially designed node features and adjacency matrix, to replace
the original training graph. Without changing the model and the forward pass, users can just replace
the original training set by the small representative set in the serving time to reduce the space
requirement with small loss in testing accuracy. To construct the set of virtual nodes, we decompose
the error of forward propagation into (1) the propagation error from training node features to testing
nodes and (2) the propagation error from training to training nodes. Interestingly, the error in (1)
can be bounded by a weighted kmeans objective, while the error in (2) can be minimized by solving
a low-rank least-square problem to preserve consistency within a certain space constraint. These
together lead to simple yet effective GNN serving graph compression that is easy to use in practice.

Our work makes the following contributions:

• To the best of our knowledge, this is the first work on the serving graph compression problem for
GNN models, addressing the bottleneck when applying GNN in real world applications.

• By analyzing the error in forward propagation, we design a simple yet effective algorithm to
construct a small virtual node set to replace the original huge training set for model serving.

• We show on multiple datasets that the proposed method significantly outperforms alternative ways
of compressing the serving graph.

2 RELATED WORK
Graph Neural Networks In this paper, we focus on GNN problems when there is a graph connect-
ing entities of training and testing instances, including many important applications such as node
classification, edge classification and recommendation systems. Note that there’s another application
of GNNs where each instance is a graph and we aim to predict properties of a new instance (graph),
such as for molecular property prediction (Gilmer et al., 2017; Wu et al., 2018). Since in those
applications training and testing graphs (instances) are disjoint and there is no need to store training
graphs for serving, they are out of the scope of this paper.

2

Published as a conference paper at ICLR 2023

Many improvements have been made on GNNs in recent years. Based on the graph convolution
operation, many different designs of graph neural networks have been proposed to achieve better
performance (Veličković et al., 2017; Shi et al., 2020; Li et al., 2021; Chen et al., 2020; Xie et al.,
2020; Chien et al., 2021). Also, although training GNNs with large networks is difficult, many
scalable training algorithms have been developed (Hamilton et al., 2017; Chen et al., 2018a; 2017;
Chiang et al., 2019; Zeng et al., 2019). In contrast to previous works, we study the inference phase of
GNN which has been overlooked in the literature. In the serving phase of GNN, it requires storing
both GNN model weights and training data (including node features and training graph) to achieve the
best performance, since connections from training to testing nodes are crucial for feature propagation.
Since the size of training data is often more than 40x larger than GNN model weights, we focus
on shrinking the size of training data in this paper. Existing works on compressing GNNs focus on
reducing or quantizing the model weights (Tailor et al., 2020; Yang et al., 2020; Kim et al., 2021),
which is orthogonal to our work. Another recent work (Chen et al., 2021) tried to prune both model
weights and graph by removing some edges. However, they do not reduce the size of training features
so the serving space requirement will not be significantly reduced.
Model compression Since the training feature matrix dominates the serving space, a straight-
forward method is to apply existing model compression techniques, such as pruning or low-rank
approximation (Han et al., 2015; Frankle & Carbin, 2018; Sainath et al., 2013; Chen et al., 2018b),
to the training feature matrix. However, we find those methods are not very effective in practice
(see our experiments). This is because that standard compression methods to not consider feature
matrix and graph jointly, and they do not really focus on reducing the forward pass error in GNN
inference. Another commonly used compression method is quantization (Gholami et al., 2021).
However, quantization is orthogonal to our method since we can also apply quantization after getting
the virtual representative nodes with our method.

Coreset selection and Dataset distillation Since the bottleneck of GNN serving space is training
data, it may seen natural to apply coreset selection or dataset distillation methods here. Various coreset
selection algorithms, including k-median (Har-Peled & Mazumdar, 2004), mixture models (Lucic
et al., 2017), low-rank approximation (Cohen et al., 2017), and gradient matching methods (Mirza-
soleiman et al., 2020), are designed to select a subset of essential samples to expedite training. On the
other hand, dataset distillation methods (Wang et al., 2018; Zhao et al., 2020; Cui et al., 2022) create a
small set of synthetic data that enables models trained on the synthetic dataset to achieve comparable
performance to those trained on the original set. However, these methods do not utilize the graph
information. Furthermore, these methods are designed to select a coreset for efficient training, while
our goal is to select a coreset to compress the serving space requirement. We will compare with some
standard coreset selection methods in the experiments to demonstrate that they are not effective for
our task. Further, although several recent works try to select coresets for graph data (Jin et al., 2021;
Zhang et al., 2021), they still focus on selecting a coreset for training while utilizing the full training
set in the inference phase. It’s nontrivial to apply them for inference speed up since the connections
between testing nodes and core-set nodes are not well defined.

