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Sampling Based Methods

So Far...
— Methods that primarily depend on matrix-vector products

— Not suitable when input matrix is large and dense
* KemelMatrix 1 =20M = 1600 TB 541 500, 8GB machines!!

— Matrices may be so big that storage becomes a big problem
— One may want to reduce the computational cost significantly

Sampling-Based Methods
— Sample a few columns or rows or both according to some distribution
(without replacement in practice)
— Approximate the desired quantity by manipulating just the sampled

vectors
* No need to even create the entire matrix !!

— If done carefully, the error in approximation can be bounded

Can approximate multiplication, low-rank matrix,
singular values, singular vectors
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Sampling Based Methods

Sample / columns/rows randomly

n I

m A |:>C|:>Wq

Main Issues

— How to sample columns and rows?

— Uniformly?

— From a fixed non-uniform distribution e.g., column/row norm?

— From adaptive distribution: distribution changes after picking a sample subset
— What is the algorithm and how much error are we making?
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Overview

1. Approximate Matrix Multiplication
— Sample columns of one matrix and rows from the other

2. Column-sampling methods for spectral decomposition
— Methods that use decomposition of entire sampled columns
— Methods that further sample the rows from the sampled columns

3. Low-rank approximation
— Spectral reconstructions 4, =U; 2., VkT
— Matrix Projection4;, =U,U," 4

4. Sampling Techniques

5. Ensemble Methods
— How to combine multiple approximations to yield more accurate one
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Sampling Based Methods: Matrix Multiplication

We want to approximate

AB ~ CR

mxn BXp mxl[xp | << n
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Sampling Based Methods: Matrix Multiplication

We want to approximate

AB ~ CR

mxn BXp mxl [Ixp | << n

Basic Idea
1. Sample [/ columns from 4 and form a submatrix C

2. Pick the corresponding rows from B and form a submatrix R
3. Scale the submatrices appropriately

4. Output the multiplication of two scaled submatrices
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Sampling Based Methods: Matrix Multiplication

We want to approximate
AB ~ CR
mxn BXp mxl[xp | << n

Algorithm
Given 4, B, 1<l<n, {p;}iy st 2,;pi=1 p;i=0

fixed non-uniform distribution
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Sampling Based Methods: Matrix Multiplication

We want to approximate

AB ~ CR

mxn BXp mxl[xp | << n

Algorithm
Given 4, B, 1<l<n, {p;}iy st 2,;pi=1 p;i=0

fixed non-uniform distribution
Forr=1..../

— Pick i, e{l,...,n}with P(i; = k) = p; independently, with replacement
in practice, without

_ Set c(0) = 46) /ﬁ Ry =Byy/ /lpl} replacement !
column t FOW
Iy
Return C, R |
A i
mxn anp 4
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Sampling Based Methods: Matrix Multiplication

Standard proof strategy (based on concentration of measures)

Show

n p
E[|AB—CR|%]=Y 3 E[(AB — CR)2]=small quantity
i=1 j=1

Var{|4B - CR|%] is small for right choice of p,

Sanjiv Kumar 9/27/2010 EECS6898 — Large Scale Machine Learning



Sampling Based Methods: Matrix Multiplication

We want to approximate 4p — Z?_lA(t)B(z)

1 i
CR = Zizlc(t)R(t) = ZizlmA( t)B(l})

Why is it a good approximation?
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Sampling Based Methods: Matrix Multiplication

We want to approximate 4p — Zf_lA(t)B(z)

1

yiay:
Lip)" W

CR = Zizlc(t)R(l‘) - Zt

Why is it a good approximation?

Expectation  E[(CR);;]=(4B);

2 p2
n A5 Br.
Variance Var[(CR)U-]:%Z Lt

k=1 Pk

1 2
—E(AB),-J-
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Sampling Based Methods: Matrix Multiplication

We want to approximate 4p — Z?_lA(t)B(z)

Why is it a good approximation?

