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Linear Models

Popular in machine learning / Statistics due to their simplicity
Linear regression y = wa+w0 xeiRd,yeiR

Linear SVM y = sgn(wa+ wy) xe SRd,y e{-1,1}

Logistic Regression p(y=1|x) = a(wa +Wwp) xe SRd,y c{-11}

— Also common in other applications e.g., dimensionality reduction
» Principal Components Analysis (PCA)
 Linear Discriminant Analysis (LDA)
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Linear Models

Popular in machine learning / Statistics due to their simplicity
Linear regression y = WTx+Wo xeiRd,yeiR

Linear SVM yzsgn(wa+wo) xeSRd,ye{—l,l}

Logistic Regression p(y=1|x) = a(wa +Wwp) xe iRd,y c{-11}

— Also common in other applications e.g., dimensionality reduction
» Principal Components Analysis (PCA)
 Linear Discriminant Analysis (LDA)

— For real-world data, linear models usually not sufficient
y“

. +
How to learn nonlinear models? 3@5‘/

v
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Nonlinear Models

One possible way of creating a nonlinear model

— Map the input x nonlinearly
x> D(x) xeR? d(x)eR? usually D>d

— Learn a linear model in the new space

y= WTCI)(x)

Advantage of this view: Learning linear models well-known !
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Nonlinear Models

One possible way of creating a nonlinear model

— Map the input x nonlinearly
x> D(x) xeR? d(x)eR? usually D>d

— Learn a linear model in the new space

y=w 0(x)
Advantage of this view: Learning linear models well-known !
— Example: Quadratic Mapping
T 2 2 T
x =[xy, x]" > @(x) =[x1, x2, %1, x2, %17 ]

y=wx + Wo X9 + W3X12 + W4X§ + W5X1X9

y“ + ylk
i+ _
£ Equivalent +h
+
L4 > .
A +
-~
)| E
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Nonlinear Models

One possible way of creating a nonlinear model

— Map the input x nonlinearly
x> D(x) xeR? d(x)eR? usually D>d

— Learn a linear model in the new space
y=w O(x)

Advantage of this view: Learning linear models well-known !

— Example: Quadratic Mapping

T 2 2 T
x =[xy, x]" > @(x) =[x1, x2, %1, x2, %17 ]

— Issues

* One has to choose the degree (d,;) of mapping
» Exponential explosion in dimension of new space

D= O(ddO) Intractable for even moderate d and d,
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Nonlinear Models

Another related way: use of nonlinear basis functions

— Map the input x nonlinearly
x> O(x) xeR? o(x)er?

D(x) =[Dy(x),.., Dp ()] @ ;(x)=f(x0))

— Examples
* Radial Basis Function @ (x) =eXp(—x—,tzj2/0]2~)

* Sigmoid Function @ ;(x) =o((x—;)/s;)

* Also Fourier and wavelet bases
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Nonlinear Models

Another related way: use of nonlinear basis functions

— Map the input x nonlinearly
x> O(x) xeR? o(x)er?

O(x) =[®1(x),.. Op()]" @, (x)=1(x.0))
— Examples
* Radial Basis Function @ ;(x) =eXp(—x—,uj2/012~)
* Sigmoid Function @ ;(x) =o((x—pu;)ls;)
» Also Fourier and wavelet bases

— Learn a linear model in the new space y = wT(I)(x)

— Issues
« Need to fix (number and parameters of) basis functions a-priori
« With increased dimensionality, more basis functions needed
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Kernel Method

A flexible method for creating nonlinear models using Mercer kernels
— Implicit (nonlinear) mapping of the input x such that
x — O(x) feature map may be unknown

Mercer Kernel k(x,y) — (I)(x)TCI)(y) represents similarity between inputs
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Kernel Method

A flexible method for creating nonlinear models using Mercer kernels
— Implicit (nonlinear) mapping of the input x such that
x — O(x) feature map may be unknown

Mercer Kernel k(x,y) — (I)(x)T(D(y) represents similarity between inputs

— Learn a linear model in the new space
y=w o(x)
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Kernel Method

A flexible method for creating nonlinear models using Mercer kernels
— Implicit (nonlinear) mapping of the input x such that
x — O(x) feature map may be unknown

Mercer Kernel k(x,y) — (I)(x)T(D(y) represents similarity between inputs

— Learn a linear model in the new space

y= WT(I)(x) but®(x) is not known !!