Graph Coarsening Graph coarsening is widely used in the scalable graph clustering, with the
aim to reduce the size of the graph or form some supernodes in the graph to represent the original
graph (Liu et al., 2018; Chevalier & Safro, 2009). Most of them are trying to preserve some
unsupervised properties of the graph, such as adjacency matrix or normalized Laplacian (Spielman &
Teng, 2011; Bravo Hermsdorff & Gunderson, 2019). Graph coarsening method do not consider either
model or the node features, and thus are not as effective for our task.

3 PROPOSED METHOD

3.1 PROBLEM DEFINITION

For simplicity, we will consider the canonical graph convolutional network (GCN) model (Kipf &
Welling, 2016), but our method can also handle other GNN architectures. In the training phase, we
are given the training graph G = (V, E) with n = |V| vertices and |E| edges. The corresponding
training adjacency matrix, denoted as Atr,tr ∈ Rn×n, is a sparse matrix with (Atr,tr)ij ̸= 0 if and
only if there is an edge between node i and node j, and the value of (Atr,tr)ij denotes the weight of
the edge. Note that standard GNN models usually conduct row normalization to the binary adjacency
matrix and we directly assume Atr,tr is the normalized matrix here. Each node in the training
graph is associated with a d-dimensional feature xi ∈ Rd, and we use Xtr ∈ Rn×d to denote the

3

Published as a conference paper at ICLR 2023

feature matrix. We use Xi· to denote the i-th row of a matrix X , so following this notation we have
(Xtr)i· = xi. Starting with X(0) = Xtr, an L-layer GCN propagates node features layer-by-layer:

Z(ℓ+1) = Atr,trX
(ℓ)W (ℓ), X(ℓ+1) = σ(Z(ℓ+1)), ℓ = 0, . . . , L− 1. (1)

where X(ℓ) is the feature matrix at the ℓ-th layer, W (ℓ) is the weight matrix of a fully connected
layer, and σ is nonlinear activation (usually element-wise ReLU). Atr,trX

(ℓ) is the graph convolution
operation, which obtains a new representation of each node by a weighted average of its neighbors.

After L GCN layers, each node will obtain its final layer representation X(L), which will be associated
with a loss function depending on the final task. A canonical application for GCN is semi-supervised
node classification. In this application, each labeled node is associated with an observed label yi, and
we can use the standard cross-entropy loss to train the model. After training, we obtain the model
weightsW = {W (0), . . . ,W (L−1)}.
In this paper, we focus on the serving phase of the GNN models. Depending on different scenarios,
testing nodes can come one-by-one, batch-by-batch, or all together. For simplicity, we assume
conducting GCN inference on a single node v with feature x ∈ Rd and its connection to training
nodes is represented by a ∈ Rn. In this case, GNN will conduct the following forward propagation
to obtain node features[

Z
(ℓ+1)
tr

z(ℓ+1)

]
=

[
Atr,tr 0
a ā

] [
X

(ℓ)
tr

x(ℓ)

]
W (ℓ),

[
X

(ℓ+1)
tr

x(ℓ+1)

]
= σ(

[
Z

(ℓ+1)
tr

z(ℓ+1)

]
), x(0) = x, (2)

where ā is the constant depending how the GNN deals with the diagonal entries1 Note that this can be
easily generalized to cases with larger batch size m, where x will be replaced by an m-by-d feature
matrix; a will become an m-by-n matrix representing the connections between testing and training
nodes, and ā will become the adjacency matrix between testing nodes.

We have demonstrated in Figure 1 that including training graph and node features in the serving
phase is necessary. Intuitively, intermediate features for training nodes are very informative and
propagating those information to testing nodes will significantly boost the performance. Also note
that in (2) we assume there is no information flow from testing to training (0 in the top-right corner
of joint adjacency matrix). This is because training nodes already have good features obtained in the
training phase, so there is no need to propagate testing features to training nodes. This is adopted
in several real GNN implementations (Chiang et al., 2019) and we found that setting the top-right
corner of A as 0 or aT have similar performance in practice.