Expectation  E[(CR);]=(4B); k J
i
Variance Var[(CR);;]1= —=(4B) 5
(i) R A B
Proof: Let  _| 4BG) X1 S k%5 L1 4py.
’ [(zp,-t) J R T A
’ 43 B}

E[th]: n:
Zi Y% pe)
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Sampling Based Methods: Matrix Multiplication

We want to approximate 4p — Z?_lA(t)B(z)

1 .
CR=Y4CYRyy =3~ 4"By)
- ~(p;) ’
Why is it a good approximation?
Expectation  E[(CR);;]=(4B);
2 12
n 45 Br.
Variance Var[(CR);] _1 3 ik P kj _}(AB)S,
lizt P !
. A%)p, . Ay By
Proof: Let Xl‘_[ (lt)J E[Xt]=ZZ:1Pk k2kj :}(AB)z'j

(Up;) | (pr) 1
y
2w 43 B2 Next, get
(° pp) E[|AB—-CR|.]

Tl
(CR)y = 2 Xe | Var(X,) =E[Xt2]_E[Xt I
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Sampling Based Methods: Matrix Multiplication

We want to find

2. L& 2
E[|4B—CR|}.]= > > E[(4B—-CR);]
i=1j=1
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Sampling Based Methods: Matrix Multiplication

We want to find

2. L& 2
E[|4B-CR[2]1= Y. 3 E[(AB~CR)?]

i=1 /=1
n p
=3 ZVar[(CR)l-j]
. i=1j=1
12 4By 1 2
Var[(CR)ij]=*z ]_’(AB)ij 121 k 2 2 1 2
Ik P ! :;Z_‘A( )‘ ‘B(k)‘ _2HABHF
k=1Pk
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Sampling Based Methods: Matrix Multiplication

We want to find

2. L& 2
E[|4B-CR[2]1= Y. ¥ E[(AB~CR)?]

i=1j=1
n p
=2 ZVar[(CR)l-j]
. i=1j=1
12 4pBy; 1
Varl(CR);1= ¥~ = (4B)]
= Pe !

121 2 1
— glp_k\ A(k)‘ | B(k)f —EHABH;

Find p, that minimizes above py = ‘A(k) HB(k)‘ / Zz-zl‘A(k)HB(k)‘

with positivity and unit
sum constraints

~ k= ~IPF

2
f‘A(k)HB(k)U _%HABH;
k=1

2 2
< 4lF|BlF
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Theoretical Guarantee

Given 4, B, 1<i<n, {p;}'q st. 2;p; =1 p; 20 and p<1

if  pip2 ,B‘A(k)HB(k)‘ / ZZ':l‘A(k) HB(k)‘

then |E[|4B—CR|%]<(/ g)| 4| |BJ%

Let 6 €(0,1) and 5 =1+./(8/B)log(l/5), then with probability at least 1— &

2 2 | 2
4B~ CRI7. < (n* 1 )| Az | Bz

Proof based on showing that changing one column/row does
not change the product CR by much, and then applying
concentration of measures: either Doob Martingale or
Mcdiarmid’s inequality
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Implementation Details

« How to sample?
Uniform Random: just one pass over 4 and B

Data-dependent sampling: based on column/row norms of 4 and B
— Two passes necessary
— First pass: compute and store ‘A(k)‘ and By k=1..,n

— Second pass: sample from 4 and B with Py = a‘A(k) HB(k)‘
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Implementation Details

« How to sample?
Uniform Random: just one pass over 4 and B

Data-dependent sampling: based on column/row norms of 4 and B
— Two passes necessary
— First pass: compute and store [4%)| and By k=1...n

— Second pass: sample from 4 and B with Py = o A% By

« Special case B= 4"

AT ~ccT pe=[a® a2

Efjaa” —cc”| 1< @Dl
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Overview

1. Approximate Matrix Multiplication
— Sample columns of one matrix and rows from the other

2. Column-sampling methods for spectral decomposition
— Methods that use decomposition of entire sampled columns
— Methods that further sample the rows from the sampled columns

3. Low-rank approximation
— Spectral reconstructions 4, =U; 2., VkT
— Matrix Projection4;, =U,U," 4

4. Sampling Techniques

5. Ensemble Methods
— How to combine multiple approximations to yield more accurate one
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Approximate Spectral Decomposition

Let’s focus on decomposition of a symmetric matrix - arise commonly in
machine learning applications (other cases possible)

Sample / columns without replacement

S S

I i

_ —nXn
C

G

e Column-Sampling Approximation — SVD of C

e Nystrom Approximation — SVD of W
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Column-Sampling Approximation

C=U_,2, VCT O(ni?)

nxl nxl [x] [x]

Sanjiv Kumar 9/27/2010 EECS6898 — Large Scale Machine Learning
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Column-Sampling Approximation

Suppose / columns were sampled uniformly

Sanjiv Kumar

9/27/2010

c=u,>.v.!

