Large-Scale Optimization

Sanjiv Kumar, Google Research, NY
EECS-6898, Columbia University - Fall, 2010

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

Learning and Optimization

In most cases, learning from data reduces to optimizing a function with
respect to model parameters

prediction y = f(x;w) e.g.,xeﬂ%d,yeﬂ%orye{—l,l}

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

Learning and Optimization

In most cases, learning from data reduces to optimizing a function with
respect to model parameters

prediction y = f(x;w) e.g.,xeﬂ%d,yeﬂ%orye{—l,l}

w=argminJ(w)

w
=argmin[L(D,w)+ AR(w)]
W J J

loss regularizer

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

Learning and Optimization

In most cases, learning from data reduces to optimizing a function with
respect to model parameters

prediction y = f(x;w) e.g.,xeﬂ%d,yeﬂ%orye{—l,l}

w=argminJ(w)

w
=argmin[L(D,w)+ AR(w)]
W J ,
loss regularizer
J(W)“ convex J(W)A non-convex
« Convex vs hon-convex %atmimmum Wi”im”m
w w

« Constrained vs unconstrained ained ondifferentiabl
J(W)“ constraine J(W)A 0] erentiable

* Smooth vs non-differentiable v

twice differentiable

=
bgv

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

Examples

Linear regression y = wa +wy xe R4 ,yeR Absorb wy In w by adding
I\ . a dummy variable in x:xg =1

+

Jw) =3 (w!x; - yl-)2 +Awlw convex, smooth, unconstrained
i

=y

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

Examples

Linear regression y = wa +wy xe R4 ,yeR Absorb wy In w by adding
I\ . a dummy variable in x:xg =1

+

Jw) =3 (w!x; - yl-)2 +Awlw convex, smooth, unconstrained
i

»
»
X

Linear SVM y=sgn(wa+w0) xefRd,y e{-11}

+
+ J(w)=> max(0, 1_J’iWTxi) +iwlw convex, non-differentiable,
X i unconstrained

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

Examples

Linear regression y = wa +wy xe R4 ,yeR Absorb wy In w by adding
I\ . a dummy variable in x:xg =1

+

Jw) =3 (w!x; - yl-)2 +iwlw convex, smooth, unconstrained
i

»
»
X

Linear SVM y=sgn(wa+w0) xeﬂ%d,y e{-11}

+
+ J(w)=> max(0, 1_)’iWTxi) +iwlw convex, non-differentiable,
X i unconstrained

Logistic p(y=1|x)= a(wa +wp) XE€E md,y e{-11} o(x) =1/(1+¢*) probabilistic
Regression
J(w)y==-> |0g(0(yl-wa,-) +Awlw convex, smooth, unconstrained

i

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 7

Examples

Linear regression y = wa +wy xe R4 ,yeR Absorb wy In w by adding
I\ . a dummy variable in x:xg =1

+

J(w) = Z(wa,- — yl-)2 +aw! w convex, smooth, unconstrained
i

»
»
X

Linear SVM y=sgn(wa+w0) xeﬂ%d,y e{-11}

+
+ J(w)=> max(0, 1_J’iWTxi) +iwlw convex, non-differentiable,
¢ i unconstrained

Logistic p(y=1|x)=c(w! x+ wp) XE€E R, ye{-1,1} o()-1a+c") probabilistic
Regression
J(w)y==-> |0g(0(yl-wal-) +Awlw convex, smooth, unconstrained

I

Nonlinear (kernelized) versions: replace w! x with 2. w'k(x, x;)
« 2-norm regularizer changes to w! Kw where K is the kernel matrix

» Same properties of the functions as their linear versions

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 8

Popular Optimization Methods

First Order Methods

Use gradient of the function to iteratively find the local minimum
Easy to compute and run but slow convergence

Gradient (steepest) descent

Coordinate descent

Conjugate Gradient

Stochastic Gradient Descent

Second Order Methods

Use gradients and Hessian (curvature) iteratively
Computationally more demanding but fast convergence
Newton’s method