As evidenced from (2), the serving phase of GNN requires storing model weightsW , training node
features Xtr and training graph Atr,tr. Storing Xtr and Atr,tr requires O(nd) and O(|E|) space
respectively, and both of these are much larger than the size ofW which consists of L O(d2)-sized
matrices, with the corresponding storage requirement being independent of n. Taking a standard
Reddit dataset as example, there are n = 153, 932 training samples and d = 602 features, Xtr’s size
is 370.7MB, Atr,tr’s size is 86.0MB, andW is only 7.6MB size.

Accordingly, for GNNs, we define the task of reducing the space requirement for serving by primarily
compressing Xtr and Atr,tr as the serving graph compression problem.

3.2 THE VIRTUAL NODE GRAPH (VNG) METHOD

We propose the virtual node graph (VNG) method in this section. The main idea is to replace n
training nodes by a small number of c virtual (VR) nodes, with c ≪ n. Let Xvr ∈ Rc×d be the
features and Avr,vr ∈ Rc×c be the adjacency matrix of the VR nodes, we aim to obtain those matrices
by minimizing the forward propagation error. With the training nodes replaced by VR nodes, the
graph convolution operation (first equation of (2)) will be replaced by[

Z
(ℓ+1)
vr

z(ℓ+1)

]
=

[
Avr,vr 0
avr ā

] [
X

(ℓ)
vr

x(ℓ)

]
W (ℓ). (3)

Note that avr in (3) represents the connection from node v to the VR nodes, which cannot be a fixed
vector since it will depend on the the original a (the connections between node v and training nodes).

1Can be 0 or 1 depending on the implementation, while some others methods add small constants to diagonal.

4

Published as a conference paper at ICLR 2023

We thus assume each original training node is represented by one of the VR nodes, and the mapping
is defined as π : {1, . . . , n} → {1, . . . c}. We thus have

avr = a Π, (4)
where Π ∈ {0, 1}n×c is the assignment matrix of the bipartite graph between training nodes and VR
nodes. Specifically, Π is a 0/1 matrix with Πi,j = 1 if and only if π(i) = j.

With these setups, VR nodes will involve in two computations when computing the features for a
given node v: 1) The propagation from VR nodes to v 2) The propagation between VR nodes which
will impact testing nodes in the next GNN layer. In the following, we will consider these two parts
separately: in Sec 3.2.1 we consider 1) to obtain a solution for Π and Xvr, and in 3.2.2 we consider
the 2) to obtain a solution for Avr,vr. We show with this two-step decomposition, all the components
can be solved by simple closed form solutions which leads to an efficient and easy-to-implement
algorithm. Although the solution can be potentially improved by solving the whole problem jointly,
we leave it to the future work.

3.2.1 PROPAGATION FROM VIRTUAL REPRESENTATIVE NODES TO TESTING NODES

Propagation from VR nodes to node v is the bottom row of the forward propagation in (3) and (2),
where we want the resulting z(ℓ+1) to have minimal error. Therefore we want to have aX

(ℓ)
tr W (ℓ) ≈

avrX
(ℓ)
vr W (ℓ) = aΠX

(ℓ)
vr W (ℓ) which can be achieved if

aX
(ℓ)
tr ≈ aΠX(ℓ)

vr . (5)
Since the testing nodes are unseen in the compression phase, we hope the compressed model to at
least preserve the latent embedding when given every training node. If v is the i-th training node, then
a = (Atr,tr)i,·. Therefore, based on the spirit of empirical risk minimization, we aim to construct
the Π matrix to minimize the following averaged square error:∑
i∈[n]

∥(Atr,tr)i·X
(ℓ)
tr − (Atr,tr)i·ΠX(ℓ)

vr ∥22 =
∑
i∈[n]

∥
∑
j∈[n]

(Atr,tr)ij(X
(ℓ)
tr)j· − (Atr,tr)ij(X

(ℓ)
vr)π(j)·∥22

≤
∑

i∈[n]

∑
j∈[n]

(Atr,tr)ij∥(X(ℓ)
tr)j· − (X(ℓ)

vr)π(j)·∥22

=
∑

j∈[n]
(
∑

i∈[n]
(Atr,tr)ij)∥(X(ℓ)

tr)j· − (X(ℓ)
vr)π(j)·∥22. (6)

Let γj =
∑

i∈[n](Atr,tr)ij being the column sum of Atr,tr, finding the VR nodes’ features X(ℓ)
vr and

mapping π(·) is then equivalent to the weighted kmeans objective, with weight γj for training node j.

