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What is Sparsity?

When a data item such as a vector or a matrix has only a few nonzero
entries

— Sparsity in features x
— Sparsity in parameters o
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What is Sparsity?

When a data item such as a vector or a matrix has only a few nonzero
entries

Sparsity in features x
Sparsity in parameters «

Learning methods that utilize sparsity

Kernel methods - want only a few coefficients nonzero in kernel sums
Feature selection in linear methods using L, penalty e.g., Lasso
Group feature selection e.g., Group Lasso

Sparse Coding - Linear reconstruction of the data using a few elements
from large dictionaries

Sparse PCA and Sparse SVD
» Find sparse vectors “closest” to the true singular vectors

Many others...

Sparse methods lead to parsimonious (and interpretable) models in
addition to being efficient for large scale learning
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Sparse penalties

Total Loss  J(a) =21 1/(x;, y;,0) + R(ax)

Lasso or L, R(a) = Aa|;  leadsto sparse «

Elastic net R(a) = 2o, + ,”tzHaHg allows important correlated variables to be picked

_ L note: no square in the norm
Group Lasso  R(a) = ’121:1“0‘1 HZ allows groups of variables to be sparse

_ L allows elements within groups to be
Sparse Group R(oc) B ilZlﬂHalHZ * iZHaHl sparse in addition to spgrsepgroups
Lasso

Multitask Lasso R(a) = ﬂzlL—lHalH encourages eht|re groups to have zero elements
- ®  more aggressive than group lasso
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Lasso

Linear regression with L, penalty

a=argmin’ ", (y; —alx;)? + Ao, x,0e R4
a

equivalent problem & =argmin Y1 (v; — o x;)° st e, < C
a
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Lasso

Linear regression with L, penalty

a=argmin’ ", (y; —alx;)? + Ao, x,0 e R4
a

equivalent problem & =argmin ., (v; —ochl-)2 s.t. HaHl <C
a

- Quadratic objective function with linear constraints - Quadratic Programming !
* Does not scale well with problem size

- Can be solved using iterative (sub)gradient methods e.g., coordinate descent

- Leads to sparse a, higher C - less sparse o

- Related method: Forward Stagewise Procedure (Homotopy method)
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Lasso

Linear regression with L, penalty

a=argmin’ ", (y; —ochl-)2 +/1HaHl x,0 e R4
a

equivalent problem & =argmin Y1 (v; — o x;)° st e, < C
a

- Quadratic objective function with linear constraints - Quadratic Programming !
* Does not scale well with problem size

- Can be solved using iterative (sub)gradient methods e.g., coordinate descent

- Leads to sparse a, higher C - less sparse o

- Related method: Forward Stagewise Procedure (Homotopy method)
. T
» Suppose data X and prediction y are centered, and U; = X" oy
« Given current estimate of o (starting with o, = 0), compute residual 7; = (y —,Ltt)

« Compute data correlation with the residual vector ¢; = Xi”t
 Find the direction of greatest correlation and take a small step

. AYA
J=arg mlax(ch) = M < M T 8-Sgn(C'jt)-(Xj)

\jth row of X
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Group Lasso

Linear regression with L, (non-squared) penalty
— Suppose the features can be divided into L groups

— Let X, be the data submatrix and o, be the parameter chunk corresponding
to /' group

2
‘y . ale + 23 e,

a =argmin
a
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Group Lasso

Linear regression with L, (non-squared) penalty
— Suppose the features can be divided into L groups

— Let X, be the data submatrix and o, be the parameter chunk corresponding
to /th group

X _ 2
a =arg mO:n ‘y - ZlelX IT ale T iZszlH“l Hz

Subgradient equation
L T
_Xl ()’_Zzlel OCZ) +iSl =0 [/ =1,...,L

s; =ayl|oy| if oy # 0,any vector withs; |, <1otherwise
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Group Lasso

Linear regression with L, (non-squared) penalty
— Suppose the features can be divided into L groups

— Let X, be the data submatrix and o, be the parameter chunk corresponding
to /th group

