Randomized Algorithms

Sanjiv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 2010

Sanjiv Kumar

Gaussian Mixture Models (GMM)

- Density (likelihood) modeling
 - Can approximate any function arbitrarily close given enough components
- Clustering

$$p(x) = \sum_{j=1}^{m} P(j)p(x \mid j)$$

Gaussian Mixture Models (GMM)

- Density (likelihood) modeling
 - Can approximate any function arbitrarily close given enough components
- Clustering

$$p(x) = \sum_{j=1}^{m} P(j)p(x \mid j) = \sum_{j=1}^{m} \omega_{j} N(\mu_{j}(\Sigma_{j})) \longrightarrow d \times d$$

Mixing weights
$$\sum_{j=1}^{m} \omega_j = 1$$

Gaussian Mixture Models (GMM)

- Density (likelihood) modeling
 - Can approximate any function arbitrarily close given enough components
- Clustering

$$p(x) = \sum_{j=1}^{m} P(j)p(x \mid j) = \sum_{j=1}^{m} \omega_{j} N(\mu_{j}, \Sigma_{j}) \longrightarrow d \times d$$

Mixing weights
$$\sum_{j=1}^{m} \omega_j = 1$$

- Learning Via Expectation-Maximization
 - First-order method that iteratively fits a lower-bound on the data likelihood followed by maximization of the bound → commonly used with latent models
 - Learning:

Assignment probability
$$P_t(j \mid x_i) = \alpha \ p(x_i \mid j; \theta_t) \omega_j^t$$

Sanjiv Kumar

Gaussian Mixture Models (GMM)

- Density (likelihood) modeling
 - Can approximate any function arbitrarily close given enough components
- Clustering

$$p(x) = \sum_{j=1}^{m} P(j)p(x \mid j) = \sum_{j=1}^{m} \omega_{j} N(\mu_{j}(\Sigma_{j})) \longrightarrow d \times d$$

Mixing weights
$$\sum_{j=1}^{m} \omega_j = 1$$

- Learning Via Expectation-Maximization
 - First-order method that iteratively fits a lower-bound on the data likelihood followed by maximization of the bound → commonly used with latent models
 - Learning

Assignment probability
$$P_t(j \mid x_i) = \alpha \ p(x_i \mid j; \theta_t) \omega_j^t$$
 $\beta_j^t = \sum_i P_t(j \mid x_i; \theta_t)$

$$\beta_j^t = \sum_i P_t(j \mid x_i; \theta_t)$$

$$\omega_j^{t+1} = (1/n)\beta_j^t$$

$$\mu_j^{t+1} = (1/\beta_j^t) \sum_i p(j \mid x_i; \theta_t) x_i$$

$$\omega_{j}^{t+1} = (1/n)\beta_{j}^{t} \quad \mu_{j}^{t+1} = (1/\beta_{j}^{t})\sum_{i} p(j \mid x_{i}; \theta_{t})x_{i} \qquad \sum_{j}^{t+1} = (1/\beta_{j}^{t})\sum_{i} p(j \mid x_{i}; \theta_{t})(x_{i} - \mu_{j}^{t})^{T}$$

5

Hidden Markov Models

- Time-series data
- Stock prices, Speech, Videos, Natural Language Processing

Video Categorization

Phoneme recognition

Hidden Markov Models

- Time series data
- Stock prices, Speech, Videos, Natural Language Processing

For each category/ phoneme

$$x = \{x_i\}, s = \{s_i\}$$
$$x_i \in \Re^d, s_i \in S$$

Evidence
$$p(x) = \sum_{s} p(x,s)$$

Hidden Markov Models

- Time series data
- Stock prices, Speech, Videos, Natural Language Processing

For each category/ phoneme

$$x = \{x_i\}, s = \{s_i\}$$
$$x_i \in \Re^d, s_i \in S$$

Evidence
$$p(x) = \sum_{s} p(x,s)$$

$$p(x,s) = p(x \mid s) p(s)$$

$$= P(s_1) \prod_{i} P(s_{i+1} \mid s_i) \prod_{i} p(x_i \mid s_i)$$

Hidden Markov Models

- Time series data
- Stock prices, Speech, Videos, Natural Language Processing

For each category/ phoneme

$$x = \{x_i\}, s = \{s_i\}$$
$$x_i \in \Re^d, s_i \in S$$

Evidence
$$p(x) = \sum_{s} p(x,s)$$

$$p(x,s) = p(x \mid s) p(s)$$

$$= P(s_1) \prod_{i} P(s_{i+1} \mid s_i) \prod_{i} p(x_i \mid s_i)$$

$$p(x_i \mid s_i = k) = \sum_{j=1}^{m} \omega_j^k N(\mu_j^k, \Sigma_j^k)$$

Hidden Markov Models

- Time series data
- Stock prices, Speech, Videos, Natural Language Processing

For each category/ phoneme

$$x = \{x_i\}, s = \{s_i\}$$
$$x_i \in \Re^d, s_i \in S$$

Evidence
$$p(x) = \sum_{s} p(x,s)$$

$$p(x,s) = p(x \mid s) p(s)$$

$$= P(s_1) \prod_{i} P(s_{i+1} \mid s_i) \prod_{i} p(x_i \mid s_i)$$

$$p(x_i \mid s_i = k) = \sum_{j=1}^{m} \omega_j^k N(\mu_j^k, \sum_j^k) \text{ full diagonal}$$

