Large-Scale Optimization

Sanjiv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 2010

Sanjiv Kumar

Learning and Optimization

In most cases, learning from data reduces to optimizing a function with respect to model parameters

Given training data $D = \{x_i, y_i\}_{i=1,...,n}$ we want to learn a model

prediction
$$y = f(x; w)$$
 $e.g., x \in \mathbb{R}^d, y \in \mathbb{R} \text{ or } y \in \{-1, 1\}$

Learning and Optimization

In most cases, learning from data reduces to optimizing a function with respect to model parameters

Given training data $D = \{x_i, y_i\}_{i=1,...,n}$ we want to learn a model

prediction
$$y = f(x; w)$$
 $e.g., x \in \mathbb{R}^d, y \in \mathbb{R} \text{ or } y \in \{-1, 1\}$

$$\hat{w} = \arg\min_{w} J(w)$$

$$= \arg\min_{w} [L(D, w) + \lambda R(w)]$$
loss regularizer

Learning and Optimization

In most cases, learning from data reduces to optimizing a function with respect to model parameters

Given training data $D = \{x_i, y_i\}_{i=1,...,n}$ we want to learn a model

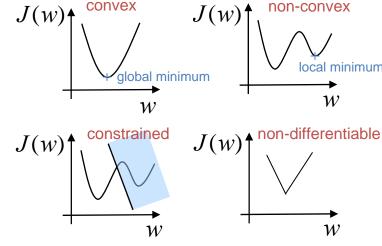
prediction
$$y = f(x; w)$$
 $e.g., x \in \mathbb{R}^d, y \in \mathbb{R} \text{ or } y \in \{-1, 1\}$

$$\hat{w} = \underset{w}{\text{arg min }} J(w)$$

$$= \underset{w}{\text{arg min}} [L(D, w) + \lambda R(w)]$$

$$\underset{w}{\text{loss}} \text{ regularizer}$$

- Convex vs non-convex
- Constrained vs unconstrained
- Smooth vs non-differentiable twice differentiable



Linear regression
$$y = w^T x + w_0$$
 $x \in \Re^d$, $y \in \Re$ Absorb w_0 in w by adding

$$= w^T x + w_0$$

$$x \in \Re^d, y \in \Re^d$$

a dummy variable in $x: x_0 = 1$

$$J(w) = \sum_{i} (w^{T} x_{i} - y_{i})^{2} + \lambda w^{T} w$$
 convex, smooth, unconstrained

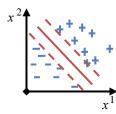
Linear regression
$$y = w^T x + w_0$$
 $x \in \Re^d$, $y \in \Re$ Absorb w_0 in w by adding a dummy variable in x : $x_0 = w^T x + w_0$

$$x \in \Re^d, y \in \Re$$

a dummy variable in $x: x_0 = 1$

$$J(w) = \sum_{i} (w^{T} x_{i} - y_{i})^{2} + \lambda w^{T} w$$
 convex, smooth, unconstrained

Linear SVM $y = \operatorname{sgn}(w^T x + w_0)$ $x \in \mathbb{R}^d, y \in \{-1, 1\}$



$$J(w) = \sum_{i} \max(0, 1 - y_i w^T x_i) + \lambda w^T w$$
 convex, non-differentiable, unconstrained

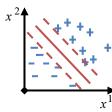
Linear regression $y = w^T x + w_0$ $x \in \Re^d$, $y \in \Re$ Absorb w_0 in w by adding

$$x \in \Re^d, y \in \Re$$

a dummy variable in $x: x_0 = 1$

$$J(w) = \sum_{i} (w^{T} x_{i} - y_{i})^{2} + \lambda w^{T} w$$
 convex, smooth, unconstrained

Linear SVM $y = \operatorname{sgn}(w^T x + w_0)$ $x \in \mathbb{R}^d, y \in \{-1, 1\}$



$$J(w) = \sum_{i} \max(0, 1 - y_i w^T x_i) + \lambda w^T w$$
 convex, non-differentiable, unconstrained

Logistic

$$p(y=1 \mid x) = \sigma(w^T x + w_0)$$
 $x \in \Re^d, y \in \{-1, 1\}$ $\sigma(x) = 1/(1 + e^{-x})$ probabilistic

$$x \in \mathfrak{R}^d, y \in \{-1, 1\}$$

$$\sigma(x) = 1/(1 + e^{-x})$$
 probabilistic

Regression

$$x^2$$

$$J(w) = -\sum_{i} \log(\sigma(y_i w^T x_i) + \lambda w^T w \qquad \text{convex, smooth, unconstrained}$$

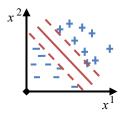
Linear regression
$$y = w^T x + w_0$$
 $x \in \Re^d$, $y \in \Re$ Absorb w_0 in w by adding a dummy variable in x : $x_0 = 0$

$$x \in \Re^d, y \in \Re$$

a dummy variable in $x: x_0 = 1$

$$J(w) = \sum_{i} (w^{T} x_{i} - y_{i})^{2} + \lambda w^{T} w$$
 convex, smooth, unconstrained

Linear SVM
$$y = \operatorname{sgn}(w^T x + w_0)$$
 $x \in \mathbb{R}^d, y \in \{-1, 1\}$



$$J(w) = \sum_{i} \max(0, 1 - y_i w^T x_i) + \lambda w^T w$$
 convex, non-differentiable, unconstrained

