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Abstract
We consider learning a multi-class classification
model in the federated setting, where each user
has access to the positive data associated with
only a single class. As a result, during each fed-
erated learning round, the users need to locally
update the classifier without having access to the
features and the model parameters for the neg-
ative classes. Thus, naïvely employing conven-
tional decentralized learning such as distributed
SGD or Federated Averaging may lead to trivial
or extremely poor classifiers. In particular, for
embedding based classifiers, all the class embed-
dings might collapse to a single point. To address
this problem, we propose a generic framework for
training with only positive labels, namely Feder-
ated Averaging with Spreadout (FedAwS), where
the server imposes a geometric regularizer after
each round to encourage classes to be spreadout in
the embedding space. We show, both theoretically
and empirically, that FedAwS can almost match
the performance of conventional learning where
users have access to negative labels. We further
extend the proposed method to settings with large
output spaces.

1. Introduction
We consider learning a classification model in the federated
learning (McMahan et al., 2017) setup, where each user has
only access to a single class. The users are not allowed to
communicate with each other, nor do they have access to the
classification model parameters associated with other users’
classes. Examples of such settings include decentralized
training of face recognition models or speaker identification
models, where in addition to the user specific facial images
and voice samples, the classifiers of the users also constitute
sensitive information that cannot be shared with other users.
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This setting can also be extended to the case where each
user has access to data associated with a small number of
classes. For example, one application is deep retrieval in the
federated setting: training a query to document relevance
model based on user interactions such as clicked documents
after issuing a query, assuming that the clicks do not get
recorded by a central server.

In this work, we assume that the classification models are
“embedding-based” discriminative models (Krizhevsky et al.,
2012; Vaswani et al., 2017; Konečnỳ et al., 2016): both the
classes and the input instances are embedded into the same
space, and the similarity between the class embedding and
the input embedding (i.e. logit or score) captures the likeli-
hood of the input belonging to the class. A popular example
of this framework is neural network based classification.
Here, given an input instance xxx ∈ X, a neural network
gθθθ : X→ Rd (parameterized by θθθ) embeds the instance into
a d dimensional vector gθθθ(xxx). The class embeddings are
learned as a matrix W ∈ RC×d, commonly referred to as
the classification matrix, where C denotes the number of
classes. Finally, the logits for the instance xxx are computed
as W · gθθθ(xxx).

In the federated learning setup, one collaboratively learns
the classification model with the help of a server which
facilitates the iterative training process by keeping track of
a global model. During each round of the training process:

• The server sends the current global model to a set of
participating users.

• Each user updates the model with its local data, and
sends the model delta to the server.

• The server averages (“Federated Averaging”) the deltas
collected from the participating users and updates the
global model.

Notice that the conventional synchronized distributed SGD
falls into the federated learning framework if each user runs
a single step of SGD, and the data at different users is i.i.d.
Federated learning has been widely studied in distributed
training of neural networks due to its appealing character-
istics such as leveraging the computational power of edge
devices (Li et al., 2019), removing the necessity of sending
user data to server (McMahan et al., 2017), and various im-
provements on trust/security (Bonawitz et al., 2016), privacy
(Agarwal et al., 2018), and fairness (Mohri et al., 2019).
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However, conventional federated learning algorithms are not
directly applicable to the problem of learning with only pos-
itive labels due to two key reasons: First, the server cannot
communicate the full model to each user. Besides sending
the instance embedding model gθθθ(·), for the i-th user, the
server can communicate only the class embedding vectorwwwi
associated with the positive class of the user. Note that, in
various applications, the class embeddings constitute highly
sensitive information as they can be potentially utilized to
identify the users.

Second, when the i-th user updates the model using its local
data, it only has access to a set of instances xxx ∈ Xi from the
i-th class along with the class embedding vectorwwwi. While
training a standard embedding-based multi-class classifica-
tion models, the underlying loss function encourages two
properties: i) similarity between an instance embedding and
the positive class embedding should be as large as possible;
and ii) similarity between the instance embedding and the
negative class embeddings should be as small as possible.
In our problem setting, the latter is not possible because the
user does not have access to the negative class embeddings.

In other words, if we were to use the vanilla federated learn-
ing approach, we would essentially be minimizing a loss
function that only encourages small distances between the
instances and their positive classes in the embedding space.
As a result, this approach would lead to a trivial optimal
solution where all instances and classes collapse to a single
point in the embedding space.

To address this problem, we propose Federated Averaging
with Spreadout (FedAwS) framework, where in addition to
Federated Averaging, the server applies a geometric regu-
larization to make sure that the class embeddings are well
separated (cf. Section 4). This prevents the model from
collapsing to the aforementioned trivial solution. To the
best of our knowledge, this is the first principled approach
for learning in the federated setting without explicit access
to negative classes. We further show that the underlying
regularizer can be suitably modified to extend the FedAwS
framework to settings with large number of classes. This
extension is crucial for the real-world applications such as
user identification models with a large number of users. Sub-
sequently, we theoretically justify the FedAwS framework
by showing that it approximates the conventional training
settings with a loss function that has access to both positive
and negative labels (cf. Section 5). We further confirm the
effectiveness of the proposed framework on various standard
datasets in Section 6. Before presenting our aforementioned
contributions, we begin by discussing the related work and
formally describing the problem setup in Section 2 and 3,
respectively.