X _ 2
a=arg m(;n Y= ZlelX lT ale t iZszlHasz

Subgradient equation
L T
_Xl (J’_Zzlel OCZ)-l—j«Sl =0 l=1,...,L
s; =ayl|oy| if oy # 0,any vector withs; |, <1otherwise
T
if HX; (V= 2k X ak)H</1:>az =0

otherwise a; = (X; X[ +1/|a,[) ™ X, 1 where 7 ==Y, Xl
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Group Lasso

Linear regression with L, (non-squared) penalty
— Suppose the features can be divided into L groups

— Let X, be the data submatrix and o, be the parameter chunk corresponding
to /th group

) _ 2
.= argmin ‘y yd ale + A e,

Subgradient equation
L T
_Xl ()’_Zzlel OCZ) +j‘Sl =0 [/ =1,...,L

s; =ayl|oy| if oy # 0,any vector withs; |, <1otherwise

T
if HX; (V=24 Xk ak)H <i=o =0

otherwise a; = (X; X[ +1/|a,[) ™ X, 1 where 7 ==Y, Xl

. T _ _ X
T X, Xp =1 and v =X;n 0y :(1_,1/HVZH)VI Block-coordinate descent
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Multitask Penalty

Want to learn K parameter vectors, one for eachtask k = 1,...,.K
a=argmind L I(x, )+ Aa, . aeR®K xewd
o :

d ‘ ‘ sum of max absolute
= E . . MaXa : .
HOCHl,OO Jj=1 ka k| value in each row of o
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Multitask Penalty

Want to learn K parameter vectors, one for eachtask k = 1,...,.K
a=argmind L I(x, )+ Aa, . aeR®K xewd
o :

sum of max absolute

~d
. HOCHl,OO - Zj=1mkax‘afk‘ value in each row of o
equivalent

a=argmin>”? . I(x;,a) s.t. |a < C | Tends to make entire row
| o i/ (xir ) H Hl’oo of matrix o zero

Choice of loss function
7|2
Vi = O X;

Regression for k" task — I(x;, y;, 04 ) = ‘ ,

Classification for k" task I(x;, y;, ;) = max(0,1— yia;{xi)

Can be solved directly using block coordinate descent or via projected subgradient
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Projected Subgradient Method

Let’s focus on classification case with hinge loss

o1 = Fo o, —n,8;)

-~ ~\,

projection on convex set Q: [of,  <C subgradient of max(0,1- y;a] x;)

step size 770/\/;
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Projected Subgradient Method

Let’s focus on classification case with hinge loss

o1 = Fo o, —n,8;)

-~ ~\,

projection on convex set Q: [of,  <C subgradient of max(0,1- y;a] x;)

step size '70/\/;

Subgradient for ki task g~ = D Vix;
i:x,ek,y.al x,<1

Projection on constraint set minHa —oc’H2 =miny, . (ajk —a'jk)z
o) acQ —/

How to efficiently do projection of a matrixto a L, ball ?
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Efficient Projection

Equivalent projection problem

— assuming all entries of o’ are positive (can be relaxed)

Sanjiv Kumar

: ' 32
T’Z‘ij(ajk )

Zjﬂj:C
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Efficient Projection

Equivalent projection problem
— assuming all entries of o’ are positive (can be relaxed)

- r\2
m'ank(ajk — )
a,

Zjﬂj:C

i / 2
Lagrangian - [ = Z]’k (ajk _ajk) +ij,0jk (ajk — 1)
+9(Zjﬂj _C)_ijﬂjkajk _Z]‘Vjﬂj
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Efficient Projection

Equivalent projection problem
— assuming all entries of o’ are positive (can be relaxed)

- r\2
rwzjk(ajk—ajk)

Zjﬂj:C

i / 2
Lagrangian - [ = ij (ajk _ajk) +ijpjk (ajk — 1)
+9(Zjﬂj _C)_ijﬂjkajk _Z]‘Vjﬂj

Suppose /i is the optimal value of u

] N . .
Qi Z M= A = U Optimal value of
a’jk < Aj=a = a}k can be obtalned In
- O(dKlogdK) time !
ILl] = O — OC]k = O
Sanjiv Kumar 11/23/2010 EECS6898 — Large Scale Machine Learning