$$p(x_i \mid s_i = k) = \sum_{j=1}^{m} \omega_j^k N(\mu_j^k, \sum_j^k) \text{ full diagonal}$$

$$p(x_i \mid s_i = k) = \sum_{j=1}^{m} \omega_j^k N(\mu_j^k, \sum_j^k) \text{ full diagonal}$$

$$p(x_i \mid s_i = k) = \sum_{j=1}^{m} \omega_j^k N(\mu_j^k, \sum_j^k) \text{ full diagonal}$$

Video Analysis $d \sim O(100K) |S| \sim O(100), m = O(10)$

Nearest Neighbor Search

- Density estimation, classification, clustering/semi-supervised learning (graph-construction), ...
- Brute Force: O(nd)
- If quality is not affected (much), can we reduce data to $d' \ll d$
- Ways of avoiding factor n discussed later

Data Visualization – hard to do in high-dimensional spaces

Dimensionality Reduction

- Linear methods e.g., PCA, metric MDS
- Finds directions that maximize variance of the projected data
- Also minimizes mean squared reconstruction error
- Computationally expensive $O(nd^2)$
- No worst case guarantees for distance preservation

Linear Dimensionality Reduction

EECS6898 - Large Scale Machine Learning

$$u' = R^T u$$

$$k \times 1 \quad k \times d \quad d \times 1 \qquad k \le d$$

Linear Dimensionality Reduction

$$u' = R^{T} u$$

$$k \times 1 \quad k \times d \quad d \times 1 \qquad k \leq d$$

Goal: To find an R such that $||u'-v'||^2 \approx \alpha ||u-v||^2$

Does it exist?

Sanjiv Kumar

Randomized Projections

Johnson-Lindenstrauss (JL) Lemma [1984]:

Given $0 < \varepsilon < 1$ and any integer n, let k be a positive integer such that,

$$k \ge 4(\varepsilon^2/2 - \varepsilon^3/3)^{-1} \log n = O(\varepsilon^{-2} \log n)$$

then, for any set P of n points in \Re^d , there exists a map $f:\Re^d \to \Re^k$ such that for all $u, v \in P$,

$$(1-\varepsilon)\|u-v\|_2^2 \le \|f(u)-f(v)\|_2^2 \le (1+\varepsilon)\|u-v\|_2^2$$

Randomized Projections

Johnson-Lindenstrauss (JL) Lemma [1984]:

Given $0 < \varepsilon < 1$ and any integer n, let k be a positive integer such that,

$$k \ge 4(\varepsilon^2/2 - \varepsilon^3/3)^{-1} \log n = O(\varepsilon^{-2} \log n)$$
 no $d!!$

then, for any set P of n points in \mathbb{R}^d , there exists a map $f: \mathbb{R}^d \to \mathbb{R}^k$ such that for all $u, v \in P$,

$$(1-\varepsilon)\|u-v\|_2^2 \le \|f(u)-f(v)\|_2^2 \le (1+\varepsilon)\|u-v\|_2^2$$

Example: Video Analysis

$$d = 100K$$
 $n = 100M$ $\varepsilon = 0.1$

 $k \approx 7K$

In practice, usually much smaller number (< 1K) is enough!

 $O(100M) \longrightarrow O(1M)$

Construction of Mapping f

Consider linear mapping

$$f(u) = \sqrt{1/k} \ R^T u$$

Construction of Mapping f

Consider linear mapping

$$f(u) = \sqrt{1/k} \underbrace{R^{T}}_{d \times k} u$$

$$d \times k \text{ Random Matrix}$$

$$r_{ij} \sim N(0,1)$$

Key elements of the proof

 For any vector, squared length of its projection is sharply concentrated around its mean, i.e., squared length of original vector.