As we aim to minimize the error for all layers, we can bound the sum of (6) over all layers. If we
define the concatenation of features from all layers as

X̄tr = [X
(0)
tr , . . . , X

(L−1)
tr], (7)

since the weights are independent to layers, we can lower bound the sum of loss over layers per (6):∑
ℓ∈[L]

∑
i∈[n]
∥(Atr,tr)i·X

(ℓ)
tr − (Atr,tr)i·ΠX(ℓ)

vr ∥22 ≤
∑

j∈[n]
vj∥(X̄tr)j· − (X̄vr)π(j)·∥22. (8)

As the right hand side is equivalent to the weighted kmeans objective on X̄tr, we can apply the
well-known EM-style weighted kmeans algorithm to (approximately) optimize the upper bound,
where it iteratively updates the cluster centers X̄vr and the cluster assignment π. After running
weighted kmeans, we will obtain the assignment π∗, and the cluster centers are weighted average of
training features within each cluster, so ideally we would like VR nodes’ features at layer ℓ to be

X(ℓ)
vr = EX

(ℓ)
tr , where Eij =

{
vj∑

q:π∗(q)=i vq
if π(j) = i,

0 otherwise.
(9)

Intuitively, E can be viewed as edges from training nodes to VR nodes, where each training node
is only linked to one VR node. Since we only have freedom to assign the input features for virtual
representative nodes, we set X(0)

vr = EX
(0)
tr , and since beyond first layer the features are computed

by propagating previous layers feature with Avr,vr, we will discuss how to assign Avr,vr to best
preserve this property for other layers. Note that we assume all layers share the same Π, which means
each virtual node in different layers correspond to the same set of training nodes. Having different Π
for each layer requires different Avr,vr for each layer, significantly increasing the space complexity.

5

Published as a conference paper at ICLR 2023

3.2.2 PROPAGATION BETWEEN VIRTUAL REPRESENTATIVE NODES

Note that the E matrix obtained by weighted kmeans captures the transformation from training nodes
to virtual nodes, and we have enforced (9) in the input layer. We will then study how to set the
propagation among VR nodes or equivalently define the matrix Avr,vr such that it preserves the
property of (9) for other layers.

Towards this, assume that X(ℓ)
vr = EX

(ℓ)
tr holds at layer ℓ. We then want to make sure that conducting

a graph convolution on both VR nodes and training nodes will preserve this relationship, i.e.,

Avr,vrX
(ℓ)
vr = Avr,vrEX

(ℓ)
tr ≈ EAtr,trX

(ℓ)
tr , (10)

where the left hand side is the propagation of VR nodes and the right hand side is the propagation of
original training nodes, with an additional projection operator to map the features back to VR nodes.

Note that we want the above approximation to hold for all layers ℓ ∈ [0, L− 2]. Thus, summing the
approximation error for each layer leads to the following optimization problem:

Avr,vr = argminH ∥HEX̄tr − EAtr,trX̄tr∥2F , (11)

where X̄ is defined in (7). Note that (11) can be easily solved by a standard least square solver.
However, this will lead to a dense c× c matrix, which leads to storage bottleneck when c is large.
Therefore, we propose to obtain a low-rank solution of (11) by requiring H to have a rank at most
c < k. Such a low-rank matrix can then be stored with only O(ck) memory overhead. With the rank
constraint our optimization problem to solve for Avr,vr takes the form:

Avr,vr = argminH ∥HP −Q∥2F s.t. rank(H) ≤ k, (12)

where P = EX̄tr and Q = EAtr,trX̄tr. We now present a closed-form optimal solution for (12).

Theorem 1 Assume P = UpΣpV
T
p and Q = UQΣQV

T
Q are the thin-SVD of P and Q, respectively.

Then the solution of (12) is (QVp)kΣ
−1
p UT

p , where (·)k denotes the rank-k truncated SVD of a matrix.

