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Curse of Dimensionality

Gaussian Mixture Models (GMM)

— Density (likelihood) modeling
« Can approximate any function arbitrarily close given enough components

— Clustering

p(x) = %Pmp(x )
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Curse of Dimensionality

Gaussian Mixture Models (GMM)

— Density (likelihood) modeling
« Can approximate any function arbitrarily close given enough components

— Clustering

() = S P()p(x] /) = Zw N(u,‘—‘dxd

j=1
. . - m _
Mixing weights ijla)j =1
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Curse of Dimensionality

Gaussian Mixture Models (GMM)

— Density (likelihood) modeling
« Can approximate any function arbitrarily close given enough components

— Clustering

() = S P()p(x] /) = Zw N(#]—‘dxd

j=1

Mixing weights ZZ?:la)j =1

— Learning Via Expectation-Maximization

» First-order method that iteratively fits a lower-bound on the data likelihood
followed by maximization of the bound - commonly used with latent models

e Learning:
Assignment probability P(j|x;)=a p(x; |j;(9t)w;.
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Curse of Dimensionality

Gaussian Mixture Models (GMM)

— Density (likelihood) modeling
« Can approximate any function arbitrarily close given enough components

— Clustering

p() = S P()p(x] /) = Zw N(#]—‘dxd

j=1

Mixing weights Z]”.“zla)j =1

— Learning Via Expectation-Maximization

» First-order method that iteratively fits a lower-bound on the data likelihood
followed by maximization of the bound - commonly used with latent models

e Learning
Assignment probabilty | B (7] ;) =a p(x; | i) B =%, B(1%:0)

;= U/mB| |t =W B p( 1 x0)x| (5 = W B, PG 0, (x — ) — )T
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Curse of Dimensionality

Hidden Markov Models

— Time-series data
— Stock prices, Speech, Videos, Natural Language Processing

Video
Categorization

Phoneme
recognition

Sanjiv Kumar 9/13/2010 EECS6898 — Large Scale Machine Learning



Curse of Dimensionality

Hidden Markov Models
— Time series data
— Stock prices, Speech, Videos, Natural Language Processing

state §;
For each category/ x={x;},s ={s;}

d
phoneme frame x, x;eNR”,s; €8

Evidence p(x)=2 . p(x,s)
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Curse of Dimensionality

Hidden Markov Models
— Time series data
— Stock prices, Speech, Videos, Natural Language Processing

state §;
For each category/ x={x;},s ={s;}
phoneme x, eR? s, eS8
frame x; ! 'l
Evidence p(x)=2 p(x,s)

p(x,s) = p(x|s)p(s)
=P(Sl)HP(Si+1|Si)Hp(xi | 5;)
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Curse of Dimensionality

Hidden Markov Models
— Time series data
— Stock prices, Speech, Videos, Natural Language Processing

state §;
For each category/ x={x;},s ={s;}
phoneme x, eR? s, eS8
frame x; ! 'l
Evidence p(x)=2 p(x,s)

p(x,s) = p(x|s)p(s)
= P(Sl)H P(s;11 | Si)H p(x;|s;)

m

k k <k

p(x;[s;=k)= 2o N(u;,Z7)
=]
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Curse of Dimensionality

Hidden Markov Models
— Time series data
— Stock prices, Speech, Videos, Natural Language Processing

state §;
For each category/ x={x;},s ={s;}
phoneme x, eR? s, eS8
frame Xx; ! 'l
Evidence p(x)=2 p(x,s)

p(x,s) = p(x|s)p(s)
=P(Sl)HP(Si+1|Si)Hp(xi | 5;)

(5 =k) = LN s
i19] ) J full diagonal

Video Analysis d ~ O(L00K) |S| ~ O(100), m = O(10) Oo@0r)  O(100M)
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Curse of Dimensionality

Nearest Neighbor Search

— Density estimation, classification, clustering/semi-supervised learning
(graph-construction), ...