Quasi-Newton methods (BFGS and variants)
Stochastic Quasi-Newton methods

Other than line-search based methods: Trust-region

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

Conditions for Local Minimum

e If wis a local-minimizer then, J(w) 1
— First-order necessary condition

»

local maximum saddle point
oJ(w)

ow

Gradient

=VJ(#) =0
stationary point

local minimum

w

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 10

Conditions for Local Minimum

»

e If wis a local-minimizer then, J(w) 1
— First-order necessary condition

local maximum saddle point
oJ(w)

ow

Gradient

=VJ(#) =0
stationary point

local minimum

— Second-order necessary condition >
2
0°J -
Hessian —(M;) = VZJ(W) Is PSD
owow positive semi-definite

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 11

Conditions for Local Minimum

»

e If wis a local-minimizer then, J(w) 1
— First-order necessary condition

local maximum saddle point
oJ(w)

ow

Gradient

=VJ(#) =0
stationary point

local minimum

— Second-order necessary condition

2
0770 _92(5)is PSD

OwOow positive semi-definite

w

Hessian

— Sufficient conditions

VJ(w)=0 and v2J (w)is PD positive definite (strictly PD)
For smooth convex function = any stationary point is a global minimizer

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 12

Gradient Descent

lteratively estimates new parameter values

Sanjiv Kumar

Wey1 =Wy =1, VJ (W)

10/19/2010 EECS6898 — Large Scale Machine Learning

J(w) 4

»

g“

13

Gradient Descent

lteratively estimates new parameter values

»

J(w) 4

Wey1 =Wy =1, VJ (W)

We want J(wy,q) <J(wy)

But this is not sufficient to reach local minima !
One has to make sure VJ(w,) —» 0 7

Step-length must satisfy the \Wolfe conditions of sufficient decrease
search direction

J(w +n,py) <J(wy) + Cl’?tVJ(Wt)Pt/ 0<e <l

Gradient descent converges to local minimum if step size is sufficiently small !

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 14

Gradient Descent

lteratively estimates new parameter values

»

J(w) 4
Wi = w, =1, VJ (W)

We want J(wy,q) <J(wy)

But this is not sufficient to reach local minima !
One has to make sure VJ(w,) -0

Step-length must satisfy the \Wolfe conditions of sufficient decrease
search direction

&
J(w; +) < I (W) +an,VJI(wy) py 0<e <1
Gradient descent converges to local minimum if step size is sufficiently small !

Rate of Convergence: Linear

wean =] _

— <r
w =

Painfully slow in practice, many heuristics are used (e.g., momentum)

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 15

Coordinate Descent

Updates one coordinate at a time keeping others fixed

W;+1 = W; - ﬂtVJ(W;)

» Cycles through all the coordinates sequentially

Sanjiv Kumar 10/19/2010

EECS6898 — Large Scale Machine Learning

w

1 4

»

16

Coordinate Descent

Updates one coordinate at a time keeping others fixed

Wll

»

W;+1 = W; - ﬂtVJ(W;)

» Cycles through all the coordinates sequentially ﬂ

v

Properties 0
* Very simple and easy to implement — reasonable when variables are loosely coupled
» Can be inefficient in practice (may take long time to converge)

» Convergence not guaranteed, in general

Block Coordinate Descent

» Update a small set of coordinates simultaneously

» Has been used successfully for training large SVMs

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 17

Conjugate Gradient

Parameters are searched along conjugate directions
Conjugacy: Two vectors p, and p, are conjugate wrt H if

T
pi Hpy =0

Starting with pg = —VJ(wg) Wil =Wy + 04 Dy

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

1 ! \

1 i 1 1 |
green: GD ||} WX/ ||
red:CG Y /]

‘.\."-._ l"‘-:"" . o Vi i

AT A0

1.1\._\:-_‘\\ \.\ -\- e /;. ._l."ll

k\‘l\ iy

N/

\\\ — A

18

Conjugate Gradient

Parameters are searched along conjugate directions
Conjugacy: Two vectors p, and p, are conjugate wrt H if

T
pi Hpy =0

Starting with pg = —VJ(wg) Wil =Wy + 04 Dy

L
W

Successive conjugate directions as linear combination of gradient direction and previous
conjugate direction

p=—VJW)+Bpia t=12,..

M _wJ (w)" (VJ(w,)=VJ(w,_1)) Hestenes-

T p .
pi H,py C pli(VI(w) -V () Stiefel form
But usually picked something
that satisfies Wolfe’s conditions !