The proof is deferred to the appendix. With this closed form solution, it is straightforward to solve
(12). Note that the closed form solution requires to compute the thin-SVD of P and Q. These are
c-by-d matrices where c is the number of virtual nodes and d is the hidden dimension size (sum over
all layers). As d is usually small (e.g., less than 3, 000 in all our cases) and the complexity of SVD is
O(min(c, d)2 max(c, d)), thin-SVD will be efficient (see Appendix C for details). In practice, this
can be done within 1 minutes on standard CPU, even without GPU. Note that it is necessary to store
rank-k matrix Avr,vr in a factorized form to realize the aforementioned O(ck) storage cost during
inference, and our closed form solution in the above theorem naturally provide such a factorization.

3.3 OVERALL ALGORITHM

Here we summarize the proposed Virtual Node Graph (VNG) algorithm from Section 3.2. Given the
original GNN model and training data, we will first compute the collection of training node features
before graph convolution X̄tr = [X

(0)
tr , . . . X

(L−1)
tr]. For general GNN, these are features before

one-hop propagation or mathematically, left-multiplying with the adjacency matrix. We then compute
the column sum of the Atr,tr to get {γ1, . . . , γn}; subsequently we run weighted kmeans on X̄tr

using these weights (cf. (8)). Given the clustering assignment π obtained from the weighted kmeans,
we form an E matrix based on (9) and set features for VR nodes as X(0)

vr = EX
(0)
tr . We then solve

(12) with P = EX̄tr and Q = EAtr,trX̄tr to obtain Avr,vr (stored in the factorized form). At the
inference time, the forward propagation is conducted by (2), where we only store virtual nodes instead
of training nodes. The algorithm reduces the space complexity from the original O(n+ |E|+ nd) to
O(ck + cd), where c≪ n is the number of virtual representative nodes and k is a low-rank factor in
(12). Please see Algorithm 1 for the description of the algorithm.

4 EXPERIMENTAL RESULTS

To evaluate the performance of the proposed compression algorithm, we conduct experiments on four
real datasets:

6

Published as a conference paper at ICLR 2023

Algorithm 1 The Virtual Node Graph (VNG) algorithm
Input: Training adjacency matrix Atr,tr and features Xtr, GNN weightsW , number of virtual nodes
c, rank of virtual adjacency matrix k.

1: Compute X̄tr = [X
(0)
tr , . . . , X

(L−1)
tr] by GNN forward pass with training data Atr,tr and Xtr.

2: Compute weights γj =
∑

i(Atr,tr)ij for all j.
3: π ← weighted_kmeans(X̄tr, c, {γi}ni=1).
4: Get E matrix based on (4).
5: Compute Xvr = EXtr (Xtr is the raw feature for training nodes).
6: Solve Avr,vr based on (12).

Output: Avr,vr and Xvr

Table 2: The statistics of Arxiv, Reddit, Product, and Amazon2M datasets.
Datasets #Training Nodes #Validate Nodes #Labels #Features Serving size
Arxiv 90,941 29,799 40 128 52.4MB
Reddit 153,932 23,699 41 602 456.7MB
Product 196,615 39,323 47 100 165.8MB
Amazon2M 1,709,997 739,032 47 100 1.17GB

• Arxiv: A multi-class node classification dataset used for predicting the category of a paper. We use
the same dataset and partition as in (Hu et al., 2020).

• Reddit: A multi-class node classification dataset used for predicting the communities of online
posts. We use the same dataset and partition as in (Chiang et al., 2019).

• Product: A multi-class classification dataset that is similar to Amazon2M , with a key difference
that it is based on a different preprocessing and split by Hu et al. (2020).

• Amazon2M: A multi-class classification dataset, where the graph has products co-purchase history,
data features have each product’s information, and the label is the category of the product. We use
the same dataset and partition as in (Chiang et al., 2019).

All above datasets are publicly available and are commonly used for benchmarking the performance
of GNNs on node classification tasks. The statistics of these datasets are summarized in Table 2.
As this is the first paper considering the serving graph compression problem for GNN, we mainly
compare our method against standard model compression methods (for compressing training node
features) and core-set selection methods (selecting a subset of nodes for serving). Specifically, we
include the following methods in the comparison:

• Sparse: Sparsifying the training nodes’ features by sorting the values and removing small values
in the features. For this method, the connection graph does not change. The serving space is
controlled by the pruning ratio.

• SVD: Performing SVD over the training nodes’ features to save the serving space. The serving
space is controlled by the rank used in performing low-rank approximation via SVD. Also, note
that the original graph remains unchanged for this method.