Logistic

$$p(y=1 \mid x) = \sigma(w^T x + w_0)$$
 $x \in \Re^d, y \in \{-1, 1\}$ $\sigma(x) = 1/(1 + e^{-x})$ probabilistic

Regression

$$J(w) = -\sum_{i} \log(\sigma(y_i w^T x_i) + \lambda w^T w \qquad \text{convex, smooth, unconstrained}$$

Nonlinear (kernelized) versions: replace $w^T x$ with $\sum_i w^i k(x, x_i)$

- 2-norm regularizer changes to $w^T K w$ where K is the kernel matrix
- Same properties of the functions as their linear versions

Popular Optimization Methods

First Order Methods

- Use gradient of the function to iteratively find the local minimum
- Easy to compute and run but slow convergence
- Gradient (steepest) descent
- Coordinate descent
- Conjugate Gradient
- Stochastic Gradient Descent

Second Order Methods

- Use gradients and Hessian (curvature) iteratively
- Computationally more demanding but fast convergence
- Newton's method
- Quasi-Newton methods (BFGS and variants)
- Stochastic Quasi-Newton methods

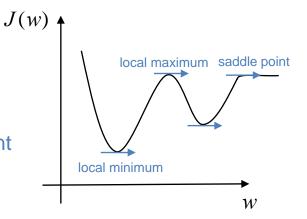
Other than line-search based methods: Trust-region

Conditions for Local Minimum

- If \hat{w} is a local-minimizer then,
 - First-order necessary condition

Gradient
$$\frac{\partial J(w)}{\partial w} = \nabla J(\hat{w}) = 0$$

stationary point



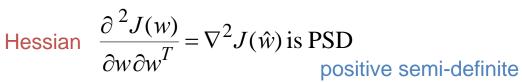
Conditions for Local Minimum

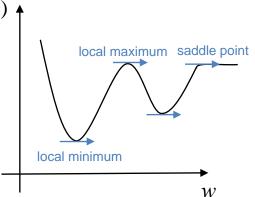
- If \hat{w} is a local-minimizer then,
 - First-order necessary condition

Gradient
$$\frac{\partial J(w)}{\partial w} = \nabla J(\hat{w}) = 0$$

stationary point

Second-order necessary condition





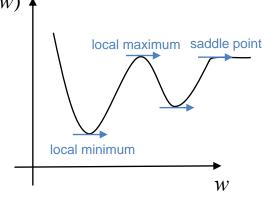
Conditions for Local Minimum

- If \hat{w} is a local-minimizer then,
 - First-order necessary condition

Gradient
$$\frac{\partial J(w)}{\partial w} = \nabla J(\hat{w}) = 0$$

stationary point

Second-order necessary condition



Hessian
$$\frac{\partial^2 J(w)}{\partial w \partial w^T} = \nabla^2 J(\hat{w})$$
 is PSD positive semi-definite

Sufficient conditions

$$\nabla J(\hat{w}) = 0$$
 and $\nabla^2 J(\hat{w})$ is PD positive definite (strictly PD)

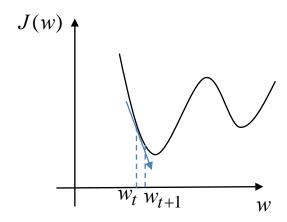
For smooth convex function → any stationary point is a global minimizer

Gradient Descent

Iteratively estimates new parameter values

$$w_{t+1} = w_t - \eta_t \nabla J(w_t)$$

EECS6898 - Large Scale Machine Learning



Gradient Descent

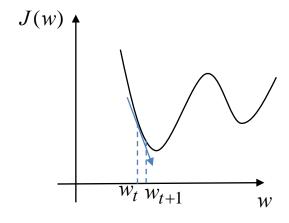
Iteratively estimates new parameter values

$$w_{t+1} = w_t - \eta_t \nabla J(w_t)$$

We want
$$J(w_{t+1}) \le J(w_t)$$

But this is not sufficient to reach local minima!

One has to make sure $\nabla J(w_t) \rightarrow 0$



Step-length must satisfy the Wolfe conditions of sufficient decrease

$$J(w_t + \eta_t p_t) \leq J(w_t) + c_1 \eta_t \nabla J(w_t) p_t \qquad 0 < c_1 < 1$$

Gradient descent converges to local minimum if step size is sufficiently small!

Gradient Descent

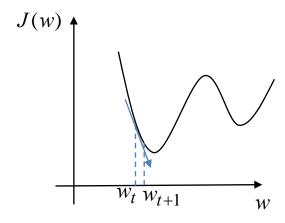
Iteratively estimates new parameter values

$$w_{t+1} = w_t - \eta_t \nabla J(w_t)$$

We want
$$J(w_{t+1}) \le J(w_t)$$

But this is not sufficient to reach local minima!

One has to make sure $\nabla J(w_t) \rightarrow 0$



Step-length must satisfy the Wolfe conditions of sufficient decrease

$$J(w_t + \eta_t p_t) \le J(w_t) + c_1 \eta_t \nabla J(w_t) p_t \qquad 0 < c_1 < 1$$

Gradient descent converges to local minimum if step size is sufficiently small!