(Hint: this is true even for difference of vectors: (u-v))

 For a collection of n points, apply this observation to all pairs and try to bound maximum pairwise distortion to be within $(1\pm\varepsilon)$ of mean

EECS6898 – Large Scale Machine Learning

Sanjiv Kumar

Single projection
$$q_j = r_j^T u$$

We want $E(q_j^2)$

Expectation $E(q_j) = E(r_j^T)u = 0$ since $r_j \sim N(0, I)$

Variance $E(q_i^2) = u^T E(r_i r_i^T)u = \|u\|^2$

True for any distribution for which r_{ij} are iid, and $E(r_{ij}) = 0$, $E(r_{ij}^2) = 1$

$$q_j = r_j^T u$$

We want $E(q_i^2)$

Expectation
$$E(q_j) = E(r_j^T)u = 0$$
 since $r_j \sim N(0, I)$

Variance
$$E(q_j^2) = u^T E(r_j r_j^T) u = ||u||^2$$

True for any distribution for which r_{ij} are iid, and $E(r_{ij}) = 0$, $E(r_{ij}^2) = 1$

k-dim embedding
$$f(u) = \sqrt{1/k} R^T u$$

$$E(\|f(u)\|^2) = (1/k)\sum_{j} E(q_j^2) = \|u\|^2$$

Next: To show that distribution of $\|f(u)\|^2$ is concentrated around mean

1-projection
$$q_j = r_j^T u \implies q_j \sim \|u\| N(0,1) \equiv \|u\| x_j$$

$$k\text{-projections} \quad f(u) = \sqrt{1/k} \ R^T u \implies \|f(u)\|^2 = \frac{1}{k} \sum_j q_j^2 = \frac{\|u\|^2}{k} \sum_j x_j^2$$

EECS6898 - Large Scale Machine Learning

1-projection
$$q_j = r_j^T u \implies q_j \sim \|u\| N(0, 1) \equiv \|u\| x_j$$

$$k\text{-projections} \quad f(u) = \sqrt{1/k} \ R^T u \implies \|f(u)\|^2 = \frac{1}{k} \sum_j q_j^2 = \frac{\|u\|^2}{k} \sum_j x_j^2 X_j \sim \chi^2(k)$$

$$\Pr[\|f(u)\|^2 \ge (1+\varepsilon)\|u\|^2] = \Pr[(1/k)\|u\|^2 X \ge (1+\varepsilon)\|u\|^2]$$
$$= \Pr[X \ge (1+\varepsilon)k]$$

$$q_j = r_j^T u \implies q_j \sim ||u|| N(0, 1) \equiv ||u|| x_j$$

k-projections
$$f(u) = \sqrt{1/k} R^T u \implies ||f(u)||^2 = \frac{1}{k} \sum_j q_j^2 = \frac{||u||^2}{k} \sum_j x_j^2 X \sim \chi^2(k)$$

$$\Pr[\|f(u)\|^{2} \ge (1+\varepsilon)\|u\|^{2}] = \Pr[(1/k)\|u\|^{2}X \ge (1+\varepsilon)\|u\|^{2}]$$

$$= \Pr[X \ge (1+\varepsilon)k]$$

$$= \Pr[e^{\lambda X} \ge e^{\lambda(1+\varepsilon)k}] \quad \forall \lambda \ge 0$$

$$\leq E[e^{\lambda X}]/e^{\lambda(1+\varepsilon)k}$$

$$= \Pr[|x| \ge a] \le E[|x|]/a$$

1-projection
$$q_{j} = r_{j}^{T} u \implies q_{j} \sim \|u\| N(0, 1) \equiv \|u\| x_{j}$$

$$k\text{-projections} \quad f(u) = \sqrt{1/k} \ R^{T} u \implies \|f(u)\|^{2} = \frac{1}{k} \sum_{j} q_{j}^{2} = \frac{\|u\|^{2}}{k} \sum_{j} x_{j}^{2} X_{j} \times \chi^{2}(k)$$

$$\Pr[\|f(u)\|^{2} \geq (1+\varepsilon)\|u\|^{2}] = \Pr[(1/k)\|u\|^{2} X \geq (1+\varepsilon)\|u\|^{2}]$$

$$= \Pr[X \geq (1+\varepsilon)k]$$

$$= \Pr[e^{\lambda X} \geq e^{\lambda(1+\varepsilon)k}] \quad \forall \lambda \geq 0$$

$$\leq E[e^{\lambda X}]/e^{\lambda(1+\varepsilon)k} \qquad \Pr[|x| \geq a] \leq E[|x|]/a$$

$$mgf \text{ of } \chi^{2}(k) \qquad = (1/\sqrt{1-2\lambda} e^{\lambda(1+\varepsilon)})^{k} \quad \forall 1/2 \geq \lambda \geq 0$$

$$\lambda = \varepsilon/2(1+\varepsilon) \qquad = ((1+\varepsilon)e^{-\varepsilon})^{k/2}$$