• Random: Randomly selecting some training nodes and their corresponding subgraph.
• Degree: Selecting the training nodes by sorting the degree of training nodes and picking the nodes

with the highest degrees.
• Kmeans: Performing kmeans over the training nodes features, and selecting the training nodes

closest to the kmeans centroids.
• VNG (our proposed method): Constructing the virtual nodes graph which is much smaller than the

original graph based on the GNN forward pass reconstruct error (cf. Algorithm 1).

We use the vanilla GCN architecture used in Chiang et al. (2019) to test the above methods. Note
that the proposed compression algorithm can also be used for other GNN architectures, such as
GraphSage Hamilton et al. (2017) (see Appendix E). We use ClusterGCN’s tensorflow implementation
2 for GCN model training. As for architecture, on all datasets, we consider a 4-layer GCN model with
hidden dimensions 512, 256, 512, and 400 for Product, Arxiv, Reddit, and Amazon2M, respectively,
and the mean aggregator from Hamilton et al. (2017). To test each model, we first train a GCN
model and freeze the model, then we run each method to generate a compressed graph for efficient

2https://github.com/google-research/google-research/tree/master/
cluster_gcn

7

Published as a conference paper at ICLR 2023

inference on the new testing nodes. The process of graph compression and subsequent inference with
the compressed graph does not involve retraining the GCN model.

Here we consider two settings of inference. The first setting is batch inference, where we are given
a batch of testing nodes at a time, with their node features and interconnections. The connection
from the testing nodes to the training nodes are also given. This is the typical setting for GNN model
inference. The second setting is single node inference, where we assume the testing nodes appear
one-by-one in an on-line fashion. In this setting, we only know the testing node features and the
connections from this testing node to the training nodes.
4.1 BATCH INFERENCE SETTING

As explained previously, in the batch inference setting, we assume the testing data become available
in batches. Since the edges connecting training nodes to testing nodes and the connections among
testing nodes are given, each testing node’s features will be updated using the information from the
training nodes and other testing nodes. We show the compression results in Table 3, where the graph
size (including nodes’ features and adjacency graph size) is shown in brackets following the accuracy.
We construct the compressed graph with only 1% and 5% of the total number of training nodes for
our method. Note that Kmeans, Degree, and Random generate the graphs that have the same number
of nodes as VNG.

From Table 3, we observe that our method is able to achieve a very high compression rate for the
serving space – 37.5x on Arxiv, 41.1x on Reddit, and 69.1x on Product. Other methods will suffer
from a significant performance loss when using such a compression rate. Note that Sparse and
SVD both operate on nodes’ features, while maintaining the original adjacency graph. Thus, the
compressed graph is still as large as the original graph. Random is not aware of the information in the
graph and features. Kmeans only uses node features and is not aware of adjacency graph information.
Degree considers adjacency graph and does not take features into consideration. Therefore, all the
methods except ours consider either adjacency graph or node features, but not both. Furthermore,
these methods are model agnostic as the GNN model itself does not play a role in the compression.
In contrast, our method considers all three factors: adjacency graph, node features, and GNN model;
consequently, performing better than other baselines.

Besides reducing the inference serving size, VNG can also speed up the inference. The detailed
discussions and results about inference speed of VNG can be found in Table 8 in the appendix. Also
in Appendix A, we conduct an ablation study to show different variations of our method such as
replacing weighted kmeans with vanilla kmeans or choosing different ranks during low-rank step.

4.2 SINGLE NODE INFERENCE SETTING

In the single node inference setting, each testing node appears one-by-one. Unlike the batch setting,
no connections among testing nodes are given. Therefore, how to effectively utilize the information
from training data becomes even more crucial. We compare our method with all the baselines in this
setting and present the results in Table 4. Since our method is able to better utilize the information of
training graph and features, the accuracy gap between our method and baselines becomes larger.

4.3 TRADEOFF BETWEEN COMPRESSION RATE AND ACCURACY

In this subsection, we vary the compression methods in a wider range to demonstrate the tradeoff
between compression ratio and accuracy. We consider the single node inference setting and plot
the accuracy under different compression rates for each method in Figure 2. On each dataset, we
increase the compression rate of VNG until its accuracy is within 1% of the full model, and show
the performance of other methods under the same compression rate. It can be easily observed that
our method significantly outperforms other methods also in this high-accuracy regime. The actual
numbers for the accuracy and model size can be found in Table 9 in the appendix.