— “Kernel Trick”

 |f possible, formulate the problem such that feature map appears only in dot
products - replace these by kernel function
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Kernel Method

A flexible method for creating nonlinear models using Mercer kernels
— Implicit (nonlinear) mapping of the input x such that
x — O(x) feature map may be unknown

Mercer Kernel k(x,y) — (I)(x)T(D(y) represents similarity between inputs

— Learn a linear model in the new space

y= WT(I)(x) but®(x) is not known !!

— “Kernel Trick”

 |f possible, formulate the problem such that feature map appears only in dot
products - replace these by kernel function

— lIssues
» Need to fix the family of kernels, e.g, RBF kernel, Polynomial kernel, ...
» Kernel parameters usually hand-tuned

« Multiple kernels can be combined to define an effective single kernel
Multiple kernel learning
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Example - Nonlinear (Kernel) Regression

Given: A labeled training set, {x;,y;}iz1.» x; eR?,y, e R

Linear Regression y = WT)C

Kernel Regression y = WTCD(X)

Lw) = (W o) y;) + i’ w

i=1..n

oL(w) — 0= w= Z(—l/ ﬂ)(wT(D(Xi) — ;) 0(x;)

ow
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Example - Nonlinear (Kernel) Regression

Given: A labeled training set, {x;,3;}i-1.» x, eR?,y, eR

Linear Regression y = WT)C

Kernel Regression y = WTCD(X)

Lw) = X (W o(x)-y)" +iw'w

i=1..n

oL(w) — 0= w= Z(—l/ ﬂ)(wT(D(Xi) — ;) 0(x;)

ow ,

'l
a;

w= ZaiCD(xl-) solution lives in the span of feature maps !
i oaeR"

Suppose @ =[D(xy),...,D(x,,)]p,, Design Matrix (transposed)

w=®q reparametrization of coefficients

L(w)= (y—CI)Tw)T(y—CDTw)+/1wTW
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Example - Nonlinear (Kernel) Regression

Given: A labeled training set, {x;,y:}iz1.» x; eR?,y, e R

y=w! ®(x)=a ®' d(x) = >k (x,x;)
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Example - Nonlinear (Kernel) Regression

Given: A labeled training set, {x;,3;}i-1.» x, eR?,y, eR

y=w! ®(x)=a’ ' D(x) = >k (x,x;)
Estimating a

L(a)=(y- (DT(Da)T (y— (I)T(I)a) +lo! o' ®o

Gram or Kernel Matrix (I)Tq) =K |= [k(xi’xj)]{:ll""nn

L(a) = (y—Ka)T(y—Ka) + ! Ko
OL(a)
oa

0= K(K+Aa=Ky

If K is positive definite, | a = (K + /1[)_1)/
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Example - Nonlinear (Kernel) Regression

Given: A labeled training set, {x;,3;}i-1.» x, eR?,y, eR
y=w! ®(x)=a ®' d(x) = >k (x,x;)

Estimating a
L(a)=(y- (I)T(I)a)T (y— (I)T(I)a) +lo! o' ®o

T
Gram or Kernel Matrix @ @ = K Equivalent to doing linear
. . ridge regression with x" € R”
L(a)=(y—-Ka) (y—Ka)+lo" Ko X = [k %)k (,x,)]F
oL (a) so P=K
da =0= K(K+A)a= Ky One difference: regularizer
will be o’ o instead of o7 Ka

g /
Empirical Kernel Map

If K is positive definite, | o = (K + A1) "Ly
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Example - Nonlinear (Kernel) Regression
Given: A labeled training set, {x;,y;}i=1..» x, eR?,y, e R

y=w! ®(x)=a ®' d(x) = >k (x,x;)
Estimating a
L(a)=(y- (DT(Da)T (y— (I)T(I)oc) +lo! o' ®o

- T
Gram or Kernel Matrix @ @ = K Equivalent to doing linear
T 7 ridge regression with x" € R”
L(a)=(y—-Ka) (y—Ka)+lo" Ko X = [k %)k (6,3,
oL(a) so =K
da =0= K(K+A)a= Ky One difference: regularizer
will be o’ @ instead of o’ Ka

g /
Empirical Kernel Map

If K is positive definite, | a = (K + /1[)_1)/

Advantage of Kernel View
« Original data is not needed directly, we only need k(x, y)for any pair