2. Related Works
To the best of our knowledge, this is the first work ad-
dressing the novel setting of distributed learning with only
positive labels in the federated learning framework. The
learning setting we are considering is related to the positive-
unlabeled (PU) setting where one only has access to the
positives and unlabeled data. Different from PU learning
(Liu et al., 2002; Elkan & Noto, 2008; du Plessis et al., 2015;
Hsieh et al., 2015), in the federated learning setting, the
clients do not have access to unlabeled data for both positive
and negative classes. The setting is also related to one-class
classification (Moya & Hush, 1996; Manevitz & Yousef,
2001) used in applications such as outlier detection and
novelty detection. Different from one-class classification,
we are interested in collaboratively learning a multi-class
classification model.

We consider the setting of learning a discriminative
embedding-based classifier. Popular neural networks fall
in this category. An alternative approach is to train genera-
tive models. For example, each user can learn a generative
model based on its own data, and the server performs the
MAP estimation during the inference time. We do not con-
sider this approach because it does not fit into the federated
learning framework, where the clients and server collabora-
tively train a model. In addition, training a good generative
model is both data and computation consuming. Another
possible generative approach is to use federated learning to
train a GAN model to synthesize negative labels for each
user possibly using the techniques proposed in (Augenstein
et al., 2019) and therefore convert the problem into learning
with both positives and negatives. Training a GAN model
in the federated setting is a separate and expensive process.
In this paper we consider the setting where the users do not
have access to either true or synthesized negatives.

As mentioned in the introduction, a typical application of
federated learning with only positive labels is to use this
learning framework to train user identification models such
as speaker/face recognition models. Although the proposed
FedAwS algorithm promotes user privacy by not sharing the
data among the users or with the server, FedAwS itself does
not provide formal privacy guarantees. To show formal pri-
vacy guarantees, we notice that differential privacy methods
for federated learning (Agarwal et al., 2018; Abadi et al.,
2016) can be readily employed in FedAwS by adding noise
to the updates sent from each user.

On the technical side, the proposed FedAwS can be seen as
using stochastic negative mining to improve the spreadout
regularizer. The stochastic negative mining method was
first proposed in Reddi et al. (2019) to mine hard negative
classes for each data point. Differently, we mine hard neg-
ative classes for each class. The spreadout regularization
was first proposed to improve learning discriminative vi-
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sual descriptors (Zhang et al., 2017) and further used in the
extreme-multiclass classification setting (Guo et al., 2019).
The spreadout regularization is related to the design of error-
correcting output code (ECOC) matrix (Dietterich & Bakiri,
1991; Pujol et al., 2006). In order for the ECOC matrix to
work, the class embeddings have to be well separated from
each other. In particular, similar to Proposition 1, Yu et al.
(2013) show that the classification error can be bounded
by the distance between data and positive label in the em-
bedding space, and a measure of spreadout of the classes.
Differently, our result is on the true error instead of the
empirical error.

3. Problem Setup
3.1. Federated learning of a classification model

Let us first consider the conventional federated learning of
a classification model, when each client has access to data
from multiple classes. Let the instance space be X, and
suppose there are C classes indexed by the set [C]. Let
F ⊆ {f : X → RC} be a set of scorer functions, where
each scorer, given an instance xxx, assigns a score to each of
the C classes. In particular, for c ∈ [C], f(xxx)c represents
the relevance of the c-th class for the instancexxx, as measured
by the scorer f ∈ F. We consider scorers of the form

f(xxx) = Wgθθθ(xxx), (1)

where gθθθ : X→ Rd maps the instance xxx to a d-dimensional
embedding, andW ∈ RC×d uses this embedding to produce
the scores (or logits) for C classes as Wgθθθ(xxx). The c-th row
of W ,wwwc, is referred to as the embedding vector of the c-th
class. The score of the c-th class is thuswww>c gθθθ(xxx).

Let us assume a distributed setup with m clients. In the
traditional federated learning setup, for i ∈ [m], the i-
th client has access to ni instance and label pairs Si =
{(xxxi1, yi1), . . . , (xxxini

, yini
)} ⊂ X× [C] distributed according

to an unknown distribution PiXY, i.e., (xxxij , y
i
j) ∼ PiXY. Let

S = ∪i∈[m]S
i denote the set of n =

∑
i∈[m] ni instance and

label pairs collectively available at all the clients. Our objec-
tive is to find a scorer in F that captures the true relevance
of a class for a given instance.

Formally, let ` : RC × [C] → R be a loss function such
that `(f(xxx), y) measures the quality of the scorer f on (xxx, y)
pair. The client minimizes an empirical estimate of the risk
based on its local observations Si as follows:

f̂ = argmin
f∈F

R̂(f ;Si) :=
1

ni

∑
j∈[ni]

`
(
f(xxxij), y

i
j

)
. (2)

In the federated learning setting, the m clients are interested
in collaboratively training a single classification model on
their joint data. A coordinator server facilitates the joint
iterative distributed training as follows:

• At the t-th round of training, the coordinator sends the
current model parameters θθθt and Wt to all clients.