Exact o, =

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 19

Conjugate Gradient

Parameters are searched along conjugate directions AN\
Conjugacy: Two vectors p, and p, are conjugate wrt H if green: GD
T red: CG
Starting with pg =—-VJ(wp) Wiy = W, + 04 Py x .

Successive conjugate directions as linear combination of gradient direction and previous
conjugate direction

p=—VJW)+Bpia t=12,..

vI(w) p, _wJ (W) (VJ(w,)-VJ(w, 1)) Hestenes-

Exact o =—7 B .
pi Hip, L Pl)=V () Stiefelform
But usually picked something
that satisfies Wolfe’s conditions !
Properties

» For quadratic functions, guaranteed to return the optimal in at most d iterations

» Use preconditioning to increase the convergence rate: make condition number of
Hessian as small as possible

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 20

Newton's Method

Approximates a function using second order Taylor expansion
J(w) 4

»

1
J(w, + p) = J(w;) + pT VI (w,) + EpTsz(wf)p

guadratic

v

Wt Wi

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 21

Newton's Method

Approximates a function using second order Taylor expansion

T 1 1792 J(w) 4
SO+ p)=J(we)+ p7 VI (w) +2p7 VoI (W) p
minimizing w.r.t. p Hessian
) —1 “1 guadratic
p= (V20w VI O0) = H VI (wy) |
_ -1 w:y:v >
Wi =W —H"VJ(wy) el w

— No explicit step-length parameter
— If Hessian is not positive definite, Newton step may be undefined or may even diverge
— For quadratic functions, converges in a single step !

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 22

Newton's Method

Approximates a function using second order Taylor expansion

T 1 1g2 J(w) 4
SO+ p)=J(we)+ p7 VI (w) +2p7 VoI (W) p
minimizing w.r.t. p Hessian
) —1 “1 guadratic
p= (V20w VI O0) = H VI (wy) |
_ -1 w:y:v >
Wi =W —H"VJ(wy) el w

— No explicit step-length parameter
— If Hessian is not positive definite, Newton step may be undefined or may even diverge
— For quadratic functions, converges in a single step !

Rate of Convergence: Quadratic Hle — VAVH
<k

v, = f

Fast convergence but each iteration slow: O(d?) space and O(d®) time

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 23

Quasi-Newton Methods

Do not require computation of Hessian but still super-linear convergence

Key Idea: Approximate Hessian locally using change in gradients

Secant equation

Sanjiv Kumar 10/19/2010

B —
Approx D118 = Vy

Hessian

St =Wl = Wy

Ve =VJ(wii1) —VJ (W)

EECS6898 — Large Scale Machine Learning

Wolfe’s conditions
s{ ¥ >0
B, >0

24

Quasi-Newton Methods

Do not require computation of Hessian but still super-linear convergence

Key Idea: Approximate Hessian locally using change in gradients

Secant equation Approx /Bt 115 =V Wolfe’s conditions
Hessian StTyt >0
St =Wi1 =Wy Yy = VI (Wii1) —VJ (W) B, >0

— Additional conditions imposed on B, e.g., symmetry or diagonal
— Difference between successive B’s is low-rank
— BFGS (Broyden-Fletcher-Goldfarb-Shanno): uses rank-2 (inverse) Hessian updates

—~ ~

. ~ D~ ~ _ ~ ~r
It B, =B, ' By =arg ménHB - BtHF subjectto Bryg = Br, B =5

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 25

Quasi-Newton Methods

Do not require computation of Hessian but still super-linear convergence

Key Idea: Approximate Hessian locally using change in gradients

Secant equation Approx /Bt 115 =V Wolfe’s conditions
Hessian T
S; ¥t >0

St = Wt+l - Wl‘! yt = v'](M}l‘—F:l_) - VJ(Wt) Bf >~ O

— Additional conditions imposed on B, e.g., symmetry or diagonal
— Difference between successive B’s is low-rank
— BFGS (Broyden-Fletcher-Goldfarb-Shanno): uses rank-2 (inverse) Hessian updates