« Original data does not need to be a vector, only k(x, v) should be defined
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Example - Nonlinear (Kernel) Regression

. _ Number of parameters
T . 1
raining “ _.(K + M) "y same as number of points!
O(n’d)
——
o(n)

K~ 40,000 TB!
n~0(100M),d ~O(100K) Building K and its inversion is intractable!
Approximations, first-order optimization ?
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Example - Nonlinear (Kernel) Regression

. _ Number of parameters
T - 1 .
raining “ _.(K + M) "y same as number of points!
O(n°d)
—
o(n)

K ~ 40,000 TB!
n~0(100M),d ~O(100K) Building K and its inversion is intractable!
Approximations, first-order optimization ?

Testing y= Z?:laik(x’ xi) Grows linearly with n

Too slow for most practical purposes

Need to induce sparsity ina - L, prior Sparse kernel machines
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Support Vector Machine (SVM)

Given a labeled training set, {x;,»i}i-1..» x; € SRd,yl- e{-11}

Wantto learn f(x;w)= sgn(wa +Wwp)

T

Primal min w" w+C>.¢&

st y;(wix;+wg)21-¢& Vi
>0

N wa—i—wo =1

Using Lagrange multipliers (with KKT conditions)

»

w= Z,- a; ViXi
. ) . Fast training in O(nd)
Dual  max Zai _Zai iy % x;)a; cutting-plane

=l ij stochastic gradient descent
2.0y; =0 quasi-Newton
, .
0<a <C coordinate descent

Testing O(d)
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Kernel SVM

Given a labeled training set, {x;,y:}iz1., x;, eR?,y, e{-1,1}

£Gesw) =sgn(w’ @(x)+wp)  k(x, ) = D)D)
Cannot solve in primal
since ®(x) is unknown! W7 2.0y (x;)

Note: Can be solved in primal if kernel SVM viewed as optimizing
“regularized hinge loss” with empirical kernel map

Dual max a'1-a’ K'a K'=[yiy ik(x;,x ;)i i<,
r. B _
a’y=0 Training O(?) ~ O@>)
0 < al' < C

TeSting O(#sv) ~ O(I’l)

f(x;a)= Sgn(Z“iYik(x’xi) +ap)

How to do fast training and testing ?
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Approximations

1. Subsample the data
— Randomly pick a small number of points p <<n

Y= Z?zlaik(x, X;) = Zﬁlaik(ﬁ X;)

— Training: O(npd) Testing: O(pd)
— Better sampling for specific applications, e.g., kernel/logistic regression

« Find p centers in the data using e.g., k-medoid
» Use random-projection based clustering for large d

— Selective sampling in some cases
» Greedily pick points from the whole set based on a given criterion
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Approximations

1. Subsample the data
— Randomly pick a small number of points p <<n

Y= Z?zlaik(x, X;) = Zﬁlaik(% X;)

— Training: O(npd) Testing: O(pd)
— Better sampling for specific applications, e.g., kernel/logistic regression

« Find p centers in the data using e.g., k-medoid
» Use random-projection based clustering for large d

— Selective sampling in some cases
» Greedily pick points from the whole set based on a given criterion

2. Low-rank approximation of kernel matrix
— Use sampling-based methods
— Incomplete Cholesky

3. Sparsification of kernel matrix
— Make the kernel matrix sparse by thresholding the entries
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Approximations

4. Approximate kernel matrix-vector product
— E.g., using ANN (kd-trees)

5. Fast Optimization Methods
— Many methods proposed for specific techniques e.g., SVM

— Decomposition methods
» Block coordinate-descent - slow beyond O(100K) points

— Stochastic or online methods

6. Kernel Approximation
— Instead of matrix speed-up, approximate kernel function directly
— Some kernels can be computed fast fairly accurately
* Fast Gauss Transform: Hermite or Taylor approximation of Gaussian kernels

— | Approximate linearization of kernels
» Linear methods very fast to train and test
» Possible for certain types of kernels
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Kernel Linearization

Approximate linearization possible using empirical kernel map
X =[k(x, ;) k(xx,)]E

* But no gain since it is n-dim vector and requires n kernel computations
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Kernel Linearization

Approximate linearization possible using empirical kernel map
X =[k(x, ;) k(xx,)]E

* But no gain since it is n-dim vector and requires n kernel computations

Can we approximate the feature map with a low-dim vector ?