• For i ∈ [m], the i-th client updates the current model
based on its local empirical estimate of the risk1:

θθθit = θθθt − η · ∇θθθtR̂(ft; S
i). (3)

W i
t = Wt − η · ∇WtR̂(ft; S

i). (4)

• The coordinator receives the updated model parameters
from all clients {θθθit,W i

t }i∈[m], and updates its estimate
of the model parameters using Federated Averaging:

θθθt+1 =
∑
i∈[m]

ωi · θθθit; Wt+1 =
∑
i∈[m]

ωi ·W i
t , (5)

where ωωω = (ω1, . . . , ωm) denotes the weights that the
coordinator assigns to the training samples of different
clients. For example, ωi = ni

n assigns uniform impor-
tance to all the training samples across different clients2.

In the above, assuming that each client has data of multiple
classes, the loss function in (2) can take various forms such
as the contrastive loss (Hadsell et al., 2006; Chopra et al.,
2005), triplet loss (Chechik et al., 2010) and softmax cross-
entropy. All such losses encourage two properties:

• The embedding vector g(xxxij) and its positive class em-
beddingwwwyij are close. In other words, one wants large
logits or scores for positives instance and label pairs.

• The embedding vector g(xxxij) and its negative class class
embeddings wwwc, c 6= yij are far away. In other words,
one wants small logits or scores for negatives instance
and label pairs.

For example, given a distance measure ddd(·, ·), the con-
trastive loss is expressible as

`cl
(
f(xxx), y

)
= α ·

(
ddd(gθθθ(xxx),wwwy)

)2︸ ︷︷ ︸
`pos
cl (f(xxx),y)

+

β ·
∑
c6=y

(
max

{
0, ν − ddd(gθθθ(xxx),wwwc)

})2
︸ ︷︷ ︸

`negcl (f(xxx),y)

, (6)

where α, β ∈ R are some predefined constants. In (6),
`poscl (·) encourages high logit for the positive instance and
label pairs. Similarly, `negcl (·) aims to decrese the logit for
the negative instance and label pairs.

1In the federated learning setup, the client may also update the
model with a few steps, not just a single step.

2Recently, Mohri et al. (2019) proposed the agnostic federated
learning framework to account for the heterogeneous data distribu-
tion across the clients, which crucially relies on the selecting the
non-uniform weights. In this paper, for the ease of exposition, we
restrict ourselves to the uniform weights, i.e., ωi =

ni
n

.
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3.2. Federated Learning with only positive labels

In this work, we consider the case where each client has
access to only the data belonging to a single class. To
simplify the notation, we assume that there are m = C
clients and the i-th client has access of the data of the i-th
class. The algorithm and analysis also applies to the setting
where multiple clients have the same class.

The clients are not allowed to share their data with other
clients, nor can they access the label embeddings associated
with other clients. Formally, in each communication round,
the i-th client has access to

• ni instance and label pairs with the same label i: Si =
{(xxxi1, i), . . . , (xxxini

, i)} ⊂ X× [C]
• Its own class embeddingwwwi.
• The current instance embedding model parameter θθθ.

Without access to the negative instance and label pairs, the
loss function can only encourage the instances embedding
and the positive class embedding to be close to each other.
For example, with the contrastive loss in (6), in the absence
of negative labels, one can only employ `poscl (·) part of the
loss function. Since `poscl (·) is a monotonically decreasing
function of the distance between the instance and the pos-
itive label, this approach would quickly lead to a trivial
solution with small risk where all the users and the classes
have an identical embedding. Regardless of the underlying
loss function, training with only positive instance and label
pairs will result in this degenerate solution. We propose an
algorithm to address this problem in the next section.

4. Algorithm
To prevent all the class embeddings {wwwi}Ci=1 from collaps-
ing into a single point in the optimization process, we pro-
pose Federated Averaging with Spreadout (FedAwS).

4.1. Federated Averaging with Spreadout (FedAwS)

In addition to Federated Averaging, the server performs an
additional optimization step on the class embedding matrix
W ∈ RC×d to ensure that different class embeddings are
separated from each other by at least a margin of ν. In
particular, in each round of training, the server employs
a geometric regularization, namely spreadout regularizer,
which takes the following form.

regsp(W ) =
∑
c∈[C]

∑
c′ 6=c

(
max

{
0, ν − ddd(wwwc,wwwc′)

})2
. (7)

A similar objective was first proposed as a regularizer to
improve learning discriminative visual descriptors (Zhang
et al., 2017) and then used in extreme-multiclass classifi-
cation (Guo et al., 2019). There, it was shown that the
spreadout regularization can improve the quality and stabil-

Algorithm 1 Federated averaging with spreadout (FedAwS)

1: Input. For C clients and C classes indexed by [C], ni
examples Si at the i-th client.