5 CONCLUSION

Although GNNs achieve promising performance handling graph data, they require storing training
graph and features to perform inference, leading to a high serving space requirement. In this paper,
we propose a novel method for serving graph compression, where we replace the training features
and graph by a small set of virtual nodes. The features and adjacency matrix of virtual nodes are
designed to minimize the forward propagation error of GNN and can be simply adapted to any GNN

8

Published as a conference paper at ICLR 2023

Table 3: Accuracy% (Size) on four datasets for batch setting where test data appears in batches. The
brackets next to accuracy show the compressed graph size including both adjacency matrix and node
features. ‘Full’ corresponds to using the original adjacency graph and nodes features. For ’Random’,
’Degree’, ’Kmeans’, ’VNG’, we show the results under different compression rates in the ’Node
Compression rate’ column–1% or 5% means the compressed graph contains 1% or 5% of the total
number of nodes of the original graph. *For Amazon2M the number of nodes in the compressed
graph is 0.1% or 0.5% of the original graph.

Model Node Compression rate Arxiv Reddit Product Amazon2M∗

Full - 69.94 (52.4MB) 94.85 (456.7MB) 87.51 (165.8MB) 89.15 (1.17GB)
SVD - 58.69 (8.1MB) 88.35 (104.5MB) 40.82 (91.1MB) 68.08 (512.7MB)
Sparse - 56.90 (6.0MB) 68.27 (93.4MB) 64.75 (88.7MB) 66.45 (486.1MB)

Random 1% 58.32 (2.3MB) 71.23 (11.2MB) 70.26 (2.5MB) 77.80 (2.1MB)
5% 62.85 (12.0MB) 77.91 (57.5MB) 74.57 (13.7MB) 77.98 (10.4MB)

Degree 1% 63.63 (3.2MB) 76.00 (15.5MB) 73.81 (3.8MB) 78.99 (2.8MB)
5% 66.42 (14.8MB) 86.62 (78.1MB) 79.36 (24.5MB) 81.71 (38.4MB)

Kmeans 1% 58.09 (2.4MB) 71.93 (11.4MB) 69.73 (2.5MB) 77.75 (2.1MB)
5% 61.93 (12.0MB) 80.31 (60.3MB) 72.83 (14.3MB) 78.33 (21.0MB)

VNG (ours) 1% 67.07 (1.4MB) 90.51 (11.1MB) 83.11 (2.4MB) 83.12 (2.1MB)
5% 68.64 (7.0MB) 91.00 (55.6MB) 85.60 (11.8MB) 84.23 (10.2MB)

Table 4: Accuracy% (Size) on four datasets for single setting where testing data appears one-by-one
setting. In the brackets next to accuracy, we show the compressed graph size including both adjacency
matrix and node features. ‘Full’ corresponds to using the original adjacency graph and nodes features.
For ’Random’, ’Degree’, ’Kmeans’, ’VNG’, we show the results under different compression rates in
the ’Node Compression rate’ column–1% or 5% means the compressed graph contains 1% or 5% of
the total number of nodes of the original graph. *For Amazon2M, #nodes in the compressed graph is
0.1% or 0.5% of original graph.

Model Node Compression rate Arxiv Reddit Product Amazon2M∗

Full - 68.35 (52.4MB) 92.75 (456.7MB) 86.95 (165.8MB) 87.79 (1.17GB)
SVD - 55.37 (8.1MB) 81.46 (104.5MB) 39.64 (91.1MB) 54.72 (512.7MB)
Sparse - 51.54 (6.0MB) 54.55 (93.4MB) 60.81 (88.7MB) 61.32 (486.1MB)

Random 1% 52.71(2.3MB) 56.62 (11.2MB) 66.15 (2.5MB) 61.01 (2.1MB)
5% 58.57 (12.0MB) 69.22 (57.5MB) 71.18 (13.7MB) 61.34 (10.4MB)

Degree 1% 60.58 (3.2MB) 62.58 (15.5MB) 7013 (3.8MB) 63.53 (2.8MB)
5% 63.95 (14.8MB) 77.18 (78.1MB) 76.77 (24.5MB) 67.64 (38.4MB)