—~ ~

: _ i~ o~ _ ~ ~7
It B, =B, ' By =arg ménHB - BtHF subjectto Bryg = Br, B =5

* Inverse of approx Hessian updated directly = O(d?) space and time

n T\p T T =

B =U=psyi)B (I =pyyis)+ pesisy p, =115/ v, By=1

O(d?) cost per iteration, superlinear rate of convergence, self-correcting properties

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 26

Limited-Memory BFGS (L-BFGS)

Quasi-Newton methods produce dense Hessian approximations even when
true Hessian is sparse - high storage cost for large-scale problems

Key ldea: Store approx Hessian using a few d-dim vectors from most recent
iterations - Store at most m most recent pairs (s, , ;)

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

27

Limited-Memory BFGS (L-BFGS)

Quasi-Newton methods produce dense Hessian approximations even when
true Hessian is sparse - high storage cost for large-scale problems

Key ldea: Store approx Hessian using a few d-dim vectors from most recent
iterations - Store at most m most recent pairs (s, , ;)

Wil =Wy — 0, B, VJ (W)

— Iteratively estimate the product B, V.J (w,) using most recent (s, , ;)
— Can be achieved efficiently in two loops in O(md)

— Different initialization for each inner loop possible, e.g.,

T
~ St Vs
BtO =1, y, = tTltl
Y1V

Similar to Conjugate-Gradient, rate of convergence linear
instead of superlinear as in BFGS

How about sparse, sampling-based or diagonal approximation of Hessian ?

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

28

Difference from optimal log-likelihood

10

10

10

10

10

10

Comparison: Logistic Regression

n=1500, d=100

MIS

Difference from optimal log-likelihcod

FLOPS FLOPS

independent features correlated features
Hessian-based methods do better

Trade-off between number of iterations and cost per iteration ! inka [5]
InKa

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 29

Batch vs Online

Most optimization functions use i.i.d. training data as,
Linear Regression J(w) = Z[(wal- —yl-)2 + /lew]

l
SVM J(w) =) [max(0,1- yl-wal-) - /lew]
l
Logistic Regression J(w) = —Z[Iog(a(yl-wal-) + 2wl w]
I
Batch methods
— compute gradients using all the training data
— each iteration needs to use full batch of data - slow for large datasets

Online (Stochastic) Methods
— use gradients from a small subset of data, usually just a single point
— do not decrease the function value monotonically
— typically have worse convergence properties than batch methods
— quite appropriate for large-scale applications where data is usually redundant
— can converge even before seeing all the data once - very fast
— popular conjecture: may also avoid bad local minima

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

30

Stochastic Gradient Descent (SGD)

At each iteration, use a small training subset to estimate the gradient

Wi = wy =11, VJ (wy, x\t)

single point or a small subset of training data

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

31

Stochastic Gradient Descent (SGD)

At each iteration, use a small training subset to estimate the gradient

W1 =Wy =1, VJ (wy, x{)
single point or a small subset of training data

Converges to optimal value W if,

parameters may move arbitrary distances Zt Hy =0

step size decreases fast enough Zt 77t2 < 00

T

Step-length 7, = ;770 7,7 >0 are tuning parameters

Properties

— 0O(d) space and time per iteration instead of O(nd) of gradient descent
— Outperforms batch gradient methods on large datasets

— Slow convergence on ill-conditioned problems

— Stochastic Meta-Descent: adjust a different gain for each parameter

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 32

Experiment - SGD

SVM classification task
d = 47K (~80 nonzero), n = ~800K

Model Algorithm Training Time Objective Test Error
. e SVMLight 23,642 secs 0.2275 6.02%
Hinge loss, A =10 SVMPerf 66 secs 0.2278 6.03%

See [21,22].
SGD 1.4 secs 0.2275 6.02%
_ LibLinear (p = 10~2) 30 secs 0.18907 5.68%

. o\ 1(—5
E"'g?f?‘}!o’s‘s’ A=10 LibLinear (p = 10~3) A4 secs 0.18890 5.70%
ee [23].

SGD 2.3 secs 0.18893 5.66%

Bottou & Bousquet [8]
Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 33

SGD for Sparse Data

. d
Suppose training set Vectors{xi e ‘R }izl,_,_,n are sparse
— Only a small fraction (s) of d elements are non-zero s<<1
— Common for many applications: text, images, biological data, ...