2: Server initializes model parameters θθθ0,W 0.
3: for t = 0, 1, . . . , T − 1 do
4: The server communicates θθθt,wwwti to the i-th client.
5: for i = 1, 2, . . . , C do
6: The i-th client updates the model based on Si:
7: (θθθt,i,wwwt,ii )← (θθθt,wwwti)− η∇(θθθt,wwwt

i)
R̂pos(S

i),

8: where R̂pos(S
i) = 1

ni

∑
j∈[ni]

`poscl (f(xxx), y).

9: The i-th client sends (θθθt,i,wwwt,ii ) to the server.
10: end for
11: Server updates the model parameters:
12: θθθt+1 = 1

C

∑
i∈[C]

θθθt,i.

13: W̃ t+1 = [wwwt,ii , . . . ,www
t,C
C ]>.

14: W t+1 ← W̃ t+1 − λη∇W̃ t+1regsp(W̃ t+1).
15: end for
16: Output: θθθ> and W>.

ity of the learned models. In this work, we argue that the
spreadout regularizer along with the positive part of the un-
derlying loss function (e.g., `poscl (·) in (6)) constitutes a valid
loss function that takes the similarity of the instance from
both positive and negative labels into account (cf. Section 5).
This proves critical in allowing for meaningful training in
the federated setting with only positive labels.

The FedAwS algorithm which modifies the Federated Av-
eraging using the spreadout regularizer is summarized in
Algorithm 1. Note that in Step 7, the local objective at
each client is define by the positive part `pos(·) of the the
underling loss (cf. (6)). The algorithm differs from the con-
ventional Federated Averaging in two ways. First, averaging
of W is replaced by updating the class embeddings received
from each client (Step 13). Second, an additional optimiza-
tion step is performed on server to encourage the separation
of the class embeddings (Step 14). Here, we also introduce
a learning rate multiplier λ which controls the effect of the
spreadout regularization term on the trained model.

Remark 1. In Algorithm 1, we assumed all clients partici-
pate in each communication round for the ease of exposition.
However, the algorithm easily extends to the practical set-
ting, where only a subset of clients are involved in each
round: Let Ct denote the set of clients participating the t-th
round. Then, the server performs the updates in Step 12 and
Step 13 with the help of the information received from the
clients indexed by Ct. Note that the optimization in Step 7
and Step 14 can employ multiple steps of SGD steps or be
based on other optimizers.
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4.2. FedAwS with stochastic negative mining

There are two unique challenges that arise when we perform
optimization w.r.t. (7). First, the best ν is problem dependent
and therefore hard to choose. Second, when C is large (also
known as the extreme multiclass classification setting), even
computing the spreadout regularizer becomes expensive. To
this end we propose the following modification of (7):

regtop
sp (W ) =

∑
c∈Ct

∑
y∈C′,
y 6=c

−ddd2(wwwc,wwwy) · Jy ∈ Nk(c)K, (8)

where C′ is a subset of classes, and Nk(c) denotes the set
of k classes that are closest to the class c in the embedding
space. The regularizer in (8) can be viewed as an adaptive
approximator of the spreadout regularizer in (7), where, for
each class c, we adaptively set ν to be the distance between
wwwc and its (k + 1)-th closest class embedding. Intuitively,
we only need to make sure that, in the embedding space,
each class is as far away as possible from its close classes.

This approach of adaptively picking ν is motivated by the
stochastic negative mining method first proposed in (Reddi
et al., 2019), where for each instance, they consider only
the positive label and a small set of most confusing (‘hard’)
negative labels to define the underlying loss function. On the
contrary, we are picking the most confusing classes based
on only the class embeddings. Furthermore, the method is
applied at the server as a regularizer as opposed to defining
the underlying loss function for an individual instance. As
we demonstrate in Section 6, the stochastic negative mining
is crucial to improve the quality of FedAwS.

Before presenting these empirical results, we provide a the-
oretical justification for this in the following section.

5. Analysis
To justify our FedAwS technique, we will:

(i) relate the classification error to the separation of the
class embeddings

(ii) introduce a particular cosine contrastive loss, which
we show to be consistent for classification

(iii) relate the FedAwS objective to empirical risk minimiza-
tion using the cosine contrastive loss, despite the latter
requiring both positive and negative labels.

Put together, this justifies why the FedAwS classifier can
be close in performance to that of a consistent classifier,
despite only being trained with positive labels.

We first state a simple result arguing that small distance be-
tween the instance embedding and the true class embedding,
and large distance between the class embeddings, imply low
classification error.

Proposition 1. Let the minimum distance between the class
embeddings be ρ := infi 6=j ddd(wwwi,wwwj), and the expected
distance between the embeddings of an instance xxx and its
true class y be ε = E(xxx,y)∼PXY

ddd(gθθθ(xxx),wwwy). Then, the
probability of misclassification satisfies

P
(
∃z 6= y s.t. ddd(gθθθ(xxx),wwwy) ≥ ddd(gθθθ(xxx),wwwz)

)
≤ 2ε/ρ.