EECS6898 - Large Scale Machine Learning

1-projection
$$q_{j} = r_{j}^{T} u \implies q_{j} \sim \|u\| N(0, 1) \equiv \|u\| x_{j}$$

$$k\text{-projections} \quad f(u) = \sqrt{1/k} \ R^{T} u \implies \|f(u)\|^{2} = \frac{1}{k} \sum_{j} q_{j}^{2} = \frac{\|u\|^{2}}{k} \sum_{j} x_{j}^{2} X \sim \chi^{2}(k)$$

$$\Pr[\|f(u)\|^{2} \geq (1+\varepsilon)\|u\|^{2}] = \Pr[(1/k)\|u\|^{2} X \geq (1+\varepsilon)\|u\|^{2}]$$

$$= \Pr[X \geq (1+\varepsilon)k]$$

$$= \Pr[e^{\lambda X} \geq e^{\lambda(1+\varepsilon)k}] \quad \forall \lambda \geq 0$$

$$\leq E[e^{\lambda X}]/e^{\lambda(1+\varepsilon)k} \qquad \Pr[|x| \geq a] \leq E[|x|]/a$$

$$= (1/\sqrt{1-2\lambda} e^{\lambda(1+\varepsilon)})^{k} \quad \forall 1/2 \geq \lambda \geq 0$$

$$\lambda = \varepsilon/2(1+\varepsilon) \qquad = ((1+\varepsilon)e^{-\varepsilon})^{k/2}$$

$$\log(1+x) < x - x^{2}/2 + x^{3}/3 \qquad \leq e^{-(\varepsilon^{2}/2 - \varepsilon^{3}/3)k/2}$$

$$k = 4(\varepsilon^{2}/2 - \varepsilon^{3}/3)^{-1} \log n \qquad = n^{-2}$$

$$\Pr[\|f(u)\|^{2} \geq (1+\varepsilon)\|u\|^{2}] \leq 1/n^{2}$$

Probabilities of large distortion

$$\Pr[\|f(u)\|^2 \ge (1+\varepsilon)\|u\|^2] \le 1/n^2$$

$$\Pr[\|f(u)\|^2 \le (1-\varepsilon)\|u\|^2] \le 1/n^2$$

EECS6898 - Large Scale Machine Learning

Probabilities of large distortion

$$\Pr[\|f(u)\|^2 \ge (1+\varepsilon)\|u\|^2] \le 1/n^2$$

$$\Pr[\|f(u)\|^2 \le (1-\varepsilon)\|u\|^2] \le 1/n^2$$

Replacing u by u-v, and using linearity of f

large distortion probability for one pair of points $\leq 2 / n^2$

EECS6898 - Large Scale Machine Learning

l.d.p. for at least one among all pairs of points $\leq n(n-1)/2$. $2/n^2$ = 1 - 1/n

Probabilities of large distortion

$$\Pr[\|f(u)\|^2 \ge (1+\varepsilon)\|u\|^2] \le 1/n^2$$

$$\Pr[\|f(u)\|^2 \le (1-\varepsilon)\|u\|^2] \le 1/n^2$$

Replacing u by u-v, and using linearity of f

large distortion probability for one pair of points $\leq 2 / n^2$

l.d.p. for at least one among all pairs of points $\leq n(n-1)/2 \cdot 2/n^2$ = 1 - 1/n

$$\Pr[(1-\varepsilon)||u-v||^2 \le ||f(u)-f(v)||^2 \le (1+\varepsilon)||u-v||^2] \le 1/n$$

Repeating this projection O(n) times can boost the success probability to any desired constant.

Does this type of guarantee hold for L₁ also? unfortunately NO!

Sanjiv Kumar

Given a database of *n* documents, retrieve similar to input document

EECS6898 - Large Scale Machine Learning

Represent each document as a (tf-idf) bag-of-words feature vector

Consider 2-grams of words as new "dimensions": $d \sim O(1M)$

Given a database of *n* documents, retrieve similar to input document

Represent each document as a (tf-idf) bag-of-words feature vector

- Consider 2-grams of words as new "dimensions": $d \sim O(1M)$
- No problem! JL: reduce to k ~ 10K
- Generation of projection directions is fast sample from std Gaussian

EECS6898 – Large Scale Machine Learning

Given a database of *n* documents, retrieve similar to input document

Represent each document as a (tf-idf) bag-of-words feature vector

- Consider 2-grams of words as new "dimensions": $d \sim O(1M)$
- No problem! JL: reduce to k ~ 10K
- Generation of projection directions is fast sample from std Gaussian
- Two issues
 - Matrix multiplication: O(ndk)

$$n \sim O(1B) d \sim O(1M) k \sim O(10K) \Longrightarrow O(10MT)$$

Given a database of *n* documents, retrieve similar to input document

Represent each document as a (tf-idf) bag-of-words feature vector

- Consider 2-grams of words as new "dimensions": $d \sim O(1M)$
- No problem! JL: reduce to k ~ 10K
- Generation of projection directions is fast sample from std Gaussian
- Two issues
 - Matrix multiplication: O(ndk)

```
n \sim O(1B) \left( d \sim O(1M) \right) k \sim O(10K) \Longrightarrow O(10MT)
      usually sparse: d_{nz} \sim O(1K) \implies O(10KT)
```

Memory requirement: $O(dk) \approx 40GB$!