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

34

SGD for Sparse Data

. d
Suppose training set Vectors{xi e ‘R }izl,_,_,n are sparse
— Only a small fraction (s) of 4 elements are non-zero s<<1
— Common for many applications: text, images, biological data, ...

Objective function J(w) = Z?zl[L(yinxl-) +AR(w)]

Y

sparse dense

VJ(Wz"xt) — VL(ththt)ytxt + }“VR(Wt) dense vector update
— —~— — " - O(d) per iteration

How to make sparse updates, i.e., O(sd) per iteration?

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 35

SGD for Sparse Data

. d
Suppose training set Vectors{xi e ‘R }izl,_,_,n are sparse
— Only a small fraction (s) of d elements are non-zero s<<1
— Common for many applications: text, images, biological data, ...

Objective function J(w) = Zi?:l[L(yinxl-) +AR(w)]

Y

sparse dense

VJ(Wt’xt) — VL(ththt)ytxt + }“VR(WZ‘) dense vector update
— —~— — " - O(d) per iteration

How to make sparse updates, i.e., O(sd) per iteration?
Break updates into two parts

1. Update using gradients of L(.) alone ignoring the regularizer
Wei1 =Wy — 1, VL(w;, x;)

2. Every ki iteration, adjust w using gradients of regularizer
Wy < W1 — ki, VR(wy1)

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 36

Perceptron

Originally proposed to learn a linear binary classifier y ={-1,1}
f(x)=sgn(w' x)

Wy + Y X, ifxis misclassified, i.e., y # f(x)

Update Rule Wi = |
W otherwise

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

37

Perceptron

Originally proposed to learn a linear binary classifier y ={-1,1}
£ (x)=sgn(w’ x)

Wy + Y X; if xis misclassified, i.e., y # f(x)
Update Rule Wi =
W otherwise

Properties

— Stochastic gradient descent on a non-differentiable
loss function

— Guaranteed to converge if data is linearly separable
— What happens for inseparable data ?
will not converge but oscillate !

— Use of heuristics such as voting with various
parameter vectors

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 38

Natural Gradient Descent

Incorporate Riemannian Metric into stochastic descent

G, = Ex[VJ(Wt'xt)VJ(Wt’xt)T]

~—1
Wil = w, —1,G, VI (wy, x;)

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

Ny —EWO

39

Natural Gradient Descent

Incorporate Riemannian Metric into stochastic descent

G, = Ex[VJ(Wt'xt)VJ(Wt’xt)T]

~—1 __ Tt
W =w, —1,G, VJ(Wt’xt) =

Metric update ét+1 =(t-1)/t¢ ét +(1/ t)VJ(wt,xt)VJ(wt,xt)T
assuming Hessian to be constant

Properties
— Update matrix inverse directly > O(d4?) space and time per iteration
— More stable — has good theoretical properties
— Still expensive for large-scale problems

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 40

Online-BFGS

Change of gradients estimated using a subset of training data

Byiy: =5
St = Wesl = W

Wil = Wr — WtB_{VJ (W, x;)

Ve =VJI (W) = VI ()

Sanjiv Kumar 10/19/2010

\
stochastic approximation of inverse Hessian

EECS6898 — Large Scale Machine Learning

Wolfe’s conditions
s{ ¥ >0
B, >0

41

Online-BFGS

Change of gradients estimated using a subset of training data

By, =5, ~ Wolfe’s conditions
St = Weal = Wy, Wil = We — ”tB_{VJ(Wt X¢) sTy, >0
Ve =VJ (W) —VJ (wy)

stochastic approximation of inverse Hessian B, >0

1. To maintain positive curvature
Modify ¥; = VJ (Wiq,x,) =VJ (W, x;)+ As;, 420 Compute on the same sample !

2. Initialize B using a small coefficient to restrict initial parameter update
EO =gl ¢ z10_10
3. Modify the update of §z+1

n T\ p T T
pe=11s/ v, By =U—=pusye)Br (L= pysyyi)+cppsesy O<c<l nm=nlc

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 42

Online-BFGS

Change of gradients estimated using a subset of training data

B 1y =5, ~ Wolfe’s conditions
St = Wl = Wy, Wil = We — ”tB{VJ(Wt X¢) sTy, >0
Ve =VJ (W) —VJ (wy)

stochastic approximation of inverse Hessian B, >0

1. To maintain positive curvature
Modify ¥; = VJ (Wiq,x,) =VJ (W, x;)+ As;, 420 Compute on the same sample !

2. Initialize B using a small coefficient to restrict initial parameter update
EO =gl ¢ z10_10
3. Modify the update of §z+1