Rate of Convergence: Linear

$$\frac{\left\|w_{t+1} - \hat{w}\right\|}{\left\|w_t - \hat{w}\right\|} \le r$$

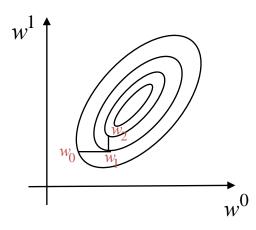
Painfully slow in practice, many heuristics are used (e.g., momentum)

Coordinate Descent

Updates one coordinate at a time keeping others fixed

$$w_{t+1}^i = w_t^i - \eta_t \nabla J(w_t^i)$$

Cycles through all the coordinates sequentially

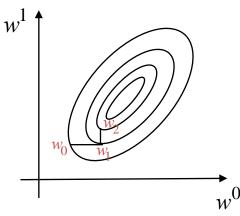


Coordinate Descent

Updates one coordinate at a time keeping others fixed

$$w_{t+1}^i = w_t^i - \eta_t \nabla J(w_t^i)$$

Cycles through all the coordinates sequentially



Properties

- Very simple and easy to implement reasonable when variables are loosely coupled
- Can be inefficient in practice (may take long time to converge)
- Convergence not guaranteed, in general

Block Coordinate Descent

- Update a small set of coordinates simultaneously
- Has been used successfully for training large SVMs

Conjugate Gradient

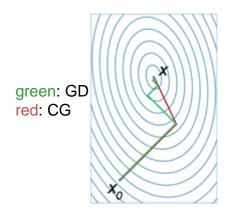
Parameters are searched along conjugate directions

Conjugacy: Two vectors p_1 and p_2 are conjugate wrt H if

$$p_1^T H p_2 = 0$$

Starting with $p_0 = -\nabla J(w_0)$

$$w_{t+1} = w_t + \alpha_t p_t$$



Conjugate Gradient

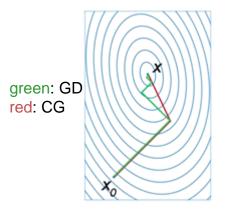
Parameters are searched along conjugate directions

Conjugacy: Two vectors p_1 and p_2 are conjugate wrt H if

$$p_1^T H p_2 = 0$$

Starting with
$$p_0 = -\nabla J(w_0)$$
 $w_{t+1} = w_t + \alpha_t p_t$

$$w_{t+1} = w_t + \alpha_t p_t$$



Successive conjugate directions as linear combination of gradient direction and previous conjugate direction

$$p_t = -\nabla J(w_t) + \beta_t p_{t-1}$$
 $t = 1, 2,$

Exact
$$\alpha_t = \frac{\nabla J(w_t)^T p_t}{p_t^T H_t p_t}$$

$$\beta_t = \frac{\nabla J(w_t)^T (\nabla J(w_t) - \nabla J(w_{t-1}))}{p_{t-1}^T (\nabla J(w_t) - \nabla J(w_{t-1}))} \quad \begin{array}{l} \text{Hestenes-} \\ \text{Stiefel form} \end{array}$$

Conjugate Gradient

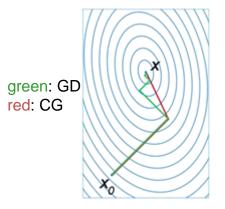
Parameters are searched along conjugate directions

Conjugacy: Two vectors p_1 and p_2 are conjugate wrt H if

$$p_1^T H p_2 = 0$$

Starting with
$$p_0 = -\nabla J(w_0)$$
 $w_{t+1} = w_t + \alpha_t p_t$

$$w_{t+1} = w_t + \alpha_t p_t$$



Successive conjugate directions as linear combination of gradient direction and previous conjugate direction

$$p_t = -\nabla J(w_t) + \beta_t p_{t-1}$$
 $t = 1, 2,$

Exact
$$\alpha_t = \frac{\nabla J(w_t)^T p_t}{p_t^T H_t p_t}$$

But usually picked something that satisfies Wolfe's conditions!

$$\beta_t = \frac{\nabla J(w_t)^T (\nabla J(w_t) - \nabla J(w_{t-1}))}{p_{t-1}^T (\nabla J(w_t) - \nabla J(w_{t-1}))} \quad \begin{array}{l} \text{Hestenes-} \\ \text{Stiefel form} \end{array}$$

Properties

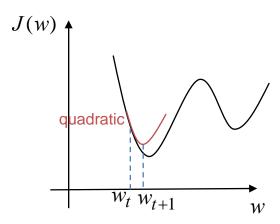
- For quadratic functions, guaranteed to return the optimal in at most diterations
- Use preconditioning to increase the convergence rate: make condition number of Hessian as small as possible

Newton's Method

Approximates a function using second order Taylor expansion

EECS6898 - Large Scale Machine Learning

$$J(w_t + p) \approx J(w_t) + p^T \nabla J(w_t) + \frac{1}{2} p^T \nabla^2 J(w_t) p$$



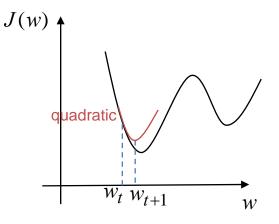
Newton's Method

Approximates a function using second order Taylor expansion

$$J(w_t + p) \approx J(w_t) + p^T \nabla J(w_t) + \frac{1}{2} p^T \nabla^2 J(w_t) p$$
minimizing w.r.t.
$$p$$

$$p = \left(\nabla^2 J(w_t)\right)^{-1} \nabla J(w_t) = H_t^{-1} \nabla J(w_t)$$

$$w_{t+1} = w_t - H_t^{-1} \nabla J(w_t)$$



- No explicit step-length parameter
- If Hessian is not positive definite, Newton step may be undefined or may even diverge

EECS6898 - Large Scale Machine Learning

For quadratic functions, converges in a single step!