Us=U.=CV, Y}

iG=\/§zc

EECS6898 — Large Scale Machine Learning
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Column-Sampling Approximation

Suppose / columns were sampled uniformly

C=U_,2, VCT O(ni?)

n~20M,l ~10K

Us=U.=CV, Y}

. cTc=v.x2r!
5 =\/EZ Ix]
G == omi?) o)

parallelize

\

For rank-k, k£ <[ reconstruction, pick top singular vectors and/or singular values !
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Nystrom Approximation

Sanjiv Kumar

—A—

[

G

C

T
G2,
Goo

G=G=CcwicT

Reconstructs W and G,, i.e., C exactly!

nxn

9/27/2010 EECS6898 — Large Scale Machine Learning
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Nystrom Approximation

Sanjiv Kumar

9/27/2010

—A—

:'{_W7 Gy1
1G21| G2
C

W =Uy Sy Uy
Xo="Zn

nxn

EECS6898 — Large Scale Machine Learning
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Nystrom Approximation

Sanjiv Kumar

9/27/2010

—A—

_'{_W Ga1

~ 1 _
Ug = \/;CUW >

nxn

EECS6898 — Large Scale Machine Learning
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Nystrom Approximation

For rank-k, k<1
reconstruction, pick
top singular vectors
and/or singular
values !

Sanjiv Kumar 9/27/2010

—A—

_'{_W Ga1

~ 1 _
Ug = \/;CUW >

nxn

Not Orthonormal !
ﬁgﬁG # [

EECS6898 — Large Scale Machine Learning

28



Nystrom Vs Column-Sampling

Spectral reconstruction: G = ﬁGiGﬁg

~

G =cwicT

nys

~ l 172\
G, =C {—CT c} c’
n
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Nystrom Vs Column-Sampling

Spectral reconstruction: G = ﬁGiGﬁg

Gys =CWCT
~ l 172\
G, =C { ct C} ct

n

Experimental Comparison
— PIE-7K: 7K face images under different pose/illumination
— Linear kernel: k(x,y) = x" y
— Gis adense 7K x 7K symmetric positive semi-definite matrix

— Eigenvalues, eigenvectors, and low-rank approximations (spectral-
reconstruction)
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Eigenvalues Comparison

% deviation from exact

=200 =600
30 . : 30 . :
---Nystrom ---Nystrom
= 25t —Col-Sampling] = o5/ —Col-Sampling|
[ " , [
= 20r ' = 20
@ " [0
= X i =
c o
O 15+ | o 15¢
i._lj I'I ' ST Llj _".l “n
Ll‘j 5' l.‘-l'l /I"\/l'__/'\ .'I\:'\\'wlll'. /\j\\./\/_\/ L|1j 5' U Y I|I I
AT NS A NN A A S
10 20 30 40 10 20 30 40
Top Eigenvalues Top Eigenvalues
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Eigenvectors Comparison

Principal angle with exact

=200
1 | " [~ Nystrom
= ',".I/\\/\R —Col-Sampling
5038} ! \ :
e |
© '.
908 I II f'qu-‘ll
i [
S \_/ |
aﬂ.q' Jrlll 7
g .'\‘/\_/ l".l
80.2 LN \ A
< v ViV A (VAN
10 20 30 40
Top Eigenvectors
Sanjiv Kumar 9/27/2010

1=600
1= ; - ,

. _\/\—’\/\I ---Nystrom

5 Lo \ —Col-Sampling
g 0.8; a I|| /\ 1

2 (Y

é‘: \ f NH\/ \/\

i_l__| D .6 B I'. I| I'I l.l'\ ﬁ\
N— | |II| |I ll"’" II' |.I ll [

; AL \ \ l'I \

o 0.4+ V=" - 'I". '\.‘ '|,|' '||I J
5 ! I ! '. .', o ,Illllfl
<ozt ‘.

10 20 30 40

Top Eigenvectors
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Low-Rank Approximations

Spectral reconstruction: G, =U, ik l7kT

—Nystrom
a0_8_-——Column
=
R -
6-Gl, & £ =100
G_GkF _g
©
€Q
oC Q.2+ I i T
1 I !