Kernel Linearization k(x, y) = CD(x)TCD(y) R Z(X)TZ()/)
T eRP D<<n
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Kernel Linearization

Approximate linearization possible using empirical kernel map
X =[k(x, ;) k(xx,)]E

* But no gain since it is n-dim vector and requires n kernel computations

Can we approximate the feature map with a low-dim vector ?

Kernel Linearization k(x, y) = cD(x)TcD(y) ~ z(x)Tz(y)
e %D, D <<n
Suppose the kernel is shift-invariant:

k(x,y) =k'(x—y)=k'(A)

k(x,y) =exp{—|x— y§/202} k(x,y) = exp{-|x - )’Hl //1}

Laplacian
K'(A) = exp{- | /2623 K(A) = exp{-|Al, /73

Gaussian

Sanjiv Kumar 10/27/2010 EECS6898 — Large Scale Machine Learning 28



Random Fourier Features

Sanjiv Kumar

z(x) =z ;(x)]pxa

z j(x)=~2/Dcos(w;x+b)|w; ~ Plw) b~U(0,2x)

10/27/2010 EECS6898 — Large Scale Machine Learning
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Random Fourier Features

z(x) =z ;(x)]pxa

Gaussian @ j ~ N(0,1) Laplacian @ j ~ Cauchy(0,1)

Zj(x)‘

z j(x)=~2/Dcos(w;x+b)|w; ~ Plw) b~U(0,2x)

Sanjiv Kumar

10/27/2010 EECS6898 — Large Scale Machine Learning
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Main Theory

A continuous shift-invariant kernel is positive definite if and only if £'(A) is
the Fourier transform of a non-negative measure. [Bochner]

K'(x—y)= jp(a))eij(x_y)da)

p(w) - Inverse Fourier Transform of £'(A)
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Main Theory

A continuous shift-invariant kernel is positive definite if and only if £'(A) is
the Fourier transform of a non-negative measure. [Bochner]

K'(x—y)= jp(a))eij(x_y)da)

— since £'(.) and p(.) both are real, use real part of complex exponentials
k(x,y) = Elz,(x).2,,(»)] if z, (x) =~/2cos(w’ x +b)

— Reduce variance by concatenating many (D) dimensions in z_(.)

2o 2,() =W D)X 2 (¥)zg, (¥) 7, ()= D)c0s(o 1)
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Main Theory

A continuous shift-invariant kernel is positive definite if and only if £'(A) is
the Fourier transform of a non-negative measure. [Bochner]

K'(x—y)= jp(a))eij(x_y)da)

— since £'(.) and p(.) both are real, use real part of complex exponentials
k(x,y) = Elz,(x).2,,(»)] if z, (x) =~/2cos(w’ x +b)

— Reduce variance by concatenating many (D) dimensions in z_(.)

2o 2,() =W D)X 2 (¥)zg, (¥) 7, ()= D)c0s(o 1)

Hoeffding Bound  Pr(iz(x)” z(y) — k(x, y)| > &) < 2exp(—De? 1 4)

Sanjiv Kumar 10/27/2010 EECS6898 — Large Scale Machine Learning 33



Example Results

Regression and Classification errors

- : T 2 2
Training mln(Z W_J’2+/1W2
w

Testing f(x)= sz(x)

Dataset Fourier+LS CVM Exact SVM
CPU 3.6% 5.5% 11%
regression 20 secs 51 secs 31 secs
6500 instances 21 dims D = 300 ASVM
Census 5% 8.8% 9%
regression 36 secs 7.5 mins 13 mins
18,000 instances 119 dims D = 500 SVMTorch
Adult 14.9% 14.8% 15.1%
classification O secs 73 mins 7 mins
32,000 instances 123 dims D = 500 SAAV
Forest Cover 11.6% 2.3% 2.2%
classification 71 mins 7.5 hrs 44 hrs
522,000 instances 54 dims D = 5000 libSVM
KDDCUP 99 (see footnote) 7.3% 6.2% (18%) 8.3%
classification 1.5 min 1.4 secs (20 secs) < 1s
4,900,000 instances 127 dims D = 50 SVM+sampling

Sanjiv Kumar

10/27/2010

EECS6898 — Large Scale Machine Learning

Rahimi & Recht [7]
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Learning Low Dimensional Features

Instead of randomization, can we learn low-dim features directly?