Sanjiv Kumar

Instead of generating $r_{ij} \sim N(0,1)$, use a different distribution that has zero mean and unit variance

EECS6898 - Large Scale Machine Learning

Instead of generating $r_{ij} \sim N(0,1)$, use a different distribution that has zero mean and unit variance

$$r_{ij} = \begin{cases} +1 & \text{with } p = 1/2 \\ -1 & \text{with } p = 1/2 \end{cases}$$

$$r_{ij} = \sqrt{3} \begin{cases} +1 & \text{with } p = 1/6 \\ 0 & \text{with } p = 2/3 \\ -1 & \text{with } p = 1/6 \end{cases}$$

Instead of generating $r_{ij} \sim N(0,1)$, use a different distribution that has zero mean and unit variance

$$r_{ij} = \begin{cases} +1 & \text{with } p = 1/2 \\ -1 & \text{with } p = 1/2 \end{cases}$$

$$r_{ij} = \sqrt{3} \begin{cases} +1 & \text{with } p = 1/6 \\ 0 & \text{with } p = 2/3 \\ -1 & \text{with } p = 1/6 \end{cases}$$

memory speed

1 bit/dim Add half of the dims
$$\approx 1.25GB$$
! and subtract rest

2 bit/dim Add a few dims and
$$\approx 2.5GB$$
! subtract a few

Instead of generating $r_{ij} \sim N(0,1)$, use a different distribution that has zero mean and unit variance

$$r_{ij} = \begin{cases} +1 & \text{with } p = 1/2 \\ -1 & \text{with } p = 1/2 \end{cases}$$

$$r_{ij} = \sqrt{3} \begin{cases} +1 & \text{with } p = 1/6 \\ 0 & \text{with } p = 2/3 \\ -1 & \text{with } p = 1/6 \end{cases}$$

$$\begin{vmatrix} y - \sqrt{3} \\ -1 \end{vmatrix}$$
 with $p = 1/6$

 $\approx 1.25GB!$

speed

1 bit/dim Add half of the dims and subtract rest

2 bit/dim Add a
$$\approx 2.5GB$$
! subtraction

Add a few dims and subtract a few

relation with "hash-kernel"?

Similar guarantees as for $r_{ij} \sim N(0,1)$

Can we make the sampling matrix more sparse?

Fast JL Transform

Yes, one can make *R* more sparse but need to precondition the matrix to avoid excessive distortion

$$r_{ij} = \begin{cases} N(0, q^{-1}) & \text{with} \quad p = q \\ 0 & \text{with} \quad p = 1 - q \end{cases} \qquad \begin{aligned} q &= \min\{O(\varepsilon^{l-2} \log^{l} n/d), 1\} \\ &= \{1, 2\} \end{aligned}$$

$$f(u) = R^T H D u$$

Fast JL Transform

Yes, one can make R more sparse but need to precondition the matrix to avoid excessive distortion

$$r_{ij} = \begin{cases} N(0, q^{-1}) & \text{with } p = q \\ 0 & \text{with } p = 1 - q \end{cases} \qquad \begin{aligned} q &= \min\{O(\varepsilon^{l-2} \log^{l} n/d), 1\} \\ &= \{1, 2\} \end{aligned}$$

Fast JL Transform

Yes, one can make R more sparse but need to precondition the matrix to avoid excessive distortion

$$r_{ij} = \begin{cases} N(0, q^{-1}) & \text{with } p = q \\ 0 & \text{with } p = 1 - q \end{cases} \qquad \begin{aligned} q &= \min\{O(\varepsilon^{l-2} \log^{l} n/d), 1\} \\ &= \{1, 2\} \end{aligned}$$

$$f(u) = R^T H D u$$

$$\sqrt{d \times d} \qquad d \times d$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 - 1 \end{bmatrix}$$

Fast JL Transform

Yes, one can make R more sparse but need to precondition the matrix to avoid excessive distortion

$$r_{ij} = \begin{cases} N(0, q^{-1}) & \text{with } p = q \\ 0 & \text{with } p = 1 - q \end{cases} \qquad q = \min\{O(\varepsilon^{l-2} \log^{l} n/d), 1\}$$

$$\text{norm } l = \{1, 2\}$$

$$f(u) = R^{T} H D u$$

$$k \times d \qquad d \times d$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 - 1 \end{bmatrix}$$

Run Time: $O(d \log d) + ...$ with large constants

Random Projections in Practice?