— Brute Force: O(nd)
— If quality is not affected (much), can we reduce data to d' << d

— Ways of avoiding factor n discussed later
Data Visualization — hard to do in high-dimensional spaces

Dimensionality Reduction
— Linear methods e.g., PCA, metric MDS
— Finds directions that maximize variance of the projected data
— Also minimizes mean squared reconstruction error

— Computationally expensive O(nd?)

— No worst case guarantees for distance preservation

Sanjiv Kumar 9/13/2010 EECS6898 — Large Scale Machine Learning 11



Linear Dimensionality Reduction

T
u' =R u
kx1 kxd dx1 k<d
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Linear Dimensionality Reduction

T
u' =R u
kx1 kxd dx1 k<d

Goal: To find an R such that Hu' % ~ 0‘”“ _
Does it exist?
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Randomized Projections

Johnson-Lindenstrauss (JL) Lemma [1984].

Given 0<e¢<1 and any integer n, let k£ be a positive integer such that,
k>a(2/2-£3/3) Yogn= O(s 2 logn)

then, for any set P of n points in )¢, there existsamap f: R > R
such that for all u,ve P,

Q-au—v3<|f@- rOIE < @+u—3
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Randomized Projections

Johnson-Lindenstrauss (JL) Lemma [1984].

Given 0<e¢<1 and any integer n, let k£ be a positive integer such that,
k > 4(82/2—53/3)_1 |Ogn — 0(8_2 |Ogn) nod!/

then, for any set P of n points in )¢, there existsamap f: R > R
such that for all u,ve P,

Q-au=v3<|f@- rOIE < @+u—3

Example: Video Analysis
d =100K n=100M &=0

k~7K In practice, usually much smaller
number (< 1K) is enough !

O(100)/) wembp O(LM)
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Construction of Mapping f

Consider linear mapping

f() =Yk R"u

Sanjiv Kumar 9/13/2010 EECS6898 — Large Scale Machine Learning
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Construction of Mapping f

Consider linear mapping

S @) = JYk(R
dxk Random Matrix
Key elements of the proof

— For any vector, squared length of its projection is sharply concentrated
around its mean, i.e., squared length of original vector.

(Hint: this is true even for difference of vectors: (1 —v) )

— For a collection of 7 points, apply this observation to all pairs and try to
bound maximum pairwise distortion to be within (1+ &) of mean

Sanjiv Kumar 9/13/2010 EECS6898 — Large Scale Machine Learning 17



Elementary Proof

T

Single projection q;=r;

We want E(qu)
Expectation E(g;)= E(ro)u =0 since r; ~N(0,1)

Variance E(qj'z) = UTE(”j’”jT)“ = H“Hz

True for any distribution for which 7; are iid, and E(r;) =0, E(rl-jz) =1
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Elementary Proof

T

Single projection q;=r;

We want E(qu)
Expectation E(g;)= E(ro)u =0 since r; ~N(0,1)

Variance E(qj'z) = UTE(”j’”jT)“ = H“Hz

True for any distribution for which 7; are iid, and E(r;) =0, E(rl-jz) =1

k-dim embedding £ (u) = Ik R u

E(lf @) = WX Eg?) =uff
J

Next: To show that distribution of |/ ()|*is concentrated around mean
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Elementary Proof

1-projection

Sanjiv Kumar 9/13/2010

qj=r; u wmyq;~ulN©O 1) =]ux,

k-projections f(u):\/ﬂRTu ﬂHf(u)Hz _Z q5 % .
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Elementary Proof

1-projection q; = ’”jT” g~ u[N(0,1) = H“ij

2
1
k-projections  f'(u) =Vk RTy =) Hf(u)Hz = %ZQE = Hu]ﬂ X ~ 72(k)
J

Pr[Lf ()* = (1 2)ul*] = Pr{@R)ul’ X 2 @+ &)u] ]
=Pr[X > (1+¢)k]
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Elementary Proof

1-projection q; = ’”jT” g~ u[N(0,1) = H“ij

2
1
k-projections  f'(u) =\ Vk RTy =) Hf(u)Hz = %Zﬁ = Hu]ﬂ X ~ 72(k)
J

Pl ()2 2 (0 £))u ] = PR X > @+ &)
=Pr[X = (1+&)k]
_ Pr:e,v( > 8/1(1+5)k] vV A1>0

Markov’s inequality
< E[e’LX ]/8/1(1+8)k Pr[\x\ >a] < E[\x\]/a
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Elementary Proof