Key Idea: project (high-dim) implicit features ®(x) on D basis vectors

Sanjiv Kumar 10/27/2010 EECS6898 — Large Scale Machine Learning
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Learning Low Dimensional Features

Instead of randomization, can we learn low-dim features directly?
Key Idea: project (high-dim) implicit features ®(x) on D basis vectors
Given a set of basis vectors {I;};.1 _p &; € R and {®(4;)}i=1. b
Low-dim representation using implicit feature space

v, =argmin|®(x) —HvaZ H =[D(H),..0(hp)]
A%

X

=(H"H) ™ (H" @ (x))
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Learning Low Dimensional Features

Instead of randomization, can we learn low-dim features directly?
Key Idea: project (high-dim) implicit features ®(x) on D basis vectors
Given a set of basis vectors {I;};.1 _p &; € R and {®(4;)}iz1. b
Low-dim representation using implicit feature space

v, =argmin|®(x) —HvaZ H =[D(H),..0(hp)]
A%

X

=(H"H) ™ (H" @ (x))

To approximate kernel k(x, y) = (D(x)TCI)(y) ~ (Hvx)T(Hvy) = v){HTHvy
DxD
=(H o) (H"H)(H o ()

= (b ) Koy () K () = [k, 2) - k(i )]
e e K =[G, )
Kit=G'G
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Learning Low Dimensional Features

Instead of randomization, can we learn low-dim features directly?
Key Idea: project (high-dim) implicit features ®(x) on D basis vectors
Given a set of basis vectors {I;};.1 _p &; € R and {®(4;)}iz1. b
Low-dim representation using implicit feature space

v, =argmin|®(x) —HvaZ H =[D(H),..®(hp)]

X

=(H"H) ™ (H" @ (x))

To approximate kernel k(x, y) = (D(x)TCI)(y) ~ (Hvx)T(Hvy) = v){HTHvy
DxD
=(H o) (H"H)(H o ()

= (k) Kib () 60 () = [k, )T
o Kyp =k h )i i,
Desired linearization | z(x)= Gk (x) Kit=G7G

)
Sanjiv Kumar 10/27/2010 EECS6898 — Large Scale Machine Learning How to get h's ? 38



Learning Low Dimensional Features

Learning the basis vectors using a few sampled points

h,9 = argmin 7 (x) —
vV

Given H, V; = (HTH)_l(HTCD(xi))

argmin[-3.1, (; EN TAAED))

Use Stochastic Gradient Descent to obtain {hl-}

Sanjiv Kumar 10/27/2010 EECS6898 — Large Scale Machine Learning 39



Experiment

d = 1000, 256-class classification

10" Caltech-256 Caltech-256
15f=4=BOW-Linear | 120/[=~BOW-Linear |
) =-BOW-Gaussian > =-BOW-Gaussian
-g =¥-EMK-Fourier 2 100ll=FEMK-Fourier
S 10l A-EMK-CKSVD 8 2 EMK-CKSVD
E’ g 801
S 5l =y
2 A =S P
ot ¥ ¥* 20t _
1 15 2 25 1 15 2 25
Trainning set size X 104 Trainning set size X 104
Randomized Learned
Algorithms | BOW-Linear | BOW-Gaussian | EMK-Fourier | EMK-CKSVD
15 training 17.4+0.7 19.1£0.8 22.64+0.7 23.24+0.6
30 training 22.7+0.4 24.4+0.6 30.1+0.5 30.54+0.4
45 training 26.9+0.3 28.3+0.5 34.1+0.5 34.44-0.4
60 training 29.3+0.6 30.9+04 37.4+0.6 37.64+0.5
D = 1000

Sanjiv Kumar

10/27/2010

Bo & Sminchisescu [10]

EECS6898 — Large Scale Machine Learning

40



Linearization of Additive Kernels

Additive homogeneous kernels forx,y € RY defined as,
d :
k(x,y)= ijlkd (x;,¥;) supposex;,y; 20, V
k,(ca,cb) =ck,(a,b) a,b are scalars