- Gaussian Mixture Models (GMMs) in high dimensions
- Classification
- Nearest Neighbor Search

- Approximate Nearest Neighbors
- Locality Sensitive Hashing (LSH)
- Random Partitioning Trees
- Kernel Methods

- Kernel Methods
- Linearization of shift-invariant kernels
- Reduction in computational complexity
 - Training: $O(n^3)$ to O(n)
 - Testing: O(nd) to O(k)
- Matrix Approximations

Matrix Approximations

- Fast low-rank approximation
- Accurate results for both dense and sparse matrices

Revisiting Video Analysis example: $d \sim O(100K)$

of Gaussians: $m \sim O(1K)$

Weirdness of high-dimensional spaces:

$$p(x) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{1}{2\sigma^2} ||x - \mu||^2\right)$$

Revisiting Video Analysis example: $d \sim O(100K)$

of Gaussians: $m \sim O(1K)$

Weirdness of high-dimensional spaces:

$$p(x) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{1}{2\sigma^2} ||x - \mu||^2\right)$$

$$E[\|\mathbf{x} - \mu\|^2] = E[\sum_{i=1}^{d} (x_i - \mu_i)^2] = d\sigma^2$$

Revisiting Video Analysis example: $d \sim O(100K)$

of Gaussians: $m \sim O(1K)$

Weirdness of high-dimensional spaces:

$$p(x) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{1}{2\sigma^2} ||x - \mu||^2\right)$$

Randomly pick a point x from p(x)

$$E[\|\mathbf{x} - \boldsymbol{\mu}\|^2] = E[\sum_{i=1}^{d} (x_i - \mu_i)^2] = d\sigma^2$$

$$P[\|\mathbf{x} - \mu\|^2 - d\sigma^2] > \varepsilon d\sigma^2] \le 2e^{-d\varepsilon^2/24}$$

Although density is highest at μ , probability mass is concentrated in a thin shell around $\sigma\sqrt{d}$, i.e., we need O(2^d) points to learn reliably!!

Away from center, volume increases much more rapidly than the fall in density!

How about a uniform distribution in a hypercube?

data concentration in high-dim spaces

Single spherical gaussian with unit variance

Project the data in low-dim space

1. Data can be projected in a very small subspace without significantly increasing the overlap of Gaussians

EECS6898 - Large Scale Machine Learning

$$O(\varepsilon^{-2}\log m)$$
 $m \sim O(1K), \varepsilon = 0.1 \Rightarrow O(100)$

Independent of *n* and *d* !!

Project the data in low-dim space

1. Data can be projected in a very small subspace without significantly increasing the overlap of Gaussians

$$O(\varepsilon^{-2}\log m) \quad m \sim O(1K), \varepsilon = 0.1 \Rightarrow O(100)$$
 Independent of n and d !!

2. After projection, arbitrary ellipsoidal Gaussians become more spherical

Project the data in low-dim space

1. Data can be projected in a very small subspace without significantly increasing the overlap of Gaussians

$$O(\varepsilon^{-2}\log m) \quad m \sim O(1K), \varepsilon = 0.1 \Rightarrow O(100)$$
 Independent of n and d !!

2. After projection, arbitrary ellipsoidal Gaussians become more spherical

Easier to learn parameters

 Mixture is learned in low-dim space and parameters of soft-clustering mapped back in original space. Important in practice!

Examples - Overlap after projection

c-separation
$$\|\mu_1 - \mu_2\| \ge c\sqrt{\max\{tr(\Sigma_1), tr(\Sigma_2)\}}$$

$$E(||x-\mu||^2) = tr(\Sigma)$$

Separation independent of d!

sufficient to maintain good separation

Dasgupta [6]

Examples - Eccentricity after projection

eccentricity $\lambda_{\max}(\Sigma)/\lambda_{\min}(\Sigma)$

Single Gaussian in 50-dim

reducing *k* reduces eccentricity!