1-projection q; = ’”jT” =g~ u[N(0,1) = H“ij

2
1
k-projections  f'(u) = Vk RTy =) Hf(u)Hz = %Zﬁ = Hu]ﬂ X ~ 72(k)
J

Pl /)2 > 0+ &) = PR X = L+ )]
= Pr[X > (1+&)k]
_ Prje’D( > 8/1(1+8)k] VA>0

Markov’s inequality
< p[e™ ]/ o) P/ > a] < E[])/a

2
mgf of x“ (k) < :(1/meﬂ(l+5))k V1/2>41>0
J=el2l+e)  =(L+e)e t)K/?
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Elementary Proof

1-projection q; = ’”jT” =g~ u[N(0,1) = H“ij

2
1
k-projections  f'(u) = Vk RTy =) Hf(u)Hz = %Zﬁ = Hu]ﬂ X ~ 72(k)
J

Pl /)2 > 0+ &) = PR X = L+ )]
= Pr[X > (1+&)k]
_ Prje’D( > 8/1(1+8)k] VA>0

Markov’s inequality
< E[eM ]/8/1(1+8)k Pr[\x\ >a] < E[\x\]/a

2
mgf of x“ (k) < :(1/meﬂ(l+5))k V1/2>41>0
J=el2l+e)  =(L+e)e t)K/?

gLt x) <x 2221233 <o (87/276°/3k/2

k=4c/2-6%/3)  ogn  =n"? Prlf )|* = A+ &)u|*] <1/ n?
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Elementary Proof

Probabilities of
large distortion

Sanjiv Kumar

9/13/2010

Prilf ()

22(1+g)

2]Sl/n2

Prif ()

2S(l—g)

2]Sl/n2

EECS6898 — Large Scale Machine Learning

25



Elementary Proof

Prllf )|* = A+ &)u|*] <1/ n?

Probabilities of
large distortion

Prll.f (u)|° < (- &)|u*1< 1/ n?

Replacing u by u —v, and using linearity of f
large distortion probability for one pair of points < 2 / » 2

.d.p. for at least one among all pairs of points < n(n —1) /2.2 /n?
=1-1/n
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Elementary Proof

Prilf () = 1+ &)

2]Sl/n2

Probabilities of

large distortion

Prll.f ()| < (1-&)

u

2]Sl/n2

Replacing u by u —v, and using linearity of f

large distortion probability for one pair of points < 2 / » 2

.d.p. for at least one among all pairs of points < n(n —1) /2.2 / n?
=1-1/n

PrIL—&)u—v[° <|f @) - fO)° <@+ &)u—v|*]1<1/n

Repeating this projection O(n) times can boost the success probability

to any desired constant.

Does this type of guarantee hold for L, also?

Sanjiv Kumar 9/13/2010
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Application - Document retrieval

Given a database of n documents, retrieve similar to input document

Represent each document as a (tf-idf) bag-of-words feature vector
— Consider 2-grams of words as new “dimensions”: d ~ O(1M)
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Application - Document retrieval

Given a database of n documents, retrieve similar to input document

Represent each document as a (tf-idf) bag-of-words feature vector
— Consider 2-grams of words as new “dimensions”: d ~ O(1M)
— No problem! — JL: reduce to £ ~ 10K
— Generation of projection directions is fast — sample from std Gaussian
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Application - Document retrieval

Given a database of n documents, retrieve similar to input document

Represent each document as a (tf-idf) bag-of-words feature vector
— Consider 2-grams of words as new “dimensions”: d ~ O(1M)
— No problem! — JL: reduce to £ ~ 10K
— Generation of projection directions is fast — sample from std Gaussian

— Two issues
« Matrix multiplication: O(ndk)

n~O(B) d ~ O(LM) k ~ O(10K) => O(10MT)
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Application - Document retrieval