Proof. Note that, if there exists any z 6= y such that
ddd(gθθθ(xxx),wwwy) ≥ ddd(gθθθ(xxx),wwwz), then

ddd(gθθθ(xxx),wwwy) ≥ 1

2

(
ddd(gθθθ(xxx),wwwy) + ddd(gθθθ(xxx),wwwz)

)
(i)

≥ ddd(wwwy,wwwz)

2

(ii)

≥ ρ

2
, (9)

where (i) and (ii) follow from the triangle inequality and
the definition of ρ, respectively. Next, by combing (9) with
Markov’s inequality, we obtain that

P
(
∃z 6= y s.t. ddd(gθθθ(xxx),wwwy) ≥ ddd(gθθθ(xxx),wwwz)

)
≤ P

(
ddd(gθθθ(xxx),wwwy) ≥ ρ

2

)
≤

2E(xxx,y)∼PXY
ddd(gθθθ(xxx),wwwy)

ρ
=

2ε

ρ
.

To relate the FedAwS objective to a contrastive loss, without
loss of generality, we work with normalized embeddings;
i.e., we assume that the rows of the matrix W as well as the
instance embeddings generated by gθθθ(·) have unit Euclidean
norm3. We can then adopt the cosine distance:

dddcos(uuu,uuu
′) = 1− uuu>uuu′ ∀ uuu, uuu′ ∈ Rd. (10)

Specializing the contrastive loss in (6) to the cosine distance
measure gives us the cosine contrastive loss.

Definition 1 (Cosine contrastive loss). Given an instance
and label pair (xxx, y) and the scorer f(xxx) in (1), the cosine
contrastive loss takes the following form.

`ccl
(
f(xxx), y

)
=
(
dddcos(gθθθ(xxx),wwwy)

)2
+∑

c6=y

(
max

{
0, ν − dddcos(gθθθ(xxx),wwwc)

})2
. (11)

Further, by using sc = g>θθθ (xxx)wwwc to denote the logit for class
c, the cosine contrastive loss can be expressed as

`ccl
(
f(xxx), y

)
=

(1− sy)2 +
∑
c 6=y

(
max

{
0, ν − 1 + sc

})2
(12)

3The analysis in this section easily extends to unnormalized
embeddings. However, the restriction to normalized embeddings
slightly improves performance empirically.
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Note that, besides utilizing the cosine distance, we have
used α = 1 and β = 1 in (6) to obtain (11). The following
result states that cosine contrastive loss is a valid surrogate
loss (Bartlett et al., 2006) for the misclassification error.
Lemma 1. Let ν ∈ (1, 2). The cosine contrastive loss in
(12) is a surrogate-loss of the misclassification error, i.e.,

`ccl
(
f(xxx), y

)
≥ 2(ν − 1) · Jy /∈ Top1(f(xxx))K, (13)

where Top1(f(xxx)) denotes the indices of the classes that
f(·) assigns the highest score for the instance xxx.

Proof. If y ∈ Top1(f(xxx)), then Jy /∈ Top1(f(xxx))K = 0.
Since `ccl

(
f(xxx), y

)
≥ 0, we have

`ccl
(
f(xxx), y

)
≥ 2(ν − 1) · Jy /∈ Top1(f(xxx))K (14)

in this case. Now, let’s consider the case when y /∈
Top1(f(xxx)). For a ∈ R, let φ(a) = (1 − a)2 and
φ̃(a) = (max{0, ν − 1− a})2. We have

`ccl
(
f(xxx), y

)
= φ(sy) +

∑
c 6=y

φ̃(−sc)

≥φ(sy) + φ̃(−max
c6=y

sc)
(i)

≥ φ̃(sy) + φ̃(−max
c 6=y

sc)

(ii)

≥ 2 · φ̃
((
sy −max

c6=y
sc
)
/2
) (iii)

≥ 2 · (ν − 1)

= 2(ν − 1) · Jy /∈ Top1(f(xxx))K, (15)

where (i) follows as we have φ(a) ≥ φ̃(a),∀ a and (ii)
utilizes the convexity of φ̃. (iii) follows as we have φ̃(a) >
ν − 1 for a < 0, and

y /∈ Top1(f(xxx)) ⇐⇒ sy −max
c6=y

sc < 0.

The statement of the lemma follows from (14) and (15).

Lemma 1 established that the cosine contrastive loss is a
valid surrogate for the misclassfication error in the sense
of (Bartlett et al., 2006). We note here the bound is
tight. For example, for ε > 0, suppose ν = 2 − ε,
sy = −ε, sy′ = ε for some y′ 6= y, and sc = −1 + ε/2,
c 6= {y, y′}. Then, `ccl

(
f(xxx), y

)
= 2(1 − ε) + ε2 + 4ε =

2(ν − 1)Jy /∈ Top1(f(xxx))K + ε2 + 4ε, which tends to
2(ν − 1)Jy /∈ Top1(f(xxx))K as ε goes to 0. One may follow
similar analysis as in Reddi et al. (2019, Theorem 4) to show
the statistical consistency (Zhang, 2004) of minimizing this
loss.