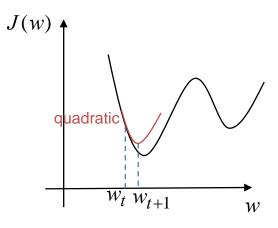
Newton's Method

Approximates a function using second order Taylor expansion

$$J(w_t + p) \approx J(w_t) + p^T \nabla J(w_t) + \frac{1}{2} p^T \nabla^2 J(w_t) p$$
minimizing w.r.t.
$$p$$

$$p = \left(\nabla^2 J(w_t)\right)^{-1} \nabla J(w_t) = H_t^{-1} \nabla J(w_t)$$

$$w_{t+1} = w_t - H_t^{-1} \nabla J(w_t)$$



- No explicit step-length parameter
- If Hessian is not positive definite, Newton step may be undefined or may even diverge
- For quadratic functions, converges in a single step!

Rate of Convergence: Quadratic

$$\frac{\left\|w_{t+1} - \hat{w}\right\|}{\left\|w_t - \hat{w}\right\|^2} \le k$$

Fast convergence but each iteration slow: $O(d^2)$ space and $O(d^3)$ time

Quasi-Newton Methods

Do not require computation of Hessian but still super-linear convergence

Key Idea: Approximate Hessian locally using change in gradients

Secant equation

Approx
$$B_{t+1}s_t = y_t$$
 Hessian
$$s_t = w_{t+1} - w_t, \quad y_t = \nabla J(w_{t+1}) - \nabla J(w_t)$$

Wolfe's conditions $s_t^T y_t > 0$ $B_t > 0$

Quasi-Newton Methods

Do not require computation of Hessian but still super-linear convergence

Key Idea: Approximate Hessian locally using change in gradients

Secant equation

Approx
$$B_{t+1}s_t = y_t$$
 Hessian
$$s_t = w_{t+1} - w_t, \quad y_t = \nabla J(w_{t+1}) - \nabla J(w_t)$$

Wolfe's conditions $s_t^T y_t > 0$ $B_t > 0$

- Additional conditions imposed on B, e.g., symmetry or diagonal
- Difference between successive B's is low-rank
- BFGS (Broyden-Fletcher-Goldfarb-Shanno): uses rank-2 (inverse) Hessian updates

$$\text{if} \quad \widetilde{B}_t = B_t^{-1} \qquad \quad \widetilde{B}_{t+1} = \arg\min_{\widetilde{B}} \left\| \widetilde{B} - \widetilde{B}_t \right\|_F \quad \text{subject to } \widetilde{B}_{t+1} = \widetilde{B}_{t+1}^T, \quad \widetilde{B}_{t+1} y_t = s_t$$

Quasi-Newton Methods

Do not require computation of Hessian but still super-linear convergence

Key Idea: Approximate Hessian locally using change in gradients

Secant equation

Approx
$$B_{t+1}s_t = y_t$$
 Hessian $s_t = w_{t+1} - w_t$, $y_t = \nabla J(w_{t+1}) - \nabla J(w_t)$

Wolfe's conditions $s_t^T y_t > 0$ $B_t \succ 0$

- Additional conditions imposed on B, e.g., symmetry or diagonal
- Difference between successive *B*'s is low-rank
- BFGS (Broyden-Fletcher-Goldfarb-Shanno): uses rank-2 (inverse) Hessian updates

$$\text{if} \quad \widetilde{B}_t = B_t^{-1} \qquad \quad \widetilde{B}_{t+1} = \arg\min_{\widetilde{B}} \left\| \widetilde{B} - \widetilde{B}_t \right\|_F \quad \text{subject to } \widetilde{B}_{t+1} = \widetilde{B}_{t+1}^T, \quad \widetilde{B}_{t+1} y_t = s_t$$

Inverse of approx Hessian updated directly $\rightarrow O(d^2)$ space and time

$$\widetilde{B}_{t+1} = (I - \rho_t s_t y_t^T) \widetilde{B}_t \ (I - \rho_t y_t s_t^T) + \rho_t s_t s_t^T \qquad \rho_t = 1/s_t^T y_t, \ \widetilde{B}_0 = I$$

 $O(d^2)$ cost per iteration, superlinear rate of convergence, self-correcting properties

Sanjiv Kumar

Limited-Memory BFGS (L-BFGS)

Quasi-Newton methods produce dense Hessian approximations even when true Hessian is sparse → high storage cost for large-scale problems

Key Idea: Store approx Hessian using a few d-dim vectors from most recent iterations \rightarrow Store at most m most recent pairs (s_t, y_t)

EECS6898 – Large Scale Machine Learning

Limited-Memory BFGS (L-BFGS)

Quasi-Newton methods produce dense Hessian approximations even when true Hessian is sparse \rightarrow high storage cost for large-scale problems

Key Idea: Store approx Hessian using a few d-dim vectors from most recent iterations \rightarrow Store at most m most recent pairs (s_t, y_t)

$$w_{t+1} = w_t - \alpha_t \widetilde{B}_t \, \nabla J(w_t)$$

- Iteratively estimate the product $\widetilde{B}_t \nabla J(w_t)$ using most recent (s_t, y_t)
- Can be achieved efficiently in two loops in O(md)
- Different initialization for each inner loop possible, e.g.,

$$\widetilde{B}_t^0 = \gamma_t I, \qquad \gamma_t = \frac{s_{t-1}^T y_{t-1}}{y_{t-1}^T y_{t-1}}$$