S0 400 600 800 1000
# Sampled Columns (£ )

Nystrom gives better reconstruction than Col-Sampling !
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Low-Rank Approximations

Spectral reconstruction: G, =U, ik l7kT

1
—Nystrom
|—Column
50.8
R S
C=Cily 204
©
€Q
oC0.2¢ T T T
1 L |

S0 400 600 800 1000
# Sampled Columns (£ )

~ =]
Ucol = CVC Zc

N ; 1/2\7
N " G.pf =c{[cT C} ] ct
n
Zcol = \flzc

h
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Low-Rank Approximations

Spectral reconstruction: G, =U, ik l7kT

1
—Nystrom
> 0.81——Column
3y
: 5
G_(zk F & k =100
GGl 2
©
Q
T 0.2} T I I
300 400 600 800 1000
# Sampled Columns ({) .
U, =CV, 3t B U =\FCU Y
A B A N
Zcol :\[IZC Znys =;ZW

How about orthonormalized Nystrom eigenvectors?
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Orthogonalized Nystrom

Spectral reconstruction: G, =U, ik l7kT

—Nystrom
0.8/ —Column
§ -—-Nys-Orth
A o 0.6
G_(zk ; < a k =100
G-Gil.  2o4f
©
€Q
o 0.2: i T T
:r_-::f'-f"'f _______ T Tomomem

S0 400 600 800 1000
# Sampled Columns (£ )

Nystrom-orthogonal gives worse reconstruction than Nystrom !

Sanjiv Kumar 9/27/2010 EECS6898 — Large Scale Machine Learning
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Low-Rank Approx: Matrix Projection

G, =U, > Ul =UUlG=6U,U}

61{ IﬁkﬁZG-‘/—‘UkzkﬁZ
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Low-Rank Approx: Matrix Projection

Sanjiv Kumar

9/27/2010

G, =U, > Ul =UUlG=6U,U}

ék :ﬁkﬁZGiﬁkzkﬁZ

|~ Reconstructs C exactly!
~ —1
G = C(CT c) c’e —
~ / .
Gys = C(W ZJCT G
n
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Low-Rank Approx: Matrix Projection

s
G-G. 38 = 1 k=100
THp 2 Nystrom
GGl ¢ 04} —Column ||
= —=-Nys-Orth
Q
o 0.2;

gOO 400 600 800 1000
# Sampled Columns ({)

Col-Sampling gives better Reconstruction than Nystrom !

If £ =1, Col-Sampling and Nystrom-orthogonal give the same answer !
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Low-Rank Approx: Matrix Projection

Why does Col-sampling perform better than Nystrom?

Theorem: The matrix projection reconstructlon for both Nystrom and Col-

sampling is of the form G, =U, RU G, where R is SPSD. Col-sampling
gives the lowest reconstruction error (in Frobenius norm) among all such
approximations when k£ = [.
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Low-Rank Approx: Matrix Projection

Why does Col-sampling perform better than Nystrom?

Theorem: The matrix projection reconstructlon for both Nystrom and Col-
sampling is of the form G, =U, RU G, where R is SPSD. Col-sampling
gives the lowest reconstruction error (in Frobenius norm) among all such
approximations when k£ = [.

Partial proof: Let’'s look at the difference between any generic approx of the
above form vs col-sampling approximation

2 2
E-E, = HG—UCRUCT GHF —HG—UCUCT GHF For col-sampling, R = I

2 T
=1cTWw,.RUT —2u.RUT +U U)G] 4|7 =Tr[4" 4]
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Low-Rank Approx: Matrix Projection

Why does Col-sampling perform better than Nystrom?

Theorem: The matrix projection reconstructlon for both Nystrom and Col-
sampling is of the form G, =U, RU G, where R is SPSD. Col-sampling
gives the lowest reconstruction error (in Frobenius norm) among all such
approximations when k£ = [.

Partial proof: Let’'s look at the difference between any generic approx of the
above form vs col-sampling approximation

2 2
E=Eeo =|G-URU! GHF -lg-vul GHF For col-sampling, R =/
2
=767 (U,RUT - 20U, RUT +U UT)G] |45 =T[4 4]

=Tr[(R-NU; G) (R-1U/ G)]
>0 Tr[A” 4120
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Low-Rank Approx: Spectral Reconstruction

Why does Nystrom perform better than Col-sampling?

Unfortunately no clean theorem! Depends on the data spectrum!