Given a database of n documents, retrieve similar to input document

Represent each document as a (tf-idf) bag-of-words feature vector
— Consider 2-grams of words as new “dimensions”: d ~ O(1M)
— No problem! — JL: reduce to £ ~ 10K
— Generation of projection directions is fast — sample from std Gaussian

— Two issues
« Matrix multiplication: O(ndk)

n~O(B) fi ~ O(lM)/ k ~O(10K) = O(10MT)
usually sparse: d,, ~ O(1K) == O(10KT)

* Memory requirement: O(dk)~ 40GB!
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Scale-friendly Random Projections

Instead of generating r; ~N(0,1), use a different distribution that has
zero mean and unit variance

Sanjiv Kumar 9/13/2010 EECS6898 — Large Scale Machine Learning
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Scale-friendly Random Projections

Instead of generating r; ~N(0,1), use a different distribution that has
zero mean and unit variance

+1 with p=1/2
=1 with p=1/2

(+1  with p=1/6

rl.j:\/§< 0 with p=2/3
_1 with p=1/6

Sanjiv Kumar 9/13/2010 EECS6898 — Large Scale Machine Learning

33



Scale-friendly Random Projections

Instead of generating r; ~N(0,1), use a different distribution that has
zero mean and unit variance

memory speed
+1  with p=1/2 1 bit/dim Add half of the dims
i = {_1 with p=1/2 ~1.25GB! and subtract rest
(11 with p=1/6 2 bit/dim Add a few dims and
i = J3) 0 with p= 2/3 ~2.5GB! subtract a few
-1 with p= 1/6
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Scale-friendly Random Projections

Instead of generating r; ~N(0,1), use a different distribution that has
zero mean and unit variance

memory speed
C[+1 with p=1/2 1bit/dim  Add half of the dims
= —1 with p=1/2 ~1.25GB! and subtract rest
(11 with p=1/6 2 bit/dim Add a few dims and
ry = J3l 0 with p= 2/3 ~2.5GB! subtract a few
_1 with p=1/6 relation with

“hash-kernel” ?

Similar guarantees as for ;; ~N(0,1)

Can we make the sampling matrix more sparse?
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Fast JL Transform

Yes, one can make R more sparse but need to precondition the matrix
to avoid excessive distortion

|IN(, gty  with P=q g =min{O(s' 2 log’ n/d), 1}
rl'j B 0 with p=l—q norm/={1, 2}
fw)=R'HDu

Sanjiv Kumar 9/13/2010 EECS6898 — Large Scale Machine Learning
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Fast JL Transform

Yes, one can make R more sparse but need to precondition the matrix
to avoid excessive distortion

|IN(, gty  with P=q g =min{O(e' 2 log’ n/d), 1}
rl'j_ 0 with p=l—q norm/={1, 2}
fw)=R'HDu

dxd
(1 0 0 O]
0 -1 0 0/ Diagonal Matrix
0 0 10 +1 withp=1/2
0 0 0-1
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Fast JL Transform

Yes, one can make R more sparse but need to precondition the matrix
to avoid excessive distortion

| N(O, q—l) with P =4 g =min{0(e 2 log’ n/d), 1}
rlj - 0 with p= 1- q norm/={1, 2}
fw)=R'HDu
ﬁ x d\d xd

Randomized Fourier [1 1 -1 —1] 1 0 0 O]

Transfor:p | 12 1 -1 1 -1 0 -1 0 0/ Diagonal Matrix
normalize —~ , _
Hadamard Matrix d 1 -1 -11 0 010 £1 with p _1/2
orthogonal rows -1 1 1 -1 0O O 0-1
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Fast JL Transform

Yes, one can make R more sparse but need to precondition the matrix
to avoid excessive distortion

V-

B {N O, g7t) with P=4¢ g =min{O(¢" 2 log’ n/d), 1}
=

0 with p=1-g¢q norm/={1, 2}

Tapu

fu)=R
kxdr////éxé\\\dxd

Randomized Fourier [1 1 —1 -1 1 0 0 0]

Transfor?w | 12 1 -1 1 -1 0 -1 0 0| Diagonal Matrix
normalize — - _
Hadamard Matrix d 1 -1 -1 1 0 010 £1 with p _1/2
orthogonal rows -1 1 1 -1 0O 0 0-1

