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Kernel Methods

Provide a flexible way to generate nonlinear decision functions
Suppose f(x) =2 " o;k(x,x;) xe R e R"

Kernel SVM  y=sgn[ £ (x)] ye{-11}
Kernel regression y = f(x) yeR
Kernel Logistic Regression p(y=1|x)=0(f(x)) ye{-11}
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Kernel Methods

Provide a flexible way to generate nonlinear decision functions
Suppose f(x) =2 " 0;k(x,x;) xe R e R"

Kernel SVM  y=sgn[ £ (x)] ye{-11}
Kernel regression y = f(x) yeR
Kernel Logistic Regression p(y=1|x)=0c(f(x)) ve{-11}

Goal in Learning
Find the best a that minimizes a L,-regularized loss function

J(a) =Y L(f(x;), ;) + 1o’ Ko
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Kernel Methods

Provide a flexible way to generate nonlinear decision functions
Suppose f(x) =2 " 0;k(x,x;) xe R e R"
Kernel SVM  y=sgn[ £ (x)] ye{-11}
Kernel regression y = f(x) yeR
Kernel Logistic Regression p(y=1|x)=0(f(x)) ye{-11}

Goal in Learning
Find the best a that minimizes a L,-regularized loss function

J(@) =" L(f (%), v;) + Ao’ Ka

margin

— | . ) . . .
Kernel SVM  L=max{0,1-y, f(x;)] hinge-loss: arises from margin

constraints - lead to sparse o
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Kernel Methods

Provide a flexible way to generate nonlinear decision functions

Suppose f(x) =2 " o;k(x,x;) xe R e R"

Kernel SVM  y=sgn[f(x)] ye{-11}
Kernel regression y = f(x) yeR
Kernel Logistic Regression p(y=1|x)=0(f(x)) ye{-11}

Goal in Learning
Find the best a that minimizes a L,-regularized loss function

J(@) =" L(f (%), y;) + Ao’ Ka

margin

— | . ) . . .
Kernel SVM  L=max{0,1-y, f(x;)] hinge-loss: arises from margin

constraints - lead to sparse o

' . 2
Kemel regression [ = (yi _f(xi)) Need to indTuce sparsity in a, e.g., by
Kernel Logistic Regression L = —log{e(f(x;))}| replacinga’ Kowith|al,

Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning 5



L, vs L; Regularizer

A 2-D illustration
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L, vs L; Regularizer

A 2-D illustration
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Bothayand a, are nonzero Only o4is nonzero

sparse solution !
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Non-differentiability

Both hinge-loss and L, regularizer are non-differentiable

L A 0[21

max{0, 1 yf(x)}\\ 0‘/\ ‘

Hinge Loss L,-regularization

Gradients cannot be computed at kinks !

Focus on max-margin formulations, L, regularization later
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Subgradient

For a convex, differentiable function f,
)2 @)+ (y-x)

RHS is a global underestimator of f

>

J(@)1

v
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Subgradient

For a convex, differentiable function f,
fO)2 fE+VfT (y=x)

RHS is a global underestimator of f

>

J(@)1

Subgradient
— A vector g is called subgradient at x if,

fO)2fx)+eg' (v-x) Wy

— A subgradient can exist even if a function is non-differentiable at x
— Set of all subgradients at x is called sub-differential of (x)

— For a convex function,

» sub-differential is always nonempty and a closed convex set
 If fis differentiable at x, of (x) ={V/}

v
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Subgradient Example - L; Norm

1-Dim case £ (x) =|x
f(x):‘x‘, xXeR
ifx>0 g=1
if x<0 g=-1

ifx=0 |y2gy=gel[-11]
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Subgradient Example - L; Norm