We now explicate a connection between the classification-
consistent cosine contrastive loss and the objective under-
lying the FedAwS algorithm. To do so, we assume that
n1 = · · · = nC = n

C , and note that FedAwS effectively
seeks to collaboratively minimize

Rsp(f) =
∑
i∈[C]

ni
n
· R̂pos(S

i) + λ · regsp(W ), (16)

with the regularizer regsp(W ) from (7). Now we observe:

Proposition 2. Suppose λ = 1
C and n1 = · · · = nC =

n
C . Then, FedAwS objective equals the empirical risk with
respect to the loss function

`sp(f(xxx), y) =

(1− sy)2 +
∑
c6=y

(
max

{
0, ν − 1 +www>y wwwc

})2
, (17)

i.e., Rsp(f) = 1
n

∑
(xxx,y)∈S `sp(f(xxx), y).

Proof. Note that

Rsp(f) =
∑
i∈[C]

ni
n
· R̂pos(S

i) + λ · regsp(W )

=
1

n

∑
(xxx,y)∈S

`posccl (f(xxx), y) + λ · regsp(W )

=
1

n

∑
(xxx,y)∈S

`posccl (f(xxx), y)+

λ
∑
y∈[C]

∑
c 6=y

(
max

{
0, ν − dddcos(wwwy,wwwc)

})2
(i)
=

1

n

∑
(xxx,y)∈S

(
`posccl (f(xxx), y)+

Cλ
∑
c6=y

(
max

{
0, ν − dddcos(wwwy,wwwc)

})2)
(ii)
=

1

n

∑
(xxx,y)

(
(1− sy)2+

∑
c 6=y

(
max

{
0, ν − 1 +www>y wwwc

})2)
=

1

n

∑
(xxx,y)∈S

`sp(f(xxx), y), (18)

where (i) and (ii) follows from the assumptions that n1 =
· · · = nC and λ = 1

C , respectively.

Note that the contribution of the negative labels in the loss
function `sp is independent of the input embedding gθθθ(xxx).

Remark 2. Proposition 2 shows that the spreadout regular-
izer regsp(W ) can be viewed as the negative component of
a conventional loss. The assumption of each user having
equal number of examples makes this easy to see. Our anal-
ysis easily extends to unequal number of examples by using
a weighted spreadout for each class.

Next, we utilize Proposition 2 to argue that the FedAwS ob-
jective Rsp(f) approximates the cosine contrastive loss – a
valid surrogate for the misclassification error (cf. Lemma 1).
Proposition 2 establishes that Rsp(f) corresponds to the em-
pirical risk with respect to `sp. Note that `possp (f(xxx), y) =
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`posccl (f(xxx), y) (cf. (6)). Thus, the desired result follows by
establishing that `negsp (f(xxx), y) approximates `negccl (f(xxx), y).
This approximation becomes better as the input embedding
gθθθ(xxx) gets closer to its class embeddingwwwy , as encouraged
by `possp (f(xxx), y).

Theorem 1. Let ν ∈ (1, 2). Then, the loss `sp in (17)
satisfies

`ccl(f(xxx), y)− (1 + 2ν) ·
∑
c 6=y

|www>c rrrxxx,y| ≤ `sp(f(xxx), y)

≤ `ccl(f(xxx), y) + (1 + 2ν) ·
∑
c6=y

|www>c rrrxxx,y|, (19)

where rrrxxx,y = wwwy − gθθθ(xxx).

Proof. Note that rrrxxx,y = wwwy − gθθθ(xxx) denotes the mismatch
betweenwwwy and gθθθ(xxx). Thus,

www>y wwwc = gθθθ(xxx)>wwwc + rrr>xxx,ywwwc = sc + rrr>xxx,ywwwc.

As a result `sp in (17) can be written as

`sp(f(xxx), y)

= (1− sy)2 +
∑
c6=y

(
max

{
0, ν − 1 + sc +www>c rrrxxx,y

})2
= (1− sy)2 +

∑
c6=y

(
max

{
0, ν − 1 + sc

})2
+
∑
c6=y

∆c

= `ccl(f(xxx), y) +
∑
c 6=y

∆c, (20)

where

∆c :=
(

max
{

0, ν − 1 + sc +www>c rrrxxx,y
})2 −(

max
{

0, ν − 1 + sc
})2

. (21)

The result follows from (20) and Claim 1 below.

Claim 1. Given an instance and label pair (xxx, y) and the
scorer f , for c 6= y, let ∆c be as defined in (21). Then,

|∆c| ≤ 2(1 + 2ν) ·
∣∣www>c rrrxxx,y∣∣. (22)

Proof. Let a = ν− 1 + sc and b = www>c rrrxxx,y . Thus, we want
to show that∣∣(max

{
0, a+ b

})2 − (max
{

0, a
})2∣∣ ≤ (1 + 2ν) ·

∣∣b∣∣.
Let us consider four possible cases.

