
Large-Scale Machine Learning EECS 6898,

Homework 1

October 7, 2010

Notes:
The due date is 23:59, Oct. 19, 2010.
20 points in total. 2 points would be dropped for each late day.
Feel free to discuss with anyone. But you should answer the questions, complete
the programming implementations, and write the report totally on your own.

1 Review Exercises (4 points)

1.1 Johnson-Lindenstrauss(JL) lemma (2 points)

In the lecture slides, one side of Johnson-Lindenstrauss(JL) lemma, i.e., ||f(u)−
f(v)||22 ≤ (1 + ε)||u− v||22, was proved. Prove the other side: ||f(u)− f(v)||22 ≥
(1− ε)||u− v||22

1.2 Spectral clustering (1 point)

W is a symmetric matrix, and y is a vector, prove that 1
2

∑
i,j

Wij ||yi − yj ||22 =

yT (D −W )y, where D is a diagonal matrix, Di,i =
∑
j

Wi,j .

1.3 Low rank approximation (1 point)

Suppose Ak is the best k-rank approximation of matrix A, i.e., Ak = min
D
||A−

D||F , s.t., rank(D) = k. Prove that ||A − Ak||2F =
n∑

i=k+1

σ2
i and ||A − Ak||2 =

σk+1, where σi is the i-th largest singular value of A.

2 Programming assignments (16 points)

Please write an experimental report with your results, observations, etc., to-
gether with a brief (a couple sentences) description of each module in your code.
Your submitted file should be named as ”hw1 uni name.zip”, e.g., ”hw1 jh2700 Junfeng.zip”,
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which contains all your code and your report. You can use any programming
language for the experiments, but Matlab (especially 64-bit Matlab) is highly
recommended, which would really make your life much easier.

You are given 2 datasets, each of which contains 7000 points in Matlab
format. For every step in the following tasks, you are supposed to use both
datasets.

Notes: Each point in the first dataset is a 512 dimension gist feature ex-
tracted from a web image. For the intuitive understanding, the corresponding
images are also provided. Each point in the second data set is a 784 dimension
vector, representing the 28 ∗ 28 = 784 pixels for a handwritten digit image. You
can use matlab commands like
im=reshape(x, 28,28);imshow(im);
to see the handwritten digit image, where x is one 784 dimension vector.

2.1 Sparse Matrix (4.5 points)

2.1.1 (0.5 point)

Create a dense graph Wij = exp(−||xi − xj ||2/σ2). Here, the parameter σ is

used as the mean of pairwise distance, i.e., σ2 = 1
N2

N∑
i,j=1

||xi − xj ||2.

Create a sparse graph: Wij = exp(−||xi − xj ||2/σ2), if point j is point i’s top
10 nearest neighbors or point i is point j’s top 10 nearest neighbors; Wij = 0,
otherwise.

2.1.2 (1 point)

Apply spectral clustering on dense and sparse W, get the reduced 10 dimensions
(hint: ignore the eigen vector(s) with 0 eigen value).

2.1.3 (1 point)

Apply K-means clustering to get 10 clusters based on the reduced 10 dimensions.
Show sample images from each of the 10 clusters for both dense and sparse cases.

2.1.4 (1 point)

Apply regular SVD and Sparse SVD (via Lanczos method) on the sparse W,
and compare the accuracy of top 10 eigenvalues, eigenvectors and time taken.

2.1.5 (1 point)

Normalize the sparse W such that it becomes a transition matrix, i.e., sum of
each row = 1. Apply page rank with power method on the normalized W to
find the stationary probability distribution for each point. Try different α , for
example, α = 0, 0.001, 0.1 in your experiments. Show the top 20 images with
the highest stationary probability distribution.
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2.2 Randomized SVD (1.5 points)

2.2.1 (0.5 point)

On dense W, apply exact SVD.

2.2.2 (1 point)

On dense W, apply randomized SVD with l columns samples. l = 100, 120, 150, 200.
Compare the eigenvalues, eigenvectors and speed with exact SVD for k = 100.

2.3 Approximate matrix multiplication (2 points)

With the dense W , apply the sampling based approximation of matrix mul-
tiplication for WWT . Report the errors compared to exact multiplication,
i.e., ||AB − CF ||F , where A = W,B = WT , with l columns sampled. Try
l = 100, 200, 400, 800. Also compare the corresponding speed in comparison
with the exact method.

2.3.1 (1 point)

Use uniform sampling.

2.3.2 (1 point)

Use Sampling based on the column norm.

2.4 Low rank approximation with column sampling and
Nystrom method (5 points)

With the dense W , apply column sampling and Nystrom method for spectral
reconstruction and matrix projection, with l columns sampled. Use uniform
sampling. Try l = 100, 200, 400, 800. (Hint: You are supposed to show figures
as in slides 31-33 of ”Matrix Approximatins II”). Also compare the speeds for
different methods.

2.4.1 (2 points)

Compare the top 20 eigen values and eigen vectors obtained by these methods
with the ones obtained via exact SVD.

2.4.2 (2 points)

For k=100, compute the relative accuracy for k-rank approximation matrix G̃k:
||G−G̃k||F
||G−Ĝk||F

. Note that for spectral reconstruction, G̃k = ŨkΣ̃kŨ
T
k , for matrix

projection G̃k = ŨkŨ
T
k G. Ĝk is obtained based on exact SVD, i.e., Ĝk =
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ÛkΣ̂kÛ
T
k , and Ĝk = ÛkÛ

T
k G for spectral reconstruction and matrix projection

respectively.

2.4.3 (1 point)

Generate a random dataset with 512 dims and 7000 pts (each entry sampled
from U[0, 1]). Compare the above quantities for that matrix.

2.5 Sampling (3 points)

Redo the problem 2.4 with adaptive sampling with batch size of 10 columns per
iteration. Compare the performance and speed with uniform sampling.

4