18



Experiment

Synthetic Data, only 10% features relevant for any task prediction

K =60, d =200

Test Error Feature Selection Performance
60 . . . . . 100 =

80

60

40

®Precision L1INF

2
10=L2 T —Recall L1
—L1 ®Precision L1
—L1INF . . | | . | _ |—Recall L1INF
0 20 . 40 80 160 320 640 ‘G 20 . 40 80 160 320 640
# training examples per task # training examples per task

Quattoni et al. [14]
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Sparse Coding

Linear reconstruction of data using a few elements of a dictionary

— A data vector x € R is reconstructed using a dictionary D containing k
elements (sometimes called “basis” vectors or “atoms”)

xzzl;zlajdsza Deﬂ%ka,aeﬂ%k

number of nonzero elements HaHO <<k

NG

X~o d1+oc d2+a d3
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Sparse Coding

Linear reconstruction of data using a few elements of a dictionary

— A data vector x € R is reconstructed using a dictionary D containing k
elements (sometimes called “basis” vectors or “atoms”)

~Nk T _ dxk k
x~zj:1a dj—Da DeRY aeR
number of nonzero elements HaHO <<k

Properties

— The dictionary elements usually not orthogonal (unlike PCA)

— Dictionary may be overcomplete, i.e., number of elements are more than
the data dimensionality d = elements are not linearly independent

— Learned dictionaries usually lead to more more compact representation
than predefined ones e.g., based on wavelets
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Sparse Coding

Linear reconstruction of data using a few elements of a dictionary

— A data vector x € R is reconstructed using a dictionary D containing k
elements (sometimes called “basis” vectors or “atoms”)

~Nk g dxk k
x~zj:1a dj—Da DeRY aeR
number of nonzero elements HaHO <<k

Properties
— The dictionary elements usually not orthogonal (unlike PCA)

— Dictionary may be overcomplete, i.e., number of elements are more than
the data dimensionality d = elements are not linearly independent

— Learned dictionaries usually lead to more more compact representation
than predefined ones e.g., based on wavelets

Learning Problem
— Offline: Given a dataset X, learn dictionary D
— Online: Given a dictionary D and input vector x, learn coefficients o
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Sparse Coding Formulation

Given a training set X =[x;,...x,,], x; € R learn dictionary D

X = Da X eRDM D e RK g e pIxn

] 2
Total penalized loss rIT)lln > igl@/ 2)|x; —Dain T iHaiHﬂ
O \ )
L, penalty
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Sparse Coding Formulation

Given a training set X =[x;,...x,,], x; € R learn dictionary D

X =~ Da X eRDM D e RK g e pIxn

- 2

Total penalized loss rlr)un Z?:l[(ll Z)Hxi —Dain T /lHaz'Hﬂ a; € R*
O |

L, penalty

— Given D, obtaining best a equivalent to solving Lasso
— Nonconvex in both D and a but convex in one if the other is fixed
— Since scales of D and a are arbitrary, dictionary elements are constrained

C={DeR™ st did; <1 Vj=1..k}

Sanjiv Kumar 11/23/2010 EECS6898 — Large Scale Machine Learning 24



Sparse Coding Formulation

Given a training set X =[x;,...x,,], x; € R learn dictionary D

X =~ Da X eRDM D e RK g e pIxn

- 2

Total penalized loss rlr)un Z?:l[(ll Z)Hxi —Dain T /lHaz'Hﬂ a; € R*
O |

L, penalty

— Given D, obtaining best a equivalent to solving Lasso
— Nonconvex in both D and a but convex in one if the other is fixed
— Since scales of D and a are arbitrary, dictionary elements are constrained

C={DeR™ st did; <1 Vj=1..k}

— Matrix form| min [(1/2)|X = Dal? + A =Yl
DrQICr,]a[( )H aHz"‘ HaHl,l] %11 ij| %57

— Usually solved via alternate minimization of D and o
» For large-scale problems (i.e., large n), most time spent in getting o
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Dictionary Learning