• Case 1 (a+ b < 0 and a < 0). In this case, we have∣∣(max
{

0, a+ b
})2 − (max

{
0, a
})2∣∣ = 0.

• Case 2 (a+ b > 0 and a > 0). Note that∣∣(max
{

0, a+ b
})2 − (max

{
0, a
})2∣∣

= |(a+ b)2 − a2| = |b(b+ 2a)| ≤ (1 + 2ν) · |b|,

where the last inequality follows from the fact that
a = ν − 1 + sc ≤ ν, since sc ≤ 1.

• Case 3 (a+ b > 0 and a < 0). In this case,∣∣(max
{

0, a+ b
})2 − (max

{
0, a
})2∣∣

=
∣∣max

{
0, a+ b

})2∣∣ ≤ |b2| ≤ |b|,
where the last equality follows as |b| = |www>c rrrxxx,y| ≤ 1.

• Case 4 (a+ b < 0 and a > 0). Note that∣∣(max
{

0, a+ b
})2 − (max

{
0, a
})2∣∣

=
∣∣max

{
0, a
})2∣∣ ≤ |a|2 (i)

≤ |b|2 ≤ |b|,

where (i) follows as by combining a > 0 and a+b < 0
we obtain the order b < −a < 0 < a.

Now, by combining all the four case above and using the
fact that ν ∈ (1, 2), we obtain the desired the result.

As a final remark, our analysis above assumed that the cosine
contrastive loss (11) uses all labels c 6= y as “negatives” for
the given label y. However, using similar ideas as in (Reddi
et al., 2019), we may easily extend our analysis to the case
where the loss uses the k hardest labels as negatives (cf. (8)).

6. Experiments
We empirically evaluate the proposed FedAwS method on
benchmark image classification and extreme multi-class
classification datasets. In all experiments, both the class
embeddingwwwc’s and instance embedding gθθθ(xxx) are `2 nor-
malized, as we found this slightly improves model quality.

For FedAwS, we use the squared hinge loss with cosine
distance to define R̂pos(S

i) at the clients (cf. Algorithm 1):

`pos(f(xxx), y) = max
({

0, 0.9− gθθθ(xxx)>wwwy
})2

. (23)

This encourages all positive instance and label pairs (xxx, y)
to have dot product larger than 0.9 in the embedding space.

We compare the following methods in our experiments.

• Baseline-1: Training with only positive squared hinge
loss. As expected, we observe very low precision values
because the model quickly collapses to a trivial solution.

• Baseline-2: Training with only positive squared hinge
loss with the class embeddings fixed. This is a simple
way of preventing the class embeddings from collapsing
into a single point.



Federated Learning with Only Positive Labels

Dataset Model Baseline-1 Baseline-2 FedAwS Softmax (Oracle)
CIFAR-10 RESNET-8 10.7 83.3 86.3 88.4
CIFAR-10 RESNET-32 9.8 92.1 92.4 92.4
CIFAR-100 RESNET-32 1.0 65.1 67.9 68.0
CIFAR-100 RESNET-56 1.1 67.5 69.6 70.0

Table 1: Precision@1 (%) on CIFAR-10 and CIFAR-100.

Dataset #Features #Labels #TrainPoints #TestPoints Avg. #I/L Avg. #L/I
AMAZONCAT 203,882 13,330 1,186,239 306,782 448.57 5.04
WIKILSHTC 1,617,899 325,056 1,778,351 587,084 17.46 3.19
AMAZON670K 135,909 670,091 490,449 153,025 3.99 5.45

Table 2: Summary of the datasets used in the paper. #I/L is the number of instances per label, and #L/I is the number of labels per instance.

• FedAwS: Our method with stochastic negative mining
(cf. Section 4.2).
• Softmax: An oracle method of regular training with the

softmax cross-entropy loss function that has access to
both positive and negative labels.

6.1. Experiments on CIFAR

We first present results on the CIFAR-10 and CIFAR-
100 datasets. We trained ResNets (RESNETS) (He et al.,
2016a;b) with different number of layers as the underlying
model. Specifically, we train RESNET-8 and RESNET-32
for CIFAR-10; and train RESNET-32 and RESNET-56 for
CIFAR-100 with the larger number of classes.

From Table 1, we see that on both CIFAR-10 and CIFAR-
100, FedAwS almost matches or comes very close to the
performance of the oracle method which has access to all
labels. The first baseline method, training with only positive
squared hinge loss does not lead to any meaningful precision
values. In this case, as discussed above the model collapses
into a degenerate solution.

Interestingly, the naïve way of preventing the embeddings
from collapsing by fixing the class embeddings as their
random initialization gives a much better result. In fact, on
CIFAR-10 with RESNET-32, Baseline-2 performs almost
identically to the oracle and FedAwS. The reason behind this
good performance is that with a smaller number of classes,
at a random initialization in a high-dimensional space (64 in
this case), the class embeddings are already well spread-out
as they are almost orthogonal to each other. In addition, the
10 classes of CIFAR-10 are not related to each other. This
makes the 10 nearly-orthogonal vectors ideal to be used
as-is for class embeddings.