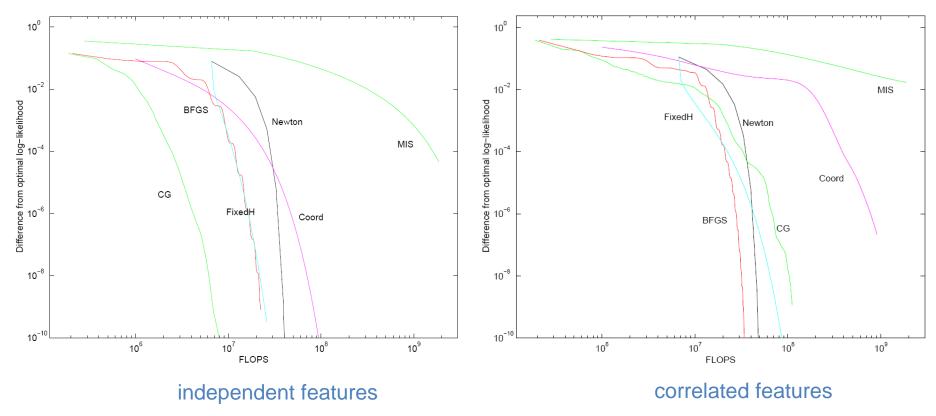
Similar to Conjugate-Gradient, rate of convergence linear instead of superlinear as in BFGS

How about sparse, sampling-based or diagonal approximation of Hessian?

Sanjiv Kumar

Comparison: Logistic Regression





Hessian-based methods do better

Trade-off between number of iterations and cost per iteration!

Minka [5]

Batch vs Online

Most optimization functions use i.i.d. training data as,

Linear Regression
$$J(w) = \sum_{i} [(w^T x_i - y_i)^2 + \lambda w^T w]$$
 SVM
$$J(w) = \sum_{i} [\max(0, 1 - y_i w^T x_i) + \lambda w^T w]$$
 Logistic Regression
$$J(w) = -\sum_{i} [\log(\sigma(y_i w^T x_i) + \lambda w^T w]$$

Batch methods

Sanjiv Kumar

- compute gradients using all the training data
- each iteration needs to use full batch of data → slow for large datasets

Online (Stochastic) Methods

- use gradients from a small subset of data, usually just a single point
- do not decrease the function value monotonically
- typically have worse convergence properties than batch methods
- quite appropriate for large-scale applications where data is usually redundant

EECS6898 – Large Scale Machine Learning

- can converge even before seeing all the data once \rightarrow very fast
- popular conjecture: may also avoid bad local minima

Stochastic Gradient Descent (SGD)

At each iteration, use a small training subset to estimate the gradient

EECS6898 - Large Scale Machine Learning

$$w_{t+1} = w_t - \eta_t \nabla J(w_t, x_t)$$
 single point or a small subset of training data

Stochastic Gradient Descent (SGD)

At each iteration, use a small training subset to estimate the gradient

$$w_{t+1} = w_t - \eta_t \nabla J(w_t, x_t)$$
 single point or a small subset of training data

Converges to optimal value \hat{w} if,

parameters may move arbitrary distances
$$\sum_t \eta_t = \infty$$
 step size decreases fast enough $\sum_t \eta_t^2 < \infty$

Step-length
$$\eta_t = \frac{\tau}{\tau + t} \eta_0$$
 $\tau, \eta_0 > 0$ are tuning parameters

Properties

- O(d) space and time per iteration instead of O(nd) of gradient descent
- Outperforms batch gradient methods on large datasets
- Slow convergence on ill-conditioned problems
- Stochastic Meta-Descent: adjust a different gain for each parameter

Experiment - SGD

SVM classification task d = 47K (~80 nonzero), n = ~800K

Model	Algorithm	Training Time	Objective	Test Error
Hinge loss, $\lambda=10^{-4}$ See [21,22].	SVMLight	23,642 secs	0.2275	6.02%
	SVMPerf	66 secs	0.2278	6.03%
	SGD	1.4 secs	0.2275	6.02%
Logistic loss, $\lambda = 10^{-5}$ See [23].	LibLinear ($\rho = 10^{-2}$)	30 secs	0.18907	5.68%
	LibLinear ($\rho = 10^{-3}$)	44 secs	0.18890	5.70%
	SGD	2.3 secs	0.18893	5.66%

Sanjiv Kumar

SGD for Sparse Data

Suppose training set vectors $\{x_i \in \mathbb{R}^d\}_{i=1,...,n}$ are sparse

- Only a small fraction (s) of d elements are non-zero s << 1
- Common for many applications: text, images, biological data,...

SGD for Sparse Data

Suppose training set vectors $\{x_i \in \mathbb{R}^d\}_{i=1,...,n}$ are sparse

- Only a small fraction (s) of d elements are non-zero $s \ll 1$
- Common for many applications: text, images, biological data,...