1-Dim case +F(x) =]
f(x)=x|, xeR
ifx>0 g=1
if x<0 g=-1
ifx=0 |y2gy=gel[-11]

v

d-Dim case
£ =y =29k,

xeRd

Rewrite x|, = max{s’x|s; e{-1 13}

Want to find an s, such that Hle sl

A simple choice s; =1 1f x; >0 s;=-11f x; <0 s;=lor-1if x; =0

(+1 if x; >0
g]:<—1 |f.x]<0
+1or-1 if X; =0
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Subgradient Method

Want to minimize J(«)

Hk+1) = H(k) ~ (k)& (k)

gy €0J(agy) Ny =alNkoralk a>0

— _/
~—

satisfy “square summable but
not summable” constraints

2 k1"lk) = Zf:l’?(zk) <
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Subgradient Method

Want to minimize J(«)

Ak+1) = %K) — N(K)E (k) gk € a](a(k)) Nk) = alkoralk a>0

 If the convex function J(.) is differentiable at a(x), the only subgradient is the gradient

-> reduces to gradient descent
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Subgradient Method

Want to minimize J(«)

Ak+1) = Ok) —N(k)&(k) | 2y €O (agy) gy =alkoralk a>0

 If the convex function J(.) is differentiable at o), the only subgradient is the gradient
- reduces to gradient descent
e Subgradient method is not a descent method,

- common to keep track of the best point found so far at each iteration

—> at each step, one sets
JZk) = min{JZk_l),J(k)} Also use the corresponding

« Convergence guarantees

- For diminishing step size rule, guaranteed to weakly converge to the optimum

Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning 15



Projected Subgradient

To solve constrained optimization problem

minimize J(a)
subjectto a € C

C is a convex set

Ok 41) = f; (o) = 1(k) & (k))

Euclidean projection on C

Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning
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Projected Subgradient

To solve constrained optimization problem

minimize J(a)
subjectto a € C C is a convex set

Ok 41) = f"\ (o) = 1(k) & (k))

Euclidean projection on C

* Minimization with general constraints

Sanjiv Kumar

minimize J(a)
subject to f;(a) <0  f;(.) are convex Vi=1,...,m

U(k+1) = Hk) ~ (k)& (k)

oJ (o) If current point is feasible
E(k) €

11/9/2010

of j(a) If jth constraint is violated

EECS6898 — Large Scale Machine Learning
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Cutting Plane Methods for Max-Margin

Binary linear SVM training set {x;, y;}-1 xe®? ye{l -1
A T . .
y=sgn[w" x] augment vectors to incorporate bias

. scaled C
Primal Formulation mMin w™ w ¢

st. yi(wx)=21-& Vi=l..,n
& >0
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Cutting Plane Methods for Max-Margin

Binary linear SVM training set {x;, v,}i-1 xeR¢,ye{l, -1

¥ :sgn[wa]

. scaled C
Primal Formulation mMin w™ w ¢
I

st. yi(wx)=21-¢ Vi=l..,n
>0

Alternative Formulation: Based on Structured-SVMs (i.e., data may not be i.i.d.)

Given a feature map w(x,y) e.g., for linear SVMs w(x;, ;) = (1/2)y;x;

and a loss function A(y,y) e.g., 0/1 lossin SVMs A(y;,v) =1 1f vy, =y,
=0, otherwise
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Cutting Plane Methods for Max-Margin

Binary linear SVM training set {x;, v,}i-1 xeR¢,ye{l, -1

¥ :sgn[wa]

. scaled C
Primal Formulation mMin w™ w ¢

st. yi(w x)=21-¢ Vi=l..,n
& >0

sum n constraints
@/n)> & =&

Alternative Formulation: Based on Structured-SVMs (i.e., data may not be i.i.d.)

Given a feature map w(x,y) e.g., for linear SVMs w(x;, ;) = (1/2)y;x;

and a loss function A(y,y) e.g., 0/1 lossin SVMs A(y;,v) =1 1f vy, =y,
=0, otherwise

min w! w+ C&¢

>0 2" (decomposable) constraints

: : : —> n constraints
Single slack variable instead of n !

Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning 20



Cutting Plane Algorithm

Key Idea — Keep only a very small number of (active) constraints at each
iteration and solve a small QP problem

min w! w+ CeE
St (w, Wi ) =, 5))) 2 W T AG; ) —& VT, ¢20

~ ~

Y o A

/A

function of y
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Cutting Plane Algorithm

Key Idea — Keep only a very small number of (active) constraints at each
iteration and solve a small QP problem

min w! w+ CeE
St (w, Wi ) =, 5))) 2 W T AG; ) —& VT, ¢20

~ e
Algorithm P function of y — A
1. Given a constraint set W (containing at most m vectors?k)
solve  arg miér) w! w+ Cé& O(m® + md)
w,

st. W W, >A, ¢ Vik=1..,m
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Cutting Plane Algorithm

Key Idea — Keep only a very small number of (active) constraints at each
iteration and solve a small QP problem

min w! w+ CeE
St (w W) T, 9) ~ v, 50)) 2 U n T Ay ) =& V5, €20

~ -
Algorithm P function of y — A
1. Given a constraint set W (containing at most m vectors?k)
solve arg miér) w! w+ Cé O(m® +md)
w,

st. W W, >A, ¢ Vik=1..,m

2. Find the most violated constraint and add to the constraint set, remove inactive ones
fori=1,..n ¥; <argmax{A(y;,r)+wl y(x;,r)} re{l, -1 Od)
r
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Cutting Plane Algorithm

Key Idea — Keep only a very small number of (active) constraints at each
iteration and solve a small QP problem

min w! w+ CeE
S.L. <W, QJH)Z?Zl(W(Xi’yi) —w(x;, )71/))> >(Un)Y Ay =) —¢ VY, ¢20

~ -
Algorithm P function of y — A
1. Given a constraint set W (containing at most m vectors?k)
solve arg miér) wlw+CéE O(m® + md)
w,

st. W W, >A,—¢& Vk=1..,m
2. Find the most violated constraint and add to the constraint set, remove inactive ones

fori=1,..,n ¥; «<argmax{A(y;,r)+wl y(x;,r)} refl, -1 Od)

3. Compute new ¥ and A, and iterate until w’ ¥ > A—¢&—¢

Guaranteed to converge, more intuitive stopping criterion, kernel extensions easy

Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning 24



Experiment

Linear SVM
Classification
n d s | SVM-Perf | SVM-Light
Reuters CCAT 804,414 | 47,236 0.16% 149.7 20,075.5
Reuters Ci11 804,414 | 47.236 0.16% 178.9 5,187.4
Arxiv astro-ph 62,369 | 99,757 0.08% 16.9 80.1
Covertype 1 522,911 hd | 22.22% 171.7 25.514.3
KDD04 Physics 150,000 78 | 38.42% 31.9 1.040.2

e \

cutting-plane uses kernelj
method approach with
decomposition

Gains mainly due to solving linear SVM updating w
explicitly rather than using (linear) kernel !

Joachims [13]
Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning 25



Online Learning

Primarily based on some form of Stochastic Gradient Descent
— Have been applied mostly to linear problems, kernel extensions easy

Example: Recall SVM formulation as regularized loss function

min 1/ n)Y " 1(x;, yi;w) + AR(w)  xen’yell-3
W N y -

max{0,1- yw! x,} W/ 2w’ w
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Online Learning

Primarily based on some form of Stochastic Gradient Descent
— Have been applied mostly to linear problems, kernel extensions easy

Example: Recall SVM formulation as regularized loss function

min 1/ n)Y " 1(x;, yi;w) + AR(w)  xen’yell-3
w - J -

max{0,1- y;w’ x;} @/ 2w’ w

- Use stochastic subgradient since hinge-loss is non-differentiable

- Usually an e-accurate solution w is obtained
FW) <min, f(w)+e

- Saves significant training time in practice since solving training loss beyond a
precision usually does not affect the generalization performance

- More important to spend time in finding good setting of A

Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning 27



Projected Subgradient Approach for SVM

Key Idea: After each (sub)gradient step, project w in L,-ball of radius 1/+/1

— Allows aggressive decrease in learning rate and hence faster
convergence > O(1/¢)

Why projection?

Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning 28



Projected Subgradient Approach for SVM

Key Idea: After each (sub)gradient step, project w in L,-ball of radius 1/+/1

— Allows aggressive decrease in learning rate and hence faster
convergence > O(1/¢)

Why projection?
The optimal solution lives within a ball of radius 1/

Proof Sketch

Comparing dual and primal at optimum

@l -2 = W2+ X
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Projected Subgradient Approach for SVM

Key Idea: After each (sub)gradient step, project w in L,-ball of radius 1/+/1

— Allows aggressive decrease in learning rate and hence faster
convergence > O(1/¢)

Why projection?
The optimal solution lives within a ball of radius 1/
Proof Sketch

Comparing dual and primal at optimum

a2 = @2k + 3,8

since W= . 4;y;X;

K> Ivo

IAIA

o O

. <(C=1/An
1£1//1

U
>

:
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Projected Subgradient Approach for SVM

Key Idea: After each (sub)gradient step, project w in L,-ball of radius 1/+/1
— Allows aggressive decrease in learning rate and hence faster

convergence > O(1/¢)
Why projection?
The optimal solution lives within a ball of radius 1/
Proof Sketch

Comparing dual and primal at optimum

a2 = @2k + 3,8

since W= . 4;y;X;

(L12)#f* < @ 2l + CT, & =[al, - W 2)[af°

~[2 ~
" <fal, <1/2

Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning

K> Ivo

IAIA

oNe)
v
B

:

. <(C=1/An
1£1//1
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Projected Subgradient Approach for SVM

Algorithm
1. Initialize the initial vector |wy| <1/+/1

2. Compute a subgradient at the currentzestimate w, using & data points for
which loss is nonzero, i.e. margin y;w; x; <1

T (W) = (A1 2)f* + @/ k') 2K max(0,1- yw! x;)

/

Wi =Wr =8¢
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Projected Subgradient Approach for SVM

Algorithm
1. Initialize the initial vector |wy| <1/+/1

2. Compute a subgradient at the currentzestimate w, using & data points for
which loss is nonzero, i.e. margin y;w; x; <1

T (W) = (A1 2)f* + @/ k') 2K max(0,1- yw! x;)

/

Wi =Wr =8¢

g; = ,lwt — (]_/k) Zyixi Apply subgradient computation on

inT x,<1 max of two convex functions

n, =1/(A2)
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Projected Subgradient Approach for SVM

Algorithm
1. Initialize the initial vector |wy| <1/+/1

2. Compute a subgradient at the currentzestimate w, using & data points for
which loss is nonzero, i.e. margin y;w; x; <1

T (W) = (A1 2)f* + @/ k') 2K max(0,1- yw! x;)

!
Wi =Wr =8¢

g = th — (]_/k) Zyixi Apply subgradient computation on

inT x,<1 max of two convex functions

n, =1/(A2)

3. Project the new estimate in the L, ball of radius 1/+/2

Wil = W;+1[min(1’ W)}

Wt+1
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Experiment

Linear SVM

T: # of iterations

| Pegasos | SVM-Perf | SVM-Light o4 —o-T=1250
CCAT 2 77 20,075 .| —T=s1250]
Covertype 6 85 25,514
astro-ph 2 5 80 0.3l
0.25]

T d S 0.2k
Reuters CCAT 04,414 | 47,236 | 0.16%
Reuters Ci11 804,414 | 47.236 0.16% 015k
Arxiv astro-ph 62,369 | 99,757 0.08%
Covertype 1 522,911 54 | 22.22% 01\
KDD0O4 Physics 150,000 78 | 38.42% '100 '