Spectral Reconstruction

o.s%j

—PIE-2.7K—
—PIE-7K
— MNIST
—ESS
DEXT

Accuracy (Nys — Col)
o

_1 L L L L
100 200 400 600 800 1000
# Sampled Columns (7)
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Low-Rank Approx: Spectral Reconstruction

Why does Nystrom perform better than Col-sampling?

Unfortunately no clean theorem! Depends on the data spectrum!

Spectral Reconstruction

o.s%j

—PIE-2.7K—
—PIE-7K
— MNIST
—ESS
DEXT

Accuracy (Nys — Col)
o

_1 L L L L
100 200 400 600 800 1000
# Sampled Columns (7)

Theorem: Suppose, » = rank(G) = rank("), r < k <1, then Nystrom
approximation gives exact Spectral Reconstruction. In contrast, Col-
sampling gives the same result iff it reduces to Nystrom form, i.e.,

w = ((l1n)CT )2
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How many columns are needed?

Columns needed to get 75% relative accuracy

Matrix Size vs # Sampled Cols

1000
=
o 800
c
£
o 600r
O
© — -
@ 400/ PIE-2.7K| |
g- —PIE-7K
@ i —MNIST
N 200
++ —ESS

0 | | |
0 2000 4000 6000 8000

Matrix Size (n)
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Formal Statements

Formal procedures for Nystrom and Col-sampling methods

Bounds on Errors

Sanjiv Kumar 9/27/2010 EECS6898 — Large Scale Machine Learning
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Column-Sampling Method

Algorithm
Given 4, 1<k<i<n, {p;}/a st >,;p; =1 p; 20

Output Uk, ik

Sanjiv Kumar 9/27/2010 EECS6898 — Large Scale Machine Learning
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Column-Sampling Method

Algorithm
Given 4, 1<k<i<n, {p;}/a st >,;p; =1 p; 20

Output Uk, ik
For t=1...,1

— Pick i, e{l,...,n} with P(i; = k) = p;, independently, with replacement
fixed non-uniform distribution

— Set ¢ :A(l;)/m

Compute c’c and decompose clc= VCTZEVC

- ~ 1
Return Zk — ZC,/C and Uk — Uc’k - CVC,kZC,k
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Column-Sampling Method

Bound on error

_ o~ 2 2
HA ~0,07 AHF <|d— 4]+ 2J%HAAT _ccT HF

e

best rank-k matrix: 4; = UkU,{A

Sanjiv Kumar 9/27/2010 EECS6898 — Large Scale Machine Learning
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Column-Sampling Method

Bound on error

_ o~ 2 2
HA ~0,07 AHF <|d— 4]+ zﬁHAAT _ccT HF

e

7 T | o
best rank-k matrix: 4, =U, U} A matrix-multiplication bound

|2
If p; > ﬁ\A(’) /HAH%, B<1, n=1+./(8/B)log(1/6) and |>4k/ pe*

with probability at least (1-3)

~ ~ 2
=T 07 A <|a- 4 +el [}

Sanjiv Kumar 9/27/2010 EECS6898 — Large Scale Machine Learning
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Column-Sampling Method

Bound on error

_ o~ 2 2
HA ~0,07 AHF <|d— 4]+ zﬁHAAT _ccT HF

e

7 T . o
best rank-k matrix: 4, =U, U} A matrix-multiplication bound

)Z/HAHIZV' p<1, n=1+./(8/p)log(/d) and

overestimate! In
practice, much smaller

If p; 2 ,B‘A(i

with probability at least (1-3)

=07 A <| A= 4y} +
e

Matrix-projection view

Sanjiv Kumar 9/27/2010 EECS6898 — Large Scale Machine Learning 51



Nystrom Method

Originally developed as a tool for numerical integration. When applied to
eigenfunction estimation problem with quadrature rule, it allows extrapolation
on full domain.

Algorithm
Given G, 1<k <I<n, {p;}'1 st Zl-p,- =1, p; 20

Output ék

Sanjiv Kumar 9/27/2010 EECS6898 — Large Scale Machine Learning
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Nystrom Method

Originally developed as a tool for numerical integration. When applied to
eigenfunction estimation problem with quadrature rule, it allows extrapolation
on full domain.