6.2. Experiments on extreme-multiclass classification

Datasets. We test the proposed approach on standard
extreme multilabel classification datasets (Varma, 2018).
These datasets have a large number of classes, and therefore
are a good representatives of the applications of federated

learning with only positive labels. Similar to Reddi et al.
(2019), because these datasets are multi-label, we uniformly
sample positive labels to obtain datasets corresponding to
multi-class classification problems. The datasets and their
statistics are summarized in Table 2.

Model architecture. We use a simple embedding-based
classification model wherein an instance xxx ∈ Rd′ , a high-
dimensional sparse vector, is first embedded into R512 using
a linear embedding lookup followed by averaging. The
vector is then passed through a three-layer neural network
with layer sizes 1024, 1024 and 512, respectively. The
first two layers in the network apply a ReLU activation
function. The output of the network is then normalized to
obtain instance embeddings with unit `2-norm. Each class
is represented as a 512-dimensional normalized vector.

Training setup. SGD with a large learning rate is used
to optimize the embedding layers, and Adagrad is used to
update other model parameters. In each round, we randomly
select 4K clients associated with 4K labels.

In addition to the methods used in the CIFAR experiments,
we also compare the FedAwS with SLEEC (Hadsell et al.,
2006). This is an oracle method of regular training with
access to both positive and negative labels.

Results. We report precision@k for k ∈ {1, 3, 4} in Table
3. On all the datasets, FedAwS largely outperforms the
two baseline methods of training with only positive labels.
On both AMAZONCAT and AMAZON670K, it matches or
comes very close to the performance of Softmax and SLEEC.
Baseline-2 gives reasonable (although quite sub-optimal)
performance on AMAZONCAT; but does not work on AMA-
ZON670K and WIKILSHTC which have larger number of
classes. Thus, randomly initialized class embeddings are
not ideal in the situation of many classes, and it is crucial to
train the class embeddings with the rest of the model.

Meta parameters. There are two meta parameters in the
proposed method: the learning rate multiplier of the spread-
out loss λ (cf. Algorithm 1), and the number top confusing
labels considered in each round k (cf. (8)). To make a fair
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Federated Learning with Only Positives Oracle
Baseline-1 Baseline-2 FedAwS Softmax SLEEC

P@1 3.4 64.1 92.1 92.1 90.5
AMAZONCAT P@3 3.2 46.8 70.8 77.9 76.3

P@5 3.1 32.6 58.7 62.3 61.5
P@1 0.0 4.3 33.1 35.2 35.1

AMAZON670K P@3 0.0 2.8 29.6 31.6 31.3
P@5 0.0 2.2 27.4 29.5 28.6
P@1 7.6 7.9 37.2 54.1 54.8

WIKILSHTC P@3 4.5 3.4 22.6 38.8 33.4
P@5 2.8 2.6 16.2 29.9 23.9

Table 3: P@1,3,5 (%) of different methods on AMAZONCAT, AMAZON670K and WIKILSHTC.

Baseline-1 Baseline-2 k = 10 k = 100 k = 500 k = all λ = 1 λ = 10 λ = 100
P@1 3.4 64.1 26.3 92.1 86.9 87.7 73.2 92.1 92.2
P@3 3.2 46.8 21.5 70.8 66.1 69.7 50.2 70.8 71.7
P@5 3.1 32.6 18.2 58.7 49.3 52.2 40.4 58.7 57.9

Table 4: P@1,3,5 (%) of different meta parameters on AMAZONCAT.

comparison with other methods which do not have these
meta parameters, in all of our other experiments in Table 3,
we simply use k = 10 and λ = 10.

We perform an analysis of these two parameters in Table
4 on the AMAZONCAT dataset. The reason for the bad
performance for a small k is that most of the picked labels
are in fact positives in this setting (due to the inherent multi-
label nature of the dataset), and over spreading the positive
classes is not desirable. On the other hand, a very large
k leads to sub-optimal performance, verifying the benefit
and requirement of stochastic negative mining. That said,
we would like to emphasize that once k is large enough,
FedAwS is robust with respect to k. Even with k = all (i.e.,
no SNM), FedAWS is still far better than the baselines.

Regarding λ, a relatively large value (10 or 100) is necessary
to ensure the class embeddings are sufficiently spreadout.

7. Conclusion
We studied a novel learning setting, federated learning with
only positive labels, and proposed an algorithm that can
learn a high-quality classification model without requiring
negative instance and label pairs. The idea is to impose a
geometric regularization on the server side to make all class
embeddings spreadout. We justified the proposed method
both theoretically and empirically.

One can extend the identity-based class embeddings to the
settings where the class embeddings are generated from
class-level features. In addition, we notice that negative sam-
pling techniques are crucial to make conventional extreme
multiclass classification work. The proposed method is of

independent interest in this setting because it replaces neg-
ative sampling altogether by imposing a strong geometric
regularization. Further, even though our proposed method
achieves near oracle performance on multiple datasets, ex-
ploring a fundamental trade-off between the performances
in our novel setting and the oracle setting is another interest-
ing future research direction.
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