Effect of batchsize k on objective value

S. Shalev-Shwartz [14]
Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning 35



Multi-class Extensions

For L-class classification problem, {x;, v;}im1 xeR? y={1,2,..,L}

Prediction function y =arg max[w(Tj)x] W j) € R j=1..L
J

Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning

36



Multi-class Extensions

For L-class classification problem, {x;, y;}im1 xeR? y={1,2,...,L}

Prediction function y =arg max[w(Tj)x] i)
J

min (1/n)Y "1 1(x;, v;;w)+ AR(w)
" max{0, 1 7 T, !
: —W(yi) X; + W(,,i) xl-} (1/ 2)W w

T
JF)i

1
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Multi-class Extensions

For L-class classification problem, {x;, y;}im1 xeR? y={1,2,...,L}

Prediction function y =arg max[w(Tj)x] W j) € R j=1,.,L
J

min (1/n)Y "1 1(x;, v;;w)+ AR(w)
" max{0, 1 7 T, !
: —W(yi) X; + W(,,i) )Cl-} (1/ 2)W w

T
JF)i

Parameter space: One parameter vector per class = Ld parameters
Algorithm: same update for each vector as for the binary case except,
e t . .

My =X, 1T j=y,

géj) zilwéj)+xt, if j=r,

\ﬂwf 7)» Otherwise

Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning
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Kernel Perceptrons

Recall, perceptron algorithm for linear binary classifier y ={-1,1}
f(x)=sgn(w’ x)
W, + y; x, if x,is misclassified, i.e., ¥, # f(x;)

Update Rule Wy ={ .
17 otherwise

stocahstic (sub)gradient descent !
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Kernel Perceptrons

Recall, perceptron algorithm for linear binary classifier y ={-1,1}
f(x)=sgn(w’ x)
W, + y; x, if x,is misclassified, i.e., ¥, # f(x;)
Update Rule W1 = .
17 otherwise

If initial parameter setting is wp =0

. Zk where {x,} _, , are k misclassified points
Wi = Zip=1Ym*m  gpg y,, are the corresponding labels
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Kernel Perceptrons

Recall, perceptron algorithm for linear binary classifier y ={-1,1}
f(x)=sgn(w’ x)

W, + y; x, if x,is misclassified, i.e., ¥, # f(x;)
Update Rule Wy = _
17 otherwise

If initial parameter setting is wp =0

W = Zk X where {x,} _, , are k misclassified points
t = Lm=1Ym*m  gng y,, are the corresponding labels

Prediction based on Sgn[th x]= Sgn[zl;‘;:1 Vm anq x]
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Kernel Perceptrons

Recall, perceptron algorithm for linear binary classifier y ={-1,1}
f(x)=sgn(w’ x)
W, + y; x, if x,is misclassified, i.e., ¥, # f(x;)

Update Rule Wy ={ .
17 otherwise

If initial parameter setting is wp =0

W — Zk X where {x,} _, , are k misclassified points
t = Lm=1Ym*m  gng y,, are the corresponding labels

Prediction based on Sgn[th x]= Sgn[Zf‘;:1 Vi x,/,T1 x]

Kernel Perceptron f(x)= Sgn[zll;zlymk(LW x)]

active vectors or
“Support Vectors”

Issue: The number of “support vectors” tend to increase linearly with iterations !
—> Storage and run-time increase linearly !

Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning



Kernel Perceptron Experiment

Linear vs Kernel Perceptron
MNIST: 60K training, 10K testing,

T = 0.1 1 2

d=1 Vote 10.7 8.5 8.3

Avg.  (unnorm) 10.9 8.7 8.5

Linear (norm) 10.9 8.5 8.3
Last (unnorm) 16.0 14.7 13.6

(norm) 15.4 14.1 13.1

d =2 Vote 6.0 2.8 24

Avg.  (unnorm) 6.0 2.8 24

(norm) 6.2 3.0 2.5

Last (unnorm) 8.6 4.0 3.4

Kernel (norm) 8.4 3.9 33
Rand. (unnorm) | 13.4 5.9 4.7

k(a,b) = (L+a’ b)? (norm) 13.2 5.9 4.7
SupVec 1,639 8,190 9,888

Mistake 2,150 10,201 15,290

Sanjiv Kumar 11/9/2010

EECS6898 — Large Scale Machine Learning
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Kernel Perceptron with Budget

Key ldea: Keep only a fixed number of support vectors

Simple Strategies
— “Forget” the oldest support vectors if beyond budget
— Remove the ones with largest margin first
— May cause big change in prediction as more support vectors are removed
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Kernel Perceptron with Budget

Key Idea: Keep only a fixed number of support vectors

Simple Strategies
— “Forget” the oldest support vectors if beyond budget
— Remove the ones with largest margin first
— May cause big change in prediction as more support vectors are removed

Alternative Strategy
— Use weighted combination of kernels

k
f(x) — Sgn[zmzlamymk(xm’x)] Om € [O’ l]
— Weights are decayed exponentially as a support vector becomes old
Omt =POmye-1  Omi=1

— If number of support vectors becomes more than budget, remove the
oldest

— Selection of decay coefficient based on bound on number of mistakes

Sanjiv Kumar 11/9/2010 EECS6898 — Large Scale Machine Learning 45



Budgeted Kernel Perceptron Experiment

k(a,b) = (L+a’ b)®

census-income: 200K training MNIST: 60K training
# Support Vec: 14,626 # Support Vec: 1,886
0.3 : : ; : : : : . : :
=== Forgetron == Forgetron
mmECKS 0.3t mmnCKS
0.25- ST | 3
K e, _ 0250 %
g 0.2r .""lu. g .
b fre., O ooz %
20.15 =4 %
b o 0.15
® ©
0 1 0.1
e T T T L L L L L L L s a R i B R aa i aaansaal
0.05- 1 0.05¢
1000 2000 3000 4000 5000 6000 200 400 600 800 1000 1200 1400 1600 1800
budget size - B budget size - B

CKS: Removes the point with largest margin

Dekel et al. [12]
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Online Passive-Aggressive Algorithms

Key ldea: At each iteration try to achieve zero loss for a given data point

Example: Binary classification with e-margin loss

[(x,y;,w)=max{0, e — wax} ye{-11}
Online Update (Separable Case): initialize wy =0

Weag = argmin(l/ 2)w—w,|* st I(x,,y,;w) =0
w
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Online Passive-Aggressive Algorithms

Key ldea: At each iteration try to achieve zero loss for a given data point

Example: Binary classification with e-margin loss
[(x,y;w) =max{0, ¢ —wax} ye{-11}
Online Update (Separable Case): initialize wy =0
W41 =argmin(l/ 2)|w - thz s.t. I(x;,y,;w)=0
w

w, if I(x,,y,;w,)=0 Passive update
W =
L w; +17,,:X,, otherwise Aggressive update

N

2, =1(x,, v,;w,)/|x,|° by Lagrangian optimization
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Online Passive-Aggressive Algorithms

Key ldea: At each iteration try to achieve zero loss for a given data point
Example: Binary classification with e-margin loss

[(x,y;w) =max{0, ¢ —wax} ye{-11}
Online Update (Separable Case): initialize wy =0

a1 =argmin(l/ 2)w—w,|* st I(x,,y,;w) =0
w

w, if I(x,,y,;w,)=0 Passive update
W =
L w; +17,,:X,, otherwise Aggressive update

N

Guaranteed to find a separating hyperplane whose margin is at least half of the best
margin achievable by a batch algorithm !

2, =1(x,, v,;w,)/|x,|° by Lagrangian optimization

Online Update (Inseparable Case): Same updates as above except

7, =min{y, G, yw)Hx > 7>0
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