Algorithm
Given G, 1<k <I<n, {p;}'1 st Zl-p,- =1, p; 20

Output ék

— Pick iel c{l,...,n}with P(i =k)= p;independently, with replacement
fixed non-uniform distribution

— Set CZ[G(Z) /“/lpi]

— Select corresponding rows of C and form I such that each entry is
W;=G;ll\pip; i,jel

Return ék = CWk_lCT
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Nystrom Method

Bound on error

Sanjiv Kumar

If

pi=G51Y,G | n=1+.8log(l/s) and [ > 64kn> /e

with probability at least (1-9)

G-cwc’ HF <[G - Gl + eSILG

_— N

best rank-k matrix:G;, = UkaUkT matrix-multiplication bound

9/27/2010

EECS6898 — Large Scale Machine Learning
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Overview

1. Approximate Matrix Multiplication
— Sample columns of one matrix and rows from the other

2. Column-sampling methods for spectral decomposition
— Methods that use decomposition of entire sampled columns
— Methods that further sample the rows from the sampled columns

3. Low-rank approximation
— Spectral reconstructions 4, =U; 2., VkT
— Matrix Projection4;, =U,U," 4

4. Sampling Techniques

5. Ensemble Methods
— How to combine multiple approximations to yield more accurate one
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Sampling Techniques

Fixed-Distribution Sampling methods
— Pick the columns randomly with equal probability
— Pick the columns proportional to their L, norm
— Pick the columns proportional to their diagonal entries

Advantages

— Uniform sampling — very fast (constant time and space) and has been
shown to work well in practice

— Data-dependent methods also provide fast sampling

Disadvantages
L,-norm based methods need one pass through the entire matrix

— Expensive for large scale applications since each entry of the matrix is
to be reconstructed 2> O(n?)
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Adaptive Sampling Techniques

Distribution over columns changes each time a column subset is picked

Basic Idea
— Reconstruct the matrix given all the samples selected so far
— Find out reconstruction error for each column
— Pick the columns proportional to the reconstruction error

é = ﬁGﬁgG
— — or — G-G
~_ 17 v 711
G C G=Ug2qUg
sample the next
\ set of columns o
L,-norm
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Adaptive Sampling Techniques

Distribution over columns changes each time a column subset is picked

Basic Idea
— Reconstruct the matrix given all the samples selected so far
— Find out reconstruction error for each column
— Pick the columns proportional to the reconstruction error

Issues
— Usually much better than the fixed-distribution sampling methods
— Quite expensive for large scale applications

— Each entry of the matrix is to be reconstructed many times iteratively
-2 0(In?)

Tighter Error Bound 7 0T 4 ; ;
e Lt Ja-0,07 4, <@n-ola- gy e |4
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Adaptive Sampling Techniques

Distribution over columns changes each time a column subset is picked

Basic Idea
— Reconstruct the matrix given all the samples selected so far
— Find out reconstruction error for each column
— Pick the columns proportional to the reconstruction error

Adaptive-Partial .
g C=cwitw!

™

= | 2| =] ¢

sample the next set
\/ of columns « L,-
norm of rows in C
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Experiments - Sampling Methods

[ Dataset Uniform Diagond] Col- Norm Adapt-Part | Adapt-Full
PIE-2. 7K [[67.2 (£1.1) |62.1 (£0.9)|59.7 (£1.0) | 70.4 (£0.9) | 72.6 (+1.0)
PIE-TK || 57.5 (£1.1)|50.8 (:I:l 9) 56.8 (:I:l 6)| 62.8 (£0.9) | 64.3 (£0.7)

400 || MNIST || 67.4 (£0.7) 67 4 (+0.4) ba 3 (+0.5)]69.3 (£0.7)| 69.2 (£0.7)
ESS 61.0 (£1.7) |61.5 (£1. a) 7.5 (:tl 9)165.0 (£1.0)| 63.9 (£0.9)
PIE-2.7K || 84.1 (£0.5) | 77.8 (£0.6) | 73.9 (£ ) 86.5 (£0.4) | 87.7 (+£0.4)
PIE-TK || 73.8 (£1.2) 6—1 9 (+1.8) |7 8 (£3.0) | 78.5 (£0.5) 74 1 (£0.6)
800 [| MNIST || 83.3 (£0.3)[83.0 (£0.3)|80.4 (£ ) 84.2 (£0.4) 7 (£0.5)
ESS 78.1 (£1.0) TJ 2 (£0.9) 7 . (:tl 2)180.6 (+1.1) 74 8 (£0.8)
Tlmlng for Sampllng PIE 7K
2500 |
E 20000 — Uniform
..:_} 1500k —— Diagonal
= — Col=Norm
= 4000} - - - Adaptive—Partial|
E Adaptive-Full
O  so00f T R
/
foo200 400 600 800 1000
# Sampled Columns (1)
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Overview