Suppose a is given, then how to learn best D?
— Due to scale constraints, iterative methods for solving D
— For large-scale learning, projected stochastic gradient decent

Dy = Fe[Dyg —nVI(x;,Diq)] 1.0 1) = (W2), - D, g0l

projection on constraint set step size :ar_\d_om satmple ftr)om
if 0. >1thend. «d./ld. al(t+b raining set, can be
H JHz AN J/H JHz (+0) extended to mini-batch
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Dictionary Learning

Suppose a is given, then how to learn best D?
— Due to scale constraints, iterative methods for solving D
— For large-scale learning, projected stochastic gradient decent

Dy = Fc[Dyg —nVI(x;,Dyq)] 1050 0) = (U2~ D

projection on constraint set step size :and_om satmple ftr)om
if |d ||, >1thend; «d/|d; al(t+b raining set, can be
H JHz AN J/H JHz (t+) extended to mini-batch

— Need to tune the step size
— May have slow convergence

— Can one exploit the structure of the sparse coding problem to get faster
learning without much dependence on step size

— Alternative: use second order information in stochastic updates
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Online Dictionary Learning

Key lIdea: The loss function at time ¢ aggregates information from

samples drawn up to time ¢ | |
best a for point x; using

the dictionary D, ;
2
[(D) =@/ 20) 3} _yx; — Doy
| S—

averaging over previous
sparse reconstructions

Sanjiv Kumar 11/23/2010 EECS6898 — Large Scale Machine Learning
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Online Dictionary Learning

Key lIdea: The loss function at time ¢ aggregates information from

samples drawn up to time ¢ | |
best o for point x, using

the dictionary D, ;
2
[(D) =@/ 20) 3} _yx; — Doy

averaging over previous
sparse reconstructions

= 1/ 20)(Tr[ D' DA1-Tr[D' B,])

t T ot T
4, = Zizlaiai B, = zizlxiai
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Online Dictionary Learning

Key Idea: The loss function at time ¢ aggregates information from

samples drawn up to time ¢ | |
best a for point x; using

the dictionary D,
2
[(D) =@/ 20) 3} _yx; — Doy

averaging over previous
sparse reconstructions

= 1/ 20)(Tr[ D' DA1-Tr[D' B,])
4, = Zif:lal-al-T B, = ZgzlxiaiT

— At each step, given D, ,, o, is obtained using x,via any method, e.g.,
coordinate descent with soft thresholding, LARS with Cholesky etc.

— Dictionary learning based on block coordinate descent
— Does not require learning rate tuning

— With increasing ¢, the storage cost of x; and a.,, i < ¢ can be expensive
» No need to store these explicitly, only need to store 4, and B,

Sanjiv Kumar 11/23/2010 EECS6898 — Large Scale Machine Learning
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Complete Algorithm

Given training set X, coefficient A, initial dictionary D, and iterations T
Ay=0,By=0
Fort=1,...,.T

1. Draw a random point x, from X

2. Find best o, for x, given D,
use Lasso / LARS /

i 2
a; =arg mO:n [(L/ 2)th _Dt—laHZ T ’1HaH1] iterative thresholding

3. Update 4, <« 4, 4 + atatT B, < B, 1+ xtoctT

Sanjiv Kumar 11/23/2010 EECS6898 — Large Scale Machine Learning
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Complete Algorithm

Given training set X, coefficient A, initial dictionary D, and iterations T
Ay=0,By=0
Fort=1,....T

1. Draw a random point x, from X

2. Find best o, for x, given D,
use Lasso / LARS /

i 2
a; =arg mO:n [(L/ Z)HXt _Dt—laHZ T ’1HaH1] iterative thresholding

3. Update 4, <« 4,4 + atatT B, < B, 1+ xtaIT
4. Update dictionary using block coordinate descent (starting with D, )

1 .
d;«——(bj—Da;)+d; if|d
Ajj
or using Newton’s method by first creating a Lagrangian using constraints

* Need to invert £ x £ matrix (fine for small k)

‘2>1:>dj <—dj/Hd

j‘ J'Hz

What happens if T>n ? Various heuristics to remove the contribution of older a's !
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Dictionary Learning Experiment