Objective function
$$J(w) = \sum_{i=1}^{n} [L(y_i w^T x_i) + \lambda R(w)]$$

$$\nabla J(w_t, x_t) = \underbrace{\nabla L(y_t w_t^T x_t) y_t x_t}_{\text{sparse}} + \underbrace{\lambda \nabla R(w_t)}_{\text{dense}} \quad \begin{cases} \text{dense vector update} \\ O(d) \text{ per iteration} \end{cases}$$

How to make sparse updates, i.e., O(sd) per iteration?

SGD for Sparse Data

Suppose training set vectors $\{x_i \in \mathbb{R}^d\}_{i=1,\dots,n}$ are sparse

- Only a small fraction (s) of d elements are non-zero s << 1
- Common for many applications: text, images, biological data,...

Objective function
$$J(w) = \sum_{i=1}^{n} [L(y_i w^T x_i) + \lambda R(w)]$$

$$\nabla J(w_t, x_t) = \underbrace{\nabla L(y_t w_t^T x_t) y_t x_t}_{\text{sparse}} + \underbrace{\lambda \nabla R(w_t)}_{\text{dense}} \quad \begin{cases} \text{dense vector update} \\ O(d) \text{ per iteration} \end{cases}$$

How to make sparse updates, i.e., O(sd) per iteration? Break updates into two parts

1. Update using gradients of L(.) alone ignoring the regularizer

$$w_{t+1} = w_t - \eta_t \nabla L(w_t, x_t)$$

2. Every kth iteration, adjust w using gradients of regularizer

$$w_{t+1} \leftarrow w_{t+1} - k\eta_t \nabla R(w_{t+1})$$

EECS6898 - Large Scale Machine Learning

Perceptron

Originally proposed to learn a linear binary classifier $y = \{-1, 1\}$

$$f(x) = \operatorname{sgn}(w^T x)$$

$$w_{t+1} = \begin{cases} w_t + y x_t & \text{if } x \text{ is misclassified, i.e., } y \neq f(x) \\ w_t & \text{otherwise} \end{cases}$$

EECS6898 - Large Scale Machine Learning

Perceptron

Originally proposed to learn a linear binary classifier $y = \{-1, 1\}$

$$f(x) = \operatorname{sgn}(w^T x)$$

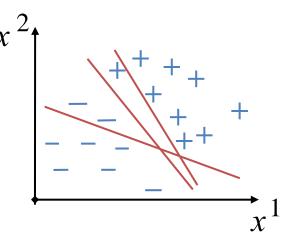
$$w_{t+1} = \begin{cases} w_t + y x_t & \text{if x is misclassified, i.e., } y \neq f(x) \\ w_t & \text{otherwise} \end{cases}$$

Properties

- Stochastic gradient descent on a non-differentiable loss function
- Guaranteed to converge if data is linearly separable
- What happens for inseparable data?

will not converge but oscillate!

 Use of heuristics such as voting with various parameter vectors



Natural Gradient Descent

Incorporate Riemannian Metric into stochastic descent

$$G_t = E_x[\nabla J(w_t, x_t) \nabla J(w_t, x_t)^T]$$

$$w_{t+1} = w_t - \eta_t \widetilde{G}_t^{-1} \nabla J(w_t, x_t)$$

$$\eta_t = \frac{\tau}{\tau + t} \eta_0$$

Natural Gradient Descent

Incorporate Riemannian Metric into stochastic descent

$$G_t = E_x[\nabla J(w_t, x_t) \nabla J(w_t, x_t)^T]$$

$$w_{t+1} = w_t - \eta_t \widetilde{G}_t^{-1} \nabla J(w_t, x_t) \qquad \eta_t = \frac{\tau}{\tau + t} \eta_0$$

Metric update
$$\tilde{G}_{t+1} = (t-1)/t \; \tilde{G}_t \; + (1/t) \nabla J(w_t, x_t) \nabla J(w_t, x_t)^T$$
 assuming Hessian to be constant

Properties

- Update matrix inverse directly $\rightarrow O(d^2)$ space and time per iteration
- More stable has good theoretical properties
- Still expensive for large-scale problems

Online-BFGS

Change of gradients estimated using a subset of training data

$$\begin{split} \widetilde{B}_{t+1}y_t &= s_t \\ s_t &= w_{t+1} - w_t, \\ y_t &= \nabla J(w_{t+1}) - \nabla J(w_t) \end{split}$$

$$w_{t+1} = w_t - \eta_t \widetilde{B}_t \nabla J(w_t, x_t)$$
 stochastic approximation of inverse Hessian

Wolfe's conditions

$$s_t^T y_t > 0$$
$$B_t \succ 0$$

Online-BFGS

Change of gradients estimated using a subset of training data

$$\begin{split} \widetilde{B}_{t+1}y_t &= s_t \\ s_t &= w_{t+1} - w_t, \\ y_t &= \nabla J(w_{t+1}) - \nabla J(w_t) \end{split}$$

$$w_{t+1} = w_t - \eta_t \widetilde{B}_t \nabla J(w_t, x_t)$$
 stochastic approximation of inverse Hessian

Wolfe's conditions $s_t^T y_t > 0$

 $B_t \succ 0$

1. To maintain positive curvature

Modify
$$y_t = \nabla J(w_{t+1}, x_t) - \nabla J(w_t, x_t) + \lambda s_t$$
 $\lambda \ge 0$ Compute on the same sample!