1. Approximate Matrix Multiplication
— Sample columns of one matrix and rows from the other

2. Column-sampling methods for spectral decomposition
— Methods that use decomposition of entire sampled columns
— Methods that further sample the rows from the sampled columns

3. Low-rank approximation
— Spectral reconstructions 4, =U; 2., VkT
— Matrix Projection4;, =U,U," 4

4. Sampling Techniques

5. Ensemble Methods
— How to combine multiple approximations to yield more accurate one

Sanjiv Kumar 9/27/2010 EECS6898 — Large Scale Machine Learning 61



Ensemble Methods

So far...

* Nytrom Method picks a single square (usually non-
contiguous) matrix from A4

n

W,

W,

G

— Can we pick more such blocks and combine results to get better accuracy?
— If yes, how to combine the results ?
— Computational cost ?
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Ensemble Methods

Yes, it is possible...

Pick Ip columns without replacement: Divide into p sets

G =cw.rcl forr=1..p

Each C. is non-overlapping w,
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Ensemble Methods

Yes, it is possible...

Pick /p columns without replacement: Divide into p sets
G.=cwrcl forr=1..p
Each C. is non-overlapping

~ P ~
G= Z :urGr
r=1
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Ensemble Methods

Yes, it is possible...

Pick Ip columns without replacement: Divide into p sets

~ n
G.=cwrcl forr=1..p
: . WI

Each C, is non-overlapping W,

~ P ~ n

G =2 uG, s

r=1
\ G

mixture weights

— How to compute mixture weights?
— simplest choice: 1. =1/p
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Ensemble Methods

Yes, it is possible...

Pick /p columns without replacement: Divide into p sets

~ n
G.=cwrcl forr=1..,p
: . WI

Each C, is non-overlapping W,

~ P ~ n

G =2 G, &

r=1
\ G

mixture weights

— How to compute mixture weights?
— simplest choice: 1. =1/p
— Learn using “training data”

— Sample s columns separate from previous /p columns, and measure error in
reconstructing those by each “expert” in ensemble
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Learning of Mixture Weights

Error in reconstruction for an expert

g =V =V . forr=1..p
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Learning of Mixture Weights

Error in reconstruction for an expert g

g =V =V . forr=1..p

Exponential weighting V

1 =exp(-ne, )1 Z  for n>0

Z is a normalizing constant such that )., =1

!

QN
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Learning of Mixture Weights

Error in reconstruction for an expert g

g =V =V . forr=1..p

Exponential weighting V
. =exp(-ne, )l Z  for n>0 G
Z is a normalizing constant such that )., =1
Linear (Ridge) Regression
— Try to find weights that best reconstruct V I7r
p=lugett, 1 ~
Gl/'

fi=arg mﬂin(HZr wV, — VH; + },H/JHg)
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Examples

e MNIST dataset: n = 4000, s = 20, k=50

« Optimal weights: linear regression with s = n

Ensemble Method - MNIST Ensemble Method — MNIST

16 ‘ ; 10 T T T :

=@=mean b.l. =m=mean b.l.
— | ——best b.l. — T . |—besthl.

= uni o —uni

157 ' exp exp
=+=ridge g ° * — . |—#ridge
===gptimal

-
E-%
T

X
Percent Error (Spectral)
[=7]

Percent Error (Frobenius)
o

-
-
T

3l *\‘\j
10 T 2 . .

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of base learners (p) Number of base learners (p)

or
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Examples

 How important is ridge penalty?

e Large-scale comparison
SIFT-1M dataset

Large Scale Ensemble Study

) ===mean b.l.
Effect of Ridge - MNIST 16 | =bestb.l. i
,{F; : y § — — ni . 3
2 10.525 —#=no-ridge — —+~ridge
& =4=ridge S5 |aaekmeans St
o 10.52 ===pptimal | = i
@) Q
bt 2 14} SR %
L 10.515, o e e
— u‘\-\; B -O"
o 10.51 *9-13
m E L —— e
= 10.505 Zn
[$]
§ 1 S‘E 11
& 10.495 , , : ,
5 10 15 20 25 . o .
Relative size of validation set 19 ' —t
[ )% S T T
SIn 0 Size of dataset (n)
Fixed-time experiment
k=50,p=10,s =2
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