Run Time: O(d |Og d) T .. with large constants
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Random Projections in Practice ?

e Gaussian Mixture Models (GMMs) in high dimensions
« Classification

 Nearest Neighbor Search Approximate Nearest Neighbors
— Locality Sensitive Hashing (LSH)
— Random Partitioning Trees

* Kernel Methods Kernel Methods
— Linearization of shift-invariant kernels

— Reduction in computational complexity
 Training: O(n®) to O(n)
» Testing: O(nd) to O(k)

* Matrix Approximations Matrix Approximations
— Fast low-rank approximation
— Accurate results for both dense and sparse matrices
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Application: High-Dim Mixture Models

Revisiting Video Analysis example: d ~ O(100K)
# of Gaussians: m ~ O(1K)

Weirdness of high-dimensional spaces:
1 .3::...'.
1 2 ® @, @, 8o 00 0
PO a2 eXp(_FHX_ﬂH j :.:‘:'0%...‘:
.ﬁ'o.o"‘o
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Application: High-Dim Mixture Models

Revisiting Video Analysis example: d ~ O(100K)
# of Gaussians: m ~ O(1K)

Weirdness of high-dimensional spaces:

()= = exp( L - Hj
p (2752)412 252 H

Randomly pick a point x from p(x)

Elx - 4°1= B[4 (x; — )] = d o

Sanjiv Kumar 9/13/2010 EECS6898 — Large Scale Machine Learning
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Application: High-Dim Mixture Models

Revisiting Video Analysis example: d ~ O(100K)
# of Gaussians: m ~ O(1K)

Weirdness of high-dimensional spaces: 4

po= e~ Ll ui?)
(27 Gz)d/z 267

Randomly pick a point x from p(x)
2
Ellx = 1= EIX (= 1) 1 =do”

Plix - uf* ~do?| > sdo?) < 2e7" 124

v

Although density is highest at 1, probability mass is concentrated in a thin
shell around o+/d , i.e., we need O(29) points to learn reliably!!
Away from center, volume increases much more rapidly than the fall in density !
How about a uniform distribution in a hypercube?
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data

concentration in high-dim spaces

Single

spherical
gaussian
with unit
variance

Sanjiv Kumar
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= 0.35
o . T
o © 0.3
© @
2 05/ 90.25¢
W 0]
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o4 s 02
3 20.15
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. _ Dasgupta [6]
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Application: High-Dim Mixture Models

Project the data in low-dim space

1. Data can be projected in a very small subspace without significantly
iIncreasing the overlap of Gaussians

O(e % logm) m ~ O(1K),s=0.1= O(100)
Independent of » and 4 !

Sanjiv Kumar 9/13/2010 EECS6898 — Large Scale Machine Learning
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Application: High-Dim Mixture Models

Project the data in low-dim space

1. Data can be projected in a very small subspace without significantly
iIncreasing the overlap of Gaussians

O(e % logm) m ~ O(1K),s=0.1= O(100)
Independent of » and 4 !

2. After projection, arbitrary ellipsoidal Gaussians become more spherical

A A

9
.' =) |9

Easier to learn parameters

v
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Application: High-Dim Mixture Models

Project the data in low-dim space

1. Data can be projected in a very small subspace without significantly
iIncreasing the overlap of Gaussians

O(e % logm) m ~ O(1K),s=0.1= O(100)
Independent of » and 4 !

2. After projection, arbitrary ellipsoidal Gaussians become more spherical

3. Mixture is learned in low-dim space and parameters of soft-clustering
mapped back in original space.

A A

9
.' =) |9

Easier to learn parameters

v

Important in practice!
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Examples - Overlap after projection

] - — || = e/ max{tr(Zq), (2
cseparaton [jg ~ | > e\mr GO E}

& 111 m gwhﬂﬂﬂﬂnﬂﬂﬁﬁ
§ "c:G 0.6
2 E 0.5
HD.E- ‘_I| -
0 200 400 d 600 o0 1000 1200 0 20 40 €0 m 80 100 120
k=20,m=2 k =10logm
Separation independent of d ! sufficient to maintain good separation
Dasgupta [6]
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Examples - Eccentricity after projection

eccentricity  Amax (Z)/ Amin (Z)

10°

c
O
©
QL
: o
Single S w0 B4k
Gaussian 93
in 50-dim ®
>
O w't
I=
()]
(&)
(&)
(0)]
10° L L L L L
20 25 a0 35 40 45 50
k

Sanjiv Kumar

reducing k reduces eccentricity !