2. Initialize \tilde{B} using a small coefficient to restrict initial parameter update

$$\widetilde{B}_0 = \varepsilon I \quad \varepsilon \approx 10^{-10}$$

3. Modify the update of B_{t+1}

$$\rho_t = 1/s_t^T y_t \qquad \qquad \widetilde{B}_{t+1} = (I - \rho_t s_t y_t^T) \widetilde{B}_t \ (I - \rho_t s_t y_t^T) + c \rho_t s_t s_t^T \qquad 0 < c \le 1 \quad \eta_t = \eta_t / c$$

Online-BFGS

Change of gradients estimated using a subset of training data

$$\begin{split} \widetilde{B}_{t+1}y_t &= s_t \\ s_t &= w_{t+1} - w_t, \\ y_t &= \nabla J(w_{t+1}) - \nabla J(w_t) \end{split}$$

$$w_{t+1} = w_t - \eta_t \widetilde{B}_t \nabla J(w_t, x_t)$$
 stochastic approximation of inverse Hessian

Wolfe's conditions
$$s_t^T y_t > 0$$

$$B_t \succ 0$$

1. To maintain positive curvature

Modify
$$y_t = \nabla J(w_{t+1}, x_t) - \nabla J(w_t, x_t) + \lambda s_t$$
 $\lambda \ge 0$ Compute on the same sample!

2. Initialize \tilde{B} using a small coefficient to restrict initial parameter update

$$\widetilde{B}_0 = \varepsilon I \quad \varepsilon \approx 10^{-10}$$

3. Modify the update of B_{t+1}

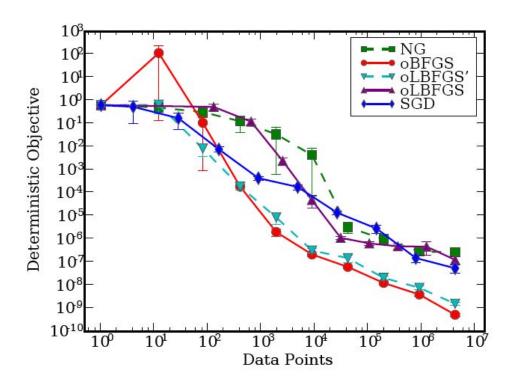
$$\rho_t = 1/s_t^T y_t \qquad \qquad \widetilde{B}_{t+1} = (I - \rho_t s_t y_t^T) \widetilde{B}_t \ (I - \rho_t s_t y_t^T) + c \rho_t s_t s_t^T \qquad 0 < c \le 1 \quad \eta_t = \eta_t / c$$

- Test of convergence: If last k stochastic gradients have been below a threshold
- Online version of L-BFGS possible $\rightarrow O(md)$ cost instead of $O(d^2)$

Experiments

Synthetic quadratic function

parameters d = 5, $n = \sim 1M$

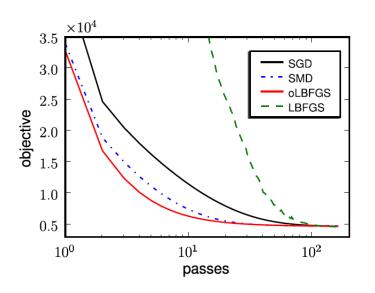


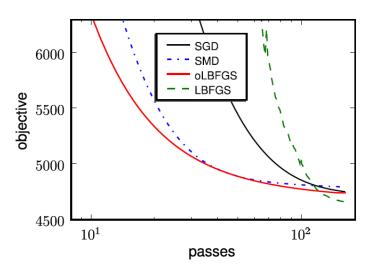
EECS6898 - Large Scale Machine Learning

Experiments

On Conditional Random Field (CRF) applied to text chunking

parameters d = 100K, n = ~9K





Sanjiv Kumar

Approximate inverse Hessian by a diagonal matrix

Inspired by online-BFGS

$$\begin{split} \widetilde{B}_{t+1}y_t &= s_t \\ s_t &= w_{t+1} - w_t, \\ y_t &= \nabla J(w_{t+1}) - \nabla J(w_t) \end{split}$$

$$\widetilde{B}_{t+1}y_t = s_t \\
s_t = w_{t+1} - w_t, \\
v_t = \nabla I(w_t) - \nabla I(w_t)$$

$$w_{t+1} - w_t \approx \widetilde{B}_{t+1}(\nabla J(w_{t+1}, x_t) - \nabla J(w_t, x_t))$$

diagonal matrix

Wolfe's conditions

$$s_t^T y_t > 0$$
$$B_t \succ 0$$

Approximate inverse Hessian by a diagonal matrix

Inspired by online-BFGS

$$\begin{split} \widetilde{B}_{t+1}y_t &= s_t \\ s_t &= w_{t+1} - w_t, \\ y_t &= \nabla J(w_{t+1}) - \nabla J(w_t) \end{split}$$

$$\begin{array}{ccc}
\widetilde{B}_{t+1}y_{t} = s_{t} \\
s_{t} = w_{t+1} - w_{t}, \\
v_{t} = \nabla I(w_{t+1}) - \nabla I(w_{t})
\end{array}$$

$$w_{t+1} - w_{t} \approx \widetilde{B}_{t+1}(\nabla J(w_{t+1}, x_{t}) - \nabla J(w_{t}, x_{t}))$$

diagonal matrix

$$[w_{t+1} - w_t]_i \approx \widetilde{B}_{ii} [\nabla J(w_{t+1}, x_t) - \nabla J(w_t, x_t)]_i$$

