
Large-Scale Machine Learning EECS 6898,

Homework 3

Junfeng He and Sanjiv Kumar

November 2, 2010

Notes
20 points in total. 2 points will be dropped for each late day. There are two
bonus questions worth 6 points.
The due date is 23:59, Nov. 16, 2010.
Feel free to discuss with anyone. But you should answer the questions, complete
the programming implementations, and write the report totally on your own.
You can not download code from web and use it, unless specified in the question.

1 Review Exercises (4 points)

1.1 Gradient Descent (2 points)

Prove the rate of convergence for Gradient Descent method is linear.

1.2 Newton’s method (2 points)

Prove the rate of convergence for Newton’s method is quadratic.

1.3 Bonus Question: Perceptron (2 points)

Prove Perceptron method will always converge if data is linearly separable.

2 Programming assignments (16 points)

Please write an experimental report with your results, observations, etc., to-
gether with a brief (a couple sentences) description of each module in your code.
Your submitted file should be named as ”hw3 uni name.zip”, e.g., ”hw3 jh2700 Junfeng.zip”,
which contains your code and your report. Please do not include data file or
intemediate result files in your submission, but store them in your computer.
We may request them if necessary. In your report, do not just show your results.
Please try to provide your observations, analysis of the results, etc. In other
words, show what you have learned from the experiments.

1



You can use any programming language for the experiments, but Matlab
(especially 64-bit Matlab) is highly recommended, which would really make
your life much easier.

You are given 1 dataset (MNIST), which contains 10,000 training points
and 1000 test points in Matlab format. Each training or test data point has a
corresponding binary label y = 1 or −1, to represent whether it is digit number
3.

Notes: Each point in the data set is a 784-dim vector, representing the
28 ∗ 28 = 784 pixels for a handwritten digit image. You can use matlab com-
mands like im=reshape(x, 28,28);imshow(im); to see the handwritten digit im-
age, where x is a 784-dim vector.

2.1 Optimization (10 points)

Implement Kernel Logistic Regression with L2 regularizer using empirical kernel
map, i.e., optimize,

J(w) = −
∑

i=1,...,N

log(σ(yiw
T ki)) + λwTw

to get w. Here ki is a column vector such that ki = [k(xi, x1), ..., k(xi, xj), ..., k(xi, xN )]T .
Here yi is the given label for each data xi. Note that function σ is defined as
σ(v) = 1/(1 + e−v). Use RBF (Gaussian) kernel with the same parameter as in
the previous assignments.

After w is obtained, for any test data x, compute p(y = 1/x) = σ(wT kx),
where kx = [k(x, x1), ..., k(x, xj), ..., k(x, xN )]T . if p(y = 1/x) > 0.5, the pre-
dicted label y = 1, otherwise, y = −1. Report the accuracy, i.e., the percentage
of test data whose predicted label and given groundtruth label is the same.

For optimization of J(w), use the following methods. Experiment with var-
ious step sizes and pick that works the best for you. Compare how the value of
the cost function decreases with time for different methods. Stop the iterations,
if the gradient becomes smaller than epsilon (say, 1e-5).

2.1.1 Gradient descent (3 points)

2.1.2 Stochastic gradient descent (3 points)

For each iteration, use p points to estimate the gradients. Experiment with two
values: p = 1, 100.

2.1.3 BFGS (4 points)

Note that you need to keep an estimate of the inverse Hessian. Since the effective
data dimensionality with empirical kernel map is d = n = 10, 000, to reduce
the memory needs, randomly sample 4000 points from the training set (2000
each from positive and negative classes). Just use these points to decribe the
empirical kernel map and construct the approximation of inverse Hessian using
BFGS method. Now you will need to store just 4000x4000 matrix.

2



2.1.4 Bonus Question: Limited-Memory BFGS (4 points)

Try to repeat the same experiment as for BFGS above except that use a small
number of vectors (experiment with a couple of choices) to approximate inverse
Hessian. Also compare the convergence with time, and accuracy with other
methods mentioned above.

2.2 Kernel linearization (6 points)

Redo the above problem, but instead of using empirical kernel map, use random-
ized methods to do kernel linearization i.e., approximate k(xi, xj) as k(xi, xj) ≈
z(xi)

T z(xj). Then, directly optimize,

J(w) = −
∑

i=1,...,N

log(σ(yiw
T z(xi))) + λwTw

Use BFGS method implemented in Sec 2.1.3 for optimization, and experi-
ment with a few choices of dimensionality (D) of z(x). Compare the convergence
time and accuracy with the methods used in Sec 2.1 for a reasonable choice of
D. Note that you should use all the 10,000 samples for training this time since
the inverse Hessian is of size D ×D where D should be in hundreds.

3