Examples - Accuracy

% accuracy on a handwritten digit classification set

d = 256 m = 5 per category, 10 categories

Random Projections Vs PCA - Classification

% accuracy on Ads dataset (UCI), n = 3279, d = 1554

Ads	C4.5		1NN		5NN		SVM	
	PCA	RP	PCA	RP	PCA	RP	PCA	RP
5	95.8	87.8	95.3	89.1	95.5	88.7	94.1	86.0
	0.6	0.7	0.6	0.9	0.5	1.0	1.3	0.9
10	95.9	89.0	95.2	92.7	95.5	91.6	94.5	86.0
	0.6	0.9	0.5	0.8	0.5	1.0	0.8	0.9
25	95.9	89.6	95.8	95.1	95.9	93.9	94.5	87.6
	0.5	0.8	0.6	0.6	0.5	0.6	0.8	1.1
50	95.6	90.0	96.0	95.6	95.8	94.6	94.3	90.9
	0.6	1.1	0.5	0.5	0.6	0.7	0.9	0.9
100	95.5	90.2	95.9	95.7	95.6	94.8	94.8	93.6
	0.6	1.0	0.5	0.5	0.5	0.6	0.7	0.8
200	95.5	90.5	95.9	95.9	95.6	94.8	96.1	95.4
	0.6	0.9	0.5	0.5	0.6	0.7	0.5	0.6
500	94.7	90.7	95.8	95.8	94.9	94.8	96.6	96.5
	0.7	0.9	0.4	0.5	0.5	0.6	0.5	0.4
1554	96.0		95.8		94.7		96.8	
	0.6		0.5		0.6		0.4	

For low-dim projections, use PCA if computationally possible

Application: Kernel Linearization

Kernels commonly used for inducing nonlinearity

- Classification, regression, ranking, dimensionality reduction,...
- E.g., Kernel ridge regression, SVM, kernel logistic regression, kernel LDA, kernel PCA,...
- Powerful than their linear counterparts but higher computational costs
 - Training: $O(n^2)$ - $O(n^3)$ Vs O(n)
 - Testing: O(nd) Vs O(d)

Application: Kernel Linearization

Kernels commonly used for inducing nonlinearity

- Classification, regression, ranking, dimensionality reduction,...
- E.g., Kernel ridge regression, SVM, kernel logistic regression, kernel LDA, kernel PCA,...
- Powerful than their linear counterparts but higher computational costs
 - Training: $O(n^2)$ - $O(n^3)$ Vs O(n)
 - Testing: O(nd) Vs O(d)

Usually mercer kernels are used for inducing nonlinearity

$$k(x, y) = \Phi(x).\Phi(y)$$

EECS6898 – Large Scale Machine Learning

Feature map for a generic kernel may not be known.

Application: Kernel Linearization

Kernels commonly used for inducing nonlinearity

- Classification, regression, ranking, dimensionality reduction,...
- E.g., Kernel ridge regression, SVM, kernel logistic regression, kernel LDA, kernel PCA,...
- Powerful than their linear counterparts but higher computational costs
 - Training: $O(n^2)$ - $O(n^3)$ Vs O(n)
 - Testing: O(nd) Vs O(d)

Usually mercer kernels are used for inducing nonlinearity

$$k(x, y) = \Phi(x).\Phi(y)$$

Feature map for a generic kernel may not be known.

Can we approximate the feature map with a low-dim vector?

$$k(x, y) = \Phi(x).\Phi(y) \approx z(x).\underline{z(y)}$$

 $\in \Re^{d'}, d' << n$

Traditional approaches

Approaches to improve learning with kernels

- Decomposition methods (block coordinate-descent) → slow beyond O(100K) points
- Make the kernel matrix sparse by thresholding the entries
- Low-rank approximation of kernel matrix using column-sampling methods
- Hermite or Taylor approximation of kernel
- Approximate kernel matrix-vector product using ANN (kd-trees)

Instead of approximating the kernel matrix, directly approximate the feature map defining a kernel.

EECS6898 – Large Scale Machine Learning

Traditional approaches

Approaches to improve learning with kernels

- Decomposition methods (block coordinate-descent) → slow beyond O(100K) points
- Make the kernel matrix sparse by thresholding the entries
- Low-rank approximation of kernel matrix using column-sampling methods
- Hermite or Taylor approximation of kernel
- Approximate kernel matrix-vector product using ANN (kd-trees)

Instead of approximating the kernel matrix, directly approximate the feature map defining a kernel.

Suppose the kernel is shift-invariant:

$$k(x,y) = k'(x-y) = k'(\Delta)$$
 Gaussian
$$k(x,y) = \exp\{-\|x-y\|_2^2 / 2\sigma^2\}$$

$$k(x,y) = \exp\{-\|x-y\|_1/\lambda\}$$

$$k'(\Delta) = \exp\{-\|\Delta\|_2^2 / 2\sigma^2\}$$

$$k'(\Delta) = \exp\{-\|\Delta\|_1/\lambda\}$$
 Laplacian

Random Fourier Features

Approximate
$$z(x) = [z_j(x)]_{d \times 1}$$

$$z_j(x) = \cos(\omega_j x + b)$$
 $\omega_j \sim P(\omega)$ $b \sim U(0, 2\pi)$

EECS6898 - Large Scale Machine Learning

Random Fourier Features

Approximate $z(x) = [z_j(x)]_{d \times 1}$

$$z_j(x) = \cos(\omega_j x + b)$$
 $\omega_j \sim P(\omega)$ $b \sim U(0, 2\pi)$

Gaussian $\omega_{jk} \sim N(0,1)$

Laplacian $\omega_{jk} \sim Cauchy(0,1)$

Main Theory

A continuous shift-invariant kernel is positive definite if and only if $k'(\Delta)$ is the Fourier transform of a non-negative measure. [Bochner]