= 5 T T _
pe=1Us! y; By = (L= psssye)By (L= pesyye)+ cpesysy O<c<l n=mnlc

— Test of convergence: If last k stochastic gradients have been below a threshold
— Online version of L-BFGS possible > O(md) cost instead of O(d?)

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 43

Experiments

Synthetic quadratic function

parametersd =5, n=~1M

103"| I A N I T
107
104
1C°F
101_
102_
103_
104
109
106_
107
10—8_
109_
10—10..I PRSI AN TN AN SN AR EAY T [SN ST ANSNTRVERTAE) M N

¢ 100 1¢ 100 100 1 10 10

Data Points

[e=NG |
e— OBEGS
» - oLBFGS’ H
— oLBFGS
—SGD [

Deterministic Objective

Schraudolph et al. [7]
Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 44

Experiments

On Conditional Random Field (CRF) applied to text chunking
parameters d = 100K, n = ~9K

1 "‘ \ l* 1
] | v — SGD 1 |
3.0 6000 v |- - smo \
v | — olLBFGS
o 20 o | — — LBFGS ‘\
£ 20 1 Zs500f 1
2 9
S 15 . 8
5000 | .
1.0 1
05] | |
: : 4500
109 10t 102 10! 10?
passes passes

Schraudolph et al. [7]
Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 45

Stochastic Gradient Descent (Quasi-Newton)

Approximate inverse Hessian by a diagonal matrix

Inspired by online-BFGS

By =5
St = Wesl = Wes

Ve =VJI (W) = VI (W)

Wil =Wy = §t+1(VJ (Wri1, %) = VI (W, %))

diagonal matrix

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

Wolfe’s conditions
s{ v, >0
B, =0

46

Stochastic Gradient Descent (Quasi-Newton)

Approximate inverse Hessian by a diagonal matrix

Inspired by online-BFGS

Wolfe’s conditions

By =5 ~ T

~ v, >0
S = Wed = Wy, Wirl =W B Iit+1 (VI (Wyi1,x,) = VI (W, x;)) f Bi 0
Ve =VJ (wii1) —VJ (W) \

diagonal matrix

[Wy1 —w,] = Bi[VI (Weaq, %) = VI (wy, %))

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 47

Stochastic Gradient Descent (Quasi-Newton)

Approximate inverse Hessian by a diagonal matrix

Inspired by online-BFGS

Wolfe’s conditions

By =5 ~ TS0
St = Wesl = Wr Wirl =W B €t+1(VJ(Wt+11 x;) = VJ(wy,x;)) ! ;ﬁ 0
Vi =VJI (W) =VJ (W) X

diagonal matrix

[We1 —w] = Eii [VJ (W11, %) = VI (wy, x,)];

In Practice,
— Update matrix entries only every k iterations
— Do a leaky average of B to get stable updates

7T

1l

~ ~
.

B;; < B;;[1+kB

1 =[VI (Wia1, %) = VI Wi,)] W = we]y 71 <= max{4, min{1004, 7;}}

— Has a flavor of partially ‘fixed-Hessian’

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 48

Stochastic Gradient Descent (Quasi-Newton)

Alpha dataset of Pascal Challenge (2008)
parameters d = 500 (dense), n = ~100K

0.40

0.40

| | | 'SVMSGD2 —+— o8 ' ' SVMSGD2 ——

i SGD-QN ¢ i SGD-QN -~

§ oLBFGS - oLBEGS
038 I Hl / 1 038} Iﬁfy |

036 [036 |

0.34 r 0.34 1

x
RS -
U B AN o :\\ N o0 -
0.32 KKk KKk Gekk 02

0.30 : : : : 0.30 : : :
0 2 4 6 8 10 0 0.5 1 1:5 2
Number of epochs Training time (sec.)
ArpHA RCVI
SGD 0.13 36.8 RCV1. d =47K, s =0.0016

sparse SGD — svMsGD2 0.10 0.20
SGD-QN 0.21 0.37

Bordes et al. [9]
Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning 49

References

1.