— Intersection kernel k(x’y):Z?zlmin(xj,yj)

— Bhattacharya (Hellinger) kernel k(x,y) :Z;’.’:l,/xjyj
— Chi-square kernel k(x,y) :Zj":lxjyj [(x;+y;)

Sanjiv Kumar 10/27/2010 EECS6898 — Large Scale Machine Learning
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Linearization of Additive Kernels

Additive homogeneous kernels forx,y € RY defined as,

k(x,y):Zj’.lzlkd(xj,yj) suppose x;,y; 20, V j

k,(ca,cb) =ck,(a,b) a,b are scalars

— Intersection kernel k(x,y):Z?zlmin(xj,yj)

— Bhattacharya (Hellinger) kernel k(x,y) :Zj.’:l,/xjyj
— Chi-square kernel k(x,y) :Z;Z":lxjyj [(x;+y;)

Signature of a homogeneous kernel

ky(a,b)= kd(F\ff\f) de(\f\f) FK(log)

Kernel Signature K(w) =k, (e_wlz, 6')/2) W = Iog—

Sanjiv Kumar 10/27/2010 EECS6898 — Large Scale Machine Learning
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Linearization of Additive Kernels

Signature for homogeneous kernels can be written as Fourier Transform,
K(w)=[" e x()di

ka(a,b)=¥(a)" W(B) = [ TP (@LIP O], dh ki) - abKiog)
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Linearization of Additive Kernels

Signature for homogeneous kernels can be written as Fourier Transform,
_‘i
K(w)=[" e "*k(1)dh
ka(a,b)=¥(a)" W(B) = [ TP (@LIP O], dh ki) - abKiog)
infinite dimensional vector [W(a)], = e_i’llogaﬁ/aic(/l)

inverse Fourier Transform k(A) = (1/ 2x) EOOO eMwK(a))da}
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Linearization of Additive Kernels

Signature for homogeneous kernels can be written as Fourier Transform,
([ —lw
K(w) = I_Ooe k(A)dA
ka(@,b)=P(@) P )= [""P@T[¥B)],dh  kin) - aKiog”)
infinite dimensional vector [W(a)], = e_i’llogaﬁ/aic(/l)

inverse Fourier Transform k(A) = (1/ 2x) EOOO eMwK(a))da)

|
can be computed explicitly
for many kernels

How to get finite linear map?

Use finite number of samples with a certain period — determined empirically
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Example Kernels

kernel k(x,y) K(w) k()
Hellinger’s N&aT 1 d(A)
X~ 2.2 sech(w/2) | sech(w\)
intersection | min{z, y} e~ 1wl/2 2 Hﬁ
Sanjiv Kumar 10/27/2010 EECS6898 — Large Scale Machine Learning vedaldi& zisserman (1] 46



Experiment

n = 1500, d = 1200, 101-class classification

Y2 kernel inters. kernel
mthd. dm. acc. time acc. time
kernel — 64.2+1.7 388.448.7 | 62.2+1.8 354.7+24.4

appr. 1 62.4+1.6 20.7+03 | 62.0+1.4  22.940.7
appr. 3 64.2+1.5  58.4+72 | 63.9+12  66.5+2.3
appr. S 64.0+1.6 101.3+0.7 | 64.0+1.7 105.8+6.5

Vedaldi & Zisserman [11]
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Linearization of Intersection Kernel

Intersection kernel
d .
k(x,y)=Zj:1mln(xj,yj) x;,y;€[0,1]

normalized feature vectors
- T
min(x;,y;) = ®(x;)" ®(y;)
®(a) =~1/ N U(Na)

pseudo-binary representation
Example N =10,a = 0.25,U (Na)
U(Na) =U(2.5) =[1,1,0.5,0,0,...,0]"
For high accuracy, N should be large

Issue: Original dimension gets blown by a factor of N
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Experiment

Sanjiv Kumar

15 examples
Encoding | Training Algorithm | Training Time(s) | Accuracy(%)
identity LIBLINEAR 18.57 (0.87) | 41.19 (0.94)
identity [ LIBSVM (int kernel) 844.13 (2.10) | 350.15 (0.61)
SNOW=01 LIBLINEAR 45.22 (1.17) | 46.02 (0.58)
b2 LIBLINEAR 42.31(1.43) | 48.70(0.61)
b2 PWLSGD 238.98 (2.49) | 49.89 (0.45)