Kmeans 1% 52.51 (2.4MB) 57.42 (11.4MB) 65.57 (2.5MB) 60.99 (2.1MB))
5% 57.75 (12.0MB) 67.53 (60.3MB) 69.31 (14.3MB) 61.94 (21.0MB)

VNG (ours) 1% 66.73 (1.4MB) 90.51 (11.1MB) 83.04 (2.4MB) 82.53 (2.1MB)
5% 67.84 (7.0MB) 91.40 (55.6MB) 85.08 (11.8MB) 84.26 (10.2MB)

Figure 2: Comparisons of graph compression for GCN inference methods (single node inference
setting). The x-axis shows the node compression ratio. The y-axis shows the accuracy of the node
classification tasks. The graph sizes for Sparse and SVD are too large and they cannot realize the
compression ratios considered in the figure.

structure. Our empirical results demonstrate that the proposed method can significantly reduce the
GNN serving size while maintaining a reasonable predictive performance. As one of the limitations
of our method, it may suffer from higher performance loss if a larger compression rate (e.g., 50x) is
desired, but it is possible to further improve by combining it with pruning or quantization approaches.

9

Published as a conference paper at ICLR 2023

REFERENCES

Gecia Bravo Hermsdorff and Lee Gunderson. A unifying framework for spectrum-preserving graph
sparsification and coarsening. Advances in Neural Information Processing Systems, 32, 2019.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568, 2017.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018a.

Patrick Chen, Si Si, Yang Li, Ciprian Chelba, and Cho-Jui Hsieh. Groupreduce: Block-wise low-rank
approximation for neural language model shrinking. Advances in Neural Information Processing
Systems, 31, 2018b.

Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery
ticket hypothesis for graph neural networks. In International Conference on Machine Learning, pp.
1695–1706. PMLR, 2021.

Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural networks:
Better and robust node embeddings. Advances in Neural Information Processing Systems, 33:
19314–19326, 2020.

Cédric Chevalier and Ilya Safro. Comparison of coarsening schemes for multilevel graph partitioning.
In International Conference on Learning and Intelligent Optimization, pp. 191–205. Springer,
2009.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257–266, 2019.

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic, and
Inderjit S Dhillon. Node feature extraction by self-supervised multi-scale neighborhood prediction.
arXiv preprint arXiv:2111.00064, 2021.

Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank approxima-
tion via ridge leverage score sampling. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1758–1777. SIAM, 2017.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Dc-bench: Dataset condensation benchmark.
arXiv preprint arXiv:2207.09639, 2022.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, 2017.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 291–300,
2004.

10

Published as a conference paper at ICLR 2023

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. arXiv preprint arXiv:2110.07580, 2021.

Junghun Kim, Jinhong Jung, and U Kang. Compressing deep graph convolution network with
multi-staged knowledge distillation. Plos one, 16(8):e0256187, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. In International conference on machine learning, pp. 6437–6449. PMLR, 2021.

Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization methods and
applications: A survey. ACM computing surveys (CSUR), 51(3):1–34, 2018.

Mario Lucic, Matthew Faulkner, Andreas Krause, and Dan Feldman. Training gaussian mixture
models at scale via coresets. The Journal of Machine Learning Research, 18(1):5885–5909, 2017.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pp. 6950–6960.
PMLR, 2020.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets. In
2013 IEEE international conference on acoustics, speech and signal processing, pp. 6655–6659.
IEEE, 2013.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on
Computing, 40(4):981–1025, 2011.

Shyam A Tailor, Javier Fernandez-Marques, and Nicholas D Lane. Degree-quant: Quantization-aware
training for graph neural networks. arXiv preprint arXiv:2008.05000, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys (CSUR), 2020.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Yiqing Xie, Sha Li, Carl Yang, Raymond Chi Wing Wong, and Jiawei Han. When do gnns work:
Understanding and improving neighborhood aggregation. In IJCAI International Joint Conference
on Artificial Intelligence, 2020.

Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowledge from
graph convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7074–7083, 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

11

Published as a conference paper at ICLR 2023

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. arXiv preprint
arXiv:1802.09691, 2018.

Wentao Zhang, Zhi Yang, Yexin Wang, Yu Shen, Yang Li, Liang Wang, and Bin Cui. Grain:
Improving data efficiency of graph neural networks via diversified influence maximization. arXiv
preprint arXiv:2108.00219, 2021.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
arXiv preprint arXiv:2006.05929, 2020.

12