Wolfe's conditions

$$s_t^T y_t > 0$$
$$B_t \succ 0$$

Approximate inverse Hessian by a diagonal matrix

Inspired by online-BFGS

$$\begin{split} \widetilde{B}_{t+1}y_t &= s_t \\ s_t &= w_{t+1} - w_t, \\ v_t &= \nabla J(w_{t+1}) - \nabla J(w_t) \end{split}$$

$$\widetilde{B}_{t+1}y_t = s_t$$

$$s_t = w_{t+1} - w_t,$$

$$y_t = \nabla J(w_{t+1}) - \nabla J(w_t)$$

$$w_{t+1} - w_t \approx \widetilde{B}_{t+1}(\nabla J(w_{t+1}, x_t) - \nabla J(w_t, x_t))$$

Wolfe's conditions

$$s_t^T y_t > 0$$
$$B_t \succ 0$$

diagonal matrix

$$[w_{t+1} - w_t]_i \approx \widetilde{B}_{ii} [\nabla J(w_{t+1}, x_t) - \nabla J(w_t, x_t)]_i$$

In Practice.

- Update matrix entries only every k iterations
- Do a leaky average of B to get stable updates

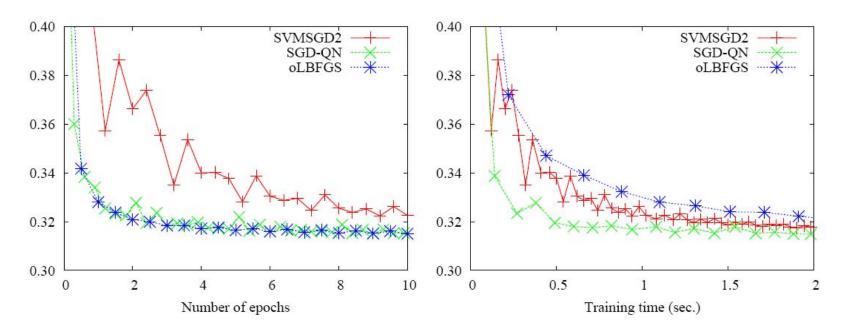
$$\widetilde{B}_{ii} \leftarrow \widetilde{B}_{ii} [1 + k \widetilde{B}_{ii} r_i]^{-1}$$

$$r_i = [\nabla J(w_{t+1}, x_t) - \nabla J(w_{t-k}, x_t)]_i / [w_{t+1} - w_t]_i \quad r_i \leftarrow \max\{\lambda, \min\{100\lambda, r_i\}\}$$

Has a flavor of partially 'fixed-Hessian'

Alpha dataset of Pascal Challenge (2008)

parameters d = 500 (dense), $n = \sim 100K$



		Alpha	RCV1
sparse SGD →	SGD SVMSGD2	0.13 0.10	36.8 0.20
	SGD-QN	0.21	0.37

RCV1: d = 47K, s = 0.0016

Bordes et al. [9]

References

- H. E. Robbins and S. Monro, "A stochastic approximation method," Annals of Mathematical Statistics, 1951.
- J. Nocedal and S. J. Wright, Numerical Optimization. Springer Series in Operations Research, 1999. 2.
- N. Schraudolph, "Local gain adaptation in stochastic gradient descent," Int. conf in Artifical Neural 3. Networks, 1999.
- S. Amari, H. Park, K. Fukumizu, "Adaptive method of realizing natural gradient learning for multi-layer 4. perceptrons," Neural Computation, 2000.
- 5. Tom Minka, "A comparison of numerical optimizers for logistic regression", 2003. http://research.microsoft.com/en-us/um/people/minka/papers/logreg/
- L. Bottou and Y. Lecun, "Online learning for very large datasets," Applied Stochastic Models in 6. Business and Industry, 2005.
- N. Schraudolph, J. Yu and S. Gunter, "A stochastic quasi-Newton method for online convex optimization," AISTATS, 2007.
- L. Bottou and O. Bousquet: Learning Using Large Datasets, Mining Massive DataSets for Security, 8. NATO ASI Workshop Series, IOS Press, Amsterdam, 2008.
- A. Bordes, L. Bottou and P. Gallinari, "SGD-QN: Careful Quasi-Newton Stochastic Gradient Descent, 9. JMLR, 2009.
- 10. A. Bordes, L. Bottou, P. Gallinari, J. Chang, S. A. Smith, "Erratum: SGD-QN is less careful than expected," 2010. http://jmlr.csail.mit.edu/papers/v11/bordes10a.html
- 11. J. Yu, S. Vishwanathan, S. Günter, and N. N. Schraudolph. A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning. Journal of Machine Learning Research, 11:1145–1200, 2010.

EECS6898 - Large Scale Machine Learning

Sanjiv Kumar

Logistic Regression

Given: A labeled training set, $\{x_i, y_i\}_{i=1...n}$ $x_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$

Goal: Learn a predictive function $p(y=1|x) = \sigma(w^T x)$ Absorb w_0 in w

$$p(y_i \mid x_i) = \sigma(y_i w^T x_i)$$

(negative) log-posterior

$$L(w) = \sum_{i} \log(1 + \exp(-y_i w^T x_i)) + \lambda w^T w$$

$$\log\text{-likelihood}$$

$$\log\text{-prior}$$

$$w_{t+1} = (XAX^T + \lambda I)^{-1} XAz$$

 $n \sim O(100M), d \sim O(100K)$

 $O(nd^2)$ multiplication

 $O(d^3)$ inversion

O(nd) First-order methods