Objective function

n=125M image patches
d =256, k=1024

0.245} 0.245
024} 024
=
i=l
0.235¢ B 0235
=
0 23H - %~ Batch n=10" 2 02
-©- Batch n=10° g
1l =]
0225 _A_ BatCh n:105 O 0225
——0L1
0.22f ——0L2 0.22
—A—0L3
0215 1 L 1 0215 |
107 10° 10° 10° 10° 10° 107 10°
time (in seconds)
Sanjiv Kumar 11/23/2010 EECS6898 — Large Scale Machine Learning

10' 107 10
time (in seconds)

Mairal et al. [13]

33



Dictionary Learning Experiment

Inpainting, e.g., remove text from images
n="1TM patches,d =432, k =256

Training time: 8 mins, 2.4GHz/8 cores

Sanjiv Kumar 11/23/2010 EECS6898 — Large Scale Machine Learning
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Sparse PCA

Key Idea: Find sparse vectors that maximize the variance of the projected
data or minimize mean sguared error of reconstruction

Benefits: Less storage and computation, Interpretability

Formulation 1
— Maximize variance subject to sparsity constraints
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Sparse PCA

Key Idea: Find sparse vectors that maximize the variance of the projected
data or minimize mean sguared error of reconstruction

Benefits: Less storage and computation, Interpretability

Formulation 1
— Maximize variance subject to sparsity constraints

suppose data matrix Xis  fy — argmax Ir[D' XxX'D] X e " D e R
centered, i.e., zero mean D

subject to DID=1
Z’]‘.:lde Hl <C

— Usually each d; is learned incrementally by enforcing orthonormality and
sparsity constraints

— problem is non-convex and computationally expensive
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Sparse PCA

Key Idea: Find sparse vectors that maximize the variance of the projected
data or minimize mean sguared error of reconstruction

Formulation 2
— Minimize squared reconstruction error subject to sparsity constraints

~ 2
Recall PCA formulation ) = arg minHX_DDTXH subject to DTD =i
D 2

Sanjiv Kumar 11/23/2010 EECS6898 — Large Scale Machine Learning 37



Sparse PCA

Key Idea: Find sparse vectors that maximize the variance of the projected
data or minimize mean sguared error of reconstruction

Formulation 2

— Minimize squared reconstruction error subject to sparsity constraints

~ 2

Recall PCA formulation ) = arg min X_DDTX‘ subject to DTD =i
D

~ A ] 2 2
Sparse PCA formulation B, D =argmin| X —BDTX‘ ot /llzl;.:l”dez + A5 Zl;.:ldeul
— 7

DE‘.Rka,BeERka B,D
subjectto BB =1 elastic net penalty

— If no L, penalty, solution the same as PCA
— Solved via alternate minimization, using LARS and SVD
— Much more expensive than PCA
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Sparse PCA

Key Idea: Find sparse vectors that maximize the variance of the projected
data or minimize mean sguared error of reconstruction

Formulation 3
— Minimize square reconstruction via dictionary learning view

min > [/ 2)|x; — Dyl + Aoy ]  sparse o
D,a

subject to deH§+dejH1 <1 j=1..k sparsed,
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Sparse PCA

Key Idea: Find sparse vectors that maximize the variance of the projected
data or minimize mean sguared error of reconstruction

Formulation 3
— Minimize square reconstruction via dictionary learning view

min >, [(1/2)|x; — D5 + Aeg,]  sparse
D,a

+yld;| <1 j=Ll..k sparsed

. J 2
subject to H jHZ jH1

— Solved via alternate minimization as for sparse coding
— Dictionary learning step is modified as
, 1
J

subject to  d; —argmin|; —d st [df} +5ld]y <1 j=1...k

No orthonormality constraints on d,!
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Dictionary Learning Experiment

n=2414 face images

d =256, k=49

Sanjiv Kumar

L et | i e (T L3 - T =0 NS ey
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R R St ] e el PP EREAS Sl e s PR
(a) PCA (b) SPCA, 1="70% (e) Dictionary Learning
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