10.

11.

H. E. Robbins and S. Monro, “A stochastic approximation method,” Annals of Mathematical Statistics,
1951.

J. Nocedal and S. J. Wright, Numerical Optimization. Springer Series in Operations Research, 1999.

N. Schraudolph, “Local gain adaptation in stochastic gradient descent,” Int. conf in Artifical Neural
Networks, 1999.

S. Amari, H. Park, K. Fukumizu, “Adaptive method of realizing natural gradient learning for multi-layer
perceptrons,” Neural Computation, 2000.

Tom Minka, “A comparison of numerical optimizers for logistic regression”, 2003.
http://research.microsoft.com/en-us/um/people/minka/papers/logreg/

L. Bottou and Y. Lecun, “Online learning for very large datasets,” Applied Stochastic Models in
Business and Industry, 2005.

N. Schraudolph, J. Yu and S. Gunter, “A stochastic quasi-Newton method for online convex
optimization,” AISTATS, 2007.

L. Bottou and O. Bousquet: Learning Using Large Datasets, Mining Massive DataSets for Security,
NATO ASI Workshop Series, 10S Press, Amsterdam, 2008.

A. Bordes, L. Bottou and P. Gallinari, “SGD-QN: Careful Quasi-Newton Stochastic Gradient Descent,
JMLR, 2009.

A. Bordes, L. Bottou, P. Gallinari, J. Chang, S. A. Smith, “Erratum: SGD-QN is less careful than
expected,” 2010. http://jmlr.csail.mit.edu/papers/vll/bordesl0a.html

J. Yu, S. Vishwanathan, S. Gunter, and N. N. Schraudolph. A Quasi-Newton Approach to Nonsmooth
Convex Optimization Problems in Machine Learning. Journal of Machine Learning Research,
11:1145-1200, 2010.

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

Logistic Regression

Given: A labeled training set, {x;,3;}i-t.» x; e R,y e{-1 1

Goal: Learn a predictive function p(y=1|x)= a(wa)
py;|x;)= U(J’iWTxi)

(negative) log-posterior

L(w)=> log(l+ eXp(—yl-wal-)) +awl w

i ~— _ ¢ J
Y

Iog-l&aihood log-prior

Convex problem, Newton method:

w, g = (XAXT + 20 x4z

O(nd*) multiplication

O(nd) First-order methods

Sanjiv Kumar 10/19/2010 EECS6898 — Large Scale Machine Learning

X2

A

Absorb wy In w

p(y=1|x)

A

	Large-Scale Optimization
	Learning and Optimization
	Learning and Optimization
	Learning and Optimization
	Examples
	Examples
	Examples
	Examples
	Popular Optimization Methods
	Conditions for Local Minimum
	Conditions for Local Minimum
	Conditions for Local Minimum
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Coordinate Descent
	Coordinate Descent
	Conjugate Gradient
	Conjugate Gradient
	Conjugate Gradient
	Newton’s Method
	Newton’s Method
	Newton’s Method
	Quasi-Newton Methods
	Quasi-Newton Methods
	Quasi-Newton Methods
	Limited-Memory BFGS (L-BFGS)
	Limited-Memory BFGS (L-BFGS)
	Comparison: Logistic Regression
	Batch vs Online
	Stochastic Gradient Descent (SGD)
	Stochastic Gradient Descent (SGD)
	Experiment - SGD
	SGD for Sparse Data
	SGD for Sparse Data
	SGD for Sparse Data
	Perceptron
	Perceptron
	Natural Gradient Descent
	Natural Gradient Descent
	Online-BFGS
	Online-BFGS
	Online-BFGS
	Experiments
	Experiments
	Stochastic Gradient Descent (Quasi-Newton)
	Stochastic Gradient Descent (Quasi-Newton)
	Stochastic Gradient Descent (Quasi-Newton)
	Slide Number 49
	References
	Logistic Regression