Dasgupta [6]
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Examples - Accuracy

% accuracy on a handwritten digit classification set

95 T T T T T

94 A

93

92

91

accuracy

90

89

a8
0

20 40 &0 a0 100 120

k
d =256 m =5 per category, 10 categories

Dasgupta [6]
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Random Projections Vs PCA - Classification

Sanjiv Kumar

% accuracy on Ads dataset (UCI), n = 3279, d = 1554

Ads | C4.5 INN HNIN SVM
PCA RP |PCA RP |PCA RP |PCA RP
5] 95.8 87.8 | 95.3 89.1 | 95.5 887 | 941 8G.0
0.6 0.7 0.6 0.9 0.5 1.0 1.3 0.9
10 95.9 89.0 | 95.2 927 | 955 91.6 | 945 86.0
0.6 0.9 0.5 (.8 0.5 1.0 (0.8 0.9
25 959 89.6 | 95.8 95.1 | 95.9 939 | 945 876
0.5 (0.8 0.6 0.6 0.5 0.6 0.8 1.1
20 95.6  90.0 | 96.0 956 | 95.8 946 | 94.3 909
0.6 1.1 0.5 0.5 0.6 0.7 0.9 0.9
100 | 955 90.2 | 95.9 957 | 95.6 948 | 948 93.6
0.6 1.0 0.5 0.5 0.5 0.6 0.7 (0.8
200 1 955 905 ] 959 959 | 95.6 948 | 96.1 954
0.6 0.9 0.5 0.5 0.6 0.7 0.5 0.6
300 | 94.7  90.7 | 95.8 958 | 949 948 | 96.6 96.5
0.7 0.9 0.4 0.5 0.5 (0.6 0.5 0.4

1554 | 96.0 95.8 94.7 96.8

0.6 0.5 0.6 0.4

9/13/2010

EECS6898 — Large Scale Machine Learning

For low-dim projections, use PCA if computationally possible

Fradkin&Madigan [8]




Application: Kernel Linearization

Kernels commonly used for inducing nonlinearity
— Classification, regression, ranking, dimensionality reduction,...

— E.g., Kernel ridge regression, SVM, kernel logistic regression, kernel
LDA, kernel PCA,...

— Powerful than their linear counterparts but higher computational costs
« Training: O(n?)-0O(n3) Vs O(n)
» Testing: O(nd) Vs O(d)
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Application: Kernel Linearization

Kernels commonly used for inducing nonlinearity
— Classification, regression, ranking, dimensionality reduction,...

— E.g., Kernel ridge regression, SVM, kernel logistic regression, kernel
LDA, kernel PCA,...

— Powerful than their linear counterparts but higher computational costs
 Training: O(n?)-0(n®) Vs O(n)
» Testing: O(nd) Vs O(d)

Usually mercer kernels are used for inducing nonlinearity

k(x,y) = @(x).0(y)

Feature map for a generic kernel may not be known.
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Application: Kernel Linearization

Kernels commonly used for inducing nonlinearity
— Classification, regression, ranking, dimensionality reduction,...

— E.g., Kernel ridge regression, SVM, kernel logistic regression, kernel
LDA, kernel PCA,...

— Powerful than their linear counterparts but higher computational costs
« Training: O(n?)-0O(n3) Vs O(n)
» Testing: O(nd) Vs O(d)

Usually mercer kernels are used for inducing nonlinearity

k(x,y) = @(x).0(y)

Feature map for a generic kernel may not be known.

Can we approximate the feature map with a low-dim vector ?