Maiji & Berg [9]
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Prediction with Intersection Kernel

SVM prediction f'(x) =sgn[D> "y a; yik(x,x;) + ag] sum is over m support vectors
O(md)

Intersection kernel k(x,v) = Zj’.':lmin(x(j),v(j))
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Prediction with Intersection Kernel

SVM prediction f(x) =sgn[D> "y a; yik(x,x;) + ag] sumis over m support vectors
O(md)

Intersection kernel k(x,v) = Zj’.':lmin(x(j),v(j))

/() =sgn[X 7 a3 354 min(x(), x; (1)) + ag]

S () =sgn[X5_y 2 0y MinGe (), x; (1) + ap]  swap summation
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Prediction with Intersection Kernel

SVM prediction f(x) =sgn[D> "y a; yik(x,x;) + ag] sumis over m support vectors
O(md)

Intersection kernel k(x,v) = Zj?zlmin(x( Nv())
/() =sgn[X 7 a3 354 min(x(), x; (1)) + ag]

S () =sgn[X 5y 2 0y MinGe( ), x; (1) + ] swap summation

/i (x(/))
fi(s)= Z?ilam min(s, x; (/))
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Prediction with Intersection Kernel

SVM prediction f(x) =sgn[D> "y a; yik(x,x;) + ag] sumis over m support vectors
O(md)

Intersection kernel k(x,v) = Zj’.':lmin(x(j),v(j))

/() =sgn[X 7 agy; 354 min(x(), x; () + ag]

f(x) = sgn[zj?zlzﬁ 1047 MG (), 5, (1) + ap] - swap summation
1 (x()
fi(s)= Z?ilam min(s, x; (/))

sort the jth dim of all support vectors

‘ x(j)=s
min(s, x; (/) = x; (/) min(s, x;(/)) = s
o0 o—0 @ @ O O O _. : > .
x(J) Xm (/) x(J)
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Prediction with Intersection Kernel

A x(J) =5
min(s, x; (/) = x; (/) min(s, x; (/) =s
O—0 o—0O Q@ O O O O _O - > .
x1 (/) x,.(j) X, (/) x()

Suppose r is the largest integer such that X,.(j) < s
fi(s) =220y min(s, x; (/)

= 2.0V % (j)+s D2y, =A()+sB(r)

1<i<r r<i<m
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Prediction with Intersection Kernel

‘ x(J) =5
min(s, x; (7)) = x; (/) min(s, x; (/) =s
O—0 o—0O Q@ O O O O _O - > .
x1 (/) x,.(j) X, (/) x()

Suppose r is the largest integer such that X,.(j) < s
fi(s)= >0 min(s, X; (/)
= 20,y (J)+s Xay; = A(r)+sB(r)
1<i<r r<i<m

Simple procedure:
1. Sort each dimension of m support vectors — can be done offline

2. For each test point, find the location of its jt*-dim value in the jth-sorted
list using binary search O(logm)

3. Keep cumulative sum of Z;.;la,-yl-xi (/) and Zinir+1ai,)—/i 2m extra storage

Time complexity O(d logm) instead of O(d m) Exact computation !
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Approximate Prediction

Key Idea: Instead of keeping m values of A(r) and B(r), store values at
much reduced (equidistant) locations and make piecewise linear or
piecewise constant approximation

0.37F E 0AF
f j (s)
—0.04 0.5k E
0.03 .08 0. 04
S

Traditional function approximation: Can be done for any univariate function

Time complexity O(d) instead of O(dm)  Approximate computation !

Maiji et al. [8]
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Experiment

Model parameters SVM kernel type fast IKSVMs

Dataset #SVs #features linear intersection || binary search | piecewise-const | piecewise-lin
INRIA Ped 3363 1360 0.07+0.00 | 659.14+1.92 2.57+0.03 0.34+0.01 0.43+0.01

DC Ped 54744395 656 0.03+£0.00 | 459.1+31.3 1.43£0.02 0.18+0.01 0.22+0.00
Caltech 101 175+46 1360 0.07+0.01 | 24.77£1.22 1.63+0.12 0.33+0.03 0.46+0.03

m d \ / 100 knots 30 knots
Exact methods
Maiji et al. [8]
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