$$k'(x-y) = \int p(\omega)e^{j\omega.(x-y)}d\omega$$

Main Theory

A continuous shift-invariant kernel is positive definite if and only if $k'(\Delta)$ is the Fourier transform of a non-negative measure. [Bochner]

$$k'(x-y) = \int p(\omega)e^{j\omega.(x-y)}d\omega$$

- since k'(.) and p(.) both are real, use real part of complex exponentials

$$k(x, y) = E[z_{\omega}(x)z_{\omega}(y)]$$
 if $z_{\omega}(x) = \sqrt{2}\cos(\omega^{T}x + b)$

- Reduce variance by concatenating many (D) dimensions in $z_{\omega}(.)$

$$z_{\omega}(x)^{T} z_{\omega}(y) = (1/D) \sum_{j=1}^{D} z_{\omega_{j}}(x) z_{\omega_{j}}(y)$$

Main Theory

A continuous shift-invariant kernel is positive definite if and only if $k'(\Delta)$ is the Fourier transform of a non-negative measure. [Bochner]

$$k'(x-y) = \int p(\omega)e^{j\omega.(x-y)}d\omega$$

- since k'(.) and p(.) both are real, use real part of complex exponentials

$$k(x,y) = E[z_{\omega}(x)z_{\omega}(y)]$$
 if $z_{\omega}(x) = \sqrt{2}\cos(\omega^{T}x + b)$

- Reduce variance by concatenating many (D) dimensions in $z_{\omega}(.)$

$$z_{\omega}(x)^{T} z_{\omega}(y) = (1/D) \sum_{j=1}^{D} z_{\omega_{j}}(x) z_{\omega_{j}}(y)$$

Hoeffding Bound
$$\Pr(|z(x)^T z(y) - k(x, y)| \ge \varepsilon) \le 2\exp(-D\varepsilon^2/4)$$

Example results

Regression and Classification errors

Training
$$\min_{w} \left(\left\| Z^T w - y \right\|_2^2 + \lambda \left\| w \right\|_2^2 \right)$$
 Testing $f(x) = w^T z(x)$

Dataset	Fourier+LS	CVM	Exact SVM
CPU	3.6%	5.5%	11%
regression	20 secs	51 secs	31 secs
6500 instances 21 dims	D = 300		ASVM
Census	5%	8.8%	9%
regression	36 secs	7.5 mins	13 mins
18,000 instances 119 dims	D = 500		SVMTorch
Adult	14.9%	14.8%	15.1%
classification	9 secs	73 mins	7 mins
32,000 instances 123 dims	D = 500		SVM^{light}
Forest Cover	11.6%	2.3%	2.2%
classification	71 mins	7.5 hrs	44 hrs
522,000 instances 54 dims	D = 5000		libSVM
KDDCUP99 (see footnote)	7.3%	6.2% (18%)	8.3%
classification	1.5 min	1.4 secs (20 secs)	< 1 s
4,900,000 instances 127 dims	D = 50		SVM+sampling

References

- Johnson & Lindenstrauss, "Extensions of Lipschitz mapping into a Hilbert space," American Math Soc., 1984.
- Indyk & Motwani, "Approximate nearest neighbors: towards removing the curse of dimensionality," STOC, 1998.
- Dasgupta, "Learning mixture of Gaussians," FOCS, 1999. 3.
- Indyk, "Stable distributions, pseudorandom generators, embeddings and data stream computation", FOCS, 2000.
- Dasgupta, "Experiments with random projection." UAI, 2000.
- Achlioptas, "Database-friendly random projections," Symposium on Principles of Database Systems, 2001.
- Brinkman and Charikar, "On the impossibility of dimension reduction in I1," FOCS, 2003.
- Fradkin and Madigan, "Experiments with Random Projections for Machine Learning," KDD, 2003.
- Ailon & Chazelle, "Approximate nearest neighbors and Fast Johnson-Lindenstrauss transform," STOC, 2006.
- 10. Rahimi & Recht, "Random Features for Large-Scale Kernel Machines," NIPS, 2007.
- 11. Halko, Martinsson, & Tropp, "Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions", ACM Report, 2009.

EECS6898 – Large Scale Machine Learning