5) = 00 =202)
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Traditional approaches

Approaches to improve learning with kernels

— Decomposition methods (block coordinate-descent) - slow beyond
O(100K) points

— Make the kernel matrix sparse by thresholding the entries

— Low-rank approximation of kernel matrix using column-sampling methods
— Hermite or Taylor approximation of kernel

— Approximate kernel matrix-vector product using ANN (kd-trees)

Instead of approximating the kernel matrix, directly approximate
the feature map defining a kernel.
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Traditional approaches

Approaches to improve learning with kernels

— Decomposition methods (block coordinate-descent) - slow beyond
O(100K) points

— Make the kernel matrix sparse by thresholding the entries

— Low-rank approximation of kernel matrix using column-sampling methods
— Hermite or Taylor approximation of kernel

— Approximate kernel matrix-vector product using ANN (kd-trees)

Instead of approximating the kernel matrix, directly approximate
the feature map defining a kernel.

Suppose the kernel is shift-invariant:
k(x,y) =k'(x—y)=k'(A)

k(x,y) =exp{—|x— y§/202} k(x,y) = exp{~|x - yHl //1}
K(A) = exp{-|A[% /2673 K'(A) = exp{-|Al, /73
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Random Fourier Features

Approximate z(x) =[z ;(x)]za

Sanjiv Kumar

9/13/2010

Zj(x)=COS(a)jx+b) w;~Plw) b~U(0, 2x)
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Random Fourier Features

Approximate z(x) =[z ;(x)]za

Zj(x)=COS(a)jx+b) w;~Plw) b~U(0, 2x)

Gaussian @ j ~ N(0,1) Laplacian @ j ~ Cauchy(0,1)

Zj(x)‘

Sanjiv Kumar

9/13/2010
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Main Theory

A continuous shift-invariant kernel is positive definite if and only if £'(A) is
the Fourier transform of a non-negative measure. [Bochner]

kK'(x—y)= Ip(w)ejw'(x_y)dw
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Main Theory

A continuous shift-invariant kernel is positive definite if and only if £'(A) is
the Fourier transform of a non-negative measure. [Bochner]

kK'(x—y)= Ip(w)ejw'(x_y)dw

— since £'(.) and p(.) both are real, use real part of complex exponentials
k(x,y) = Elz,,(x)z,(»)] if z,,(x) =~/2cos(w! x +b)

— Reduce variance by concatenating many (D) dimensions in z_(.)

2o 2, (N =W D)T T 12, (¥)zg (1)
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Main Theory

A continuous shift-invariant kernel is positive definite if and only if £'(A) is
the Fourier transform of a non-negative measure. [Bochner]

kK'(x—y)= Ip(w)ejw'(x_y)dw

— since £'(.) and p(.) both are real, use real part of complex exponentials
k(x,y) = Elz,,(x)z,(»)] if z,,(x) =~/2cos(w! x +b)

— Reduce variance by concatenating many (D) dimensions in z_(.)

2o 2, (N =W D)T T 12, (¥)zg (1)

Hoeffding Bound Pr(z(x)” z(y) — k(x, y)| > &) < 2exp(—De” 1 4)
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Example results

Regression and Classification errors

2
Training mln(ZTW—y2 +/1w§ Testing f(x)=w! z(x)
\

Dataset Fourier+LS CVM Exact SVM
CPU 3.6% 5.5% 11%
regression 20 secs 51 secs 31 secs
6500 instances 21 dims D = 300 ASVM
Census 5% 8.8% 9%
regression 36 secs 7.5 mins 13 mins
18,000 instances 119 dims D = 500 SVMTorch
Adult 14.9% 14.8% 15.1%
classification O secs 73 mins 7 mins
32,000 instances 123 dims D = 500 SAAV
Forest Cover 11.6% 2.3% 2.2%
classification 71 mins 7.5 hrs 44 hrs
522,000 instances 54 dims D = 5000 libSVM
KDDCUP 99 (see footnote) 7.3% 6.2% (18%) 8.3%
classification 1.5 min 1.4 secs (20 secs) < 1s
4,900,000 instances 127 dims D = 50 SVM+sampling
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