Large-Scale Kernel Methods - I

Sanjiv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 2010

Linear Models

Popular in machine learning / Statistics due to their simplicity

Linear regression
$$y=w^Tx+w_0$$
 $x\in\Re^d,y\in\Re$

Linear SVM $y=\mathrm{sgn}(w^Tx+w_0)$ $x\in\Re^d,y\in\{-1,1\}$

Logistic Regression $p(y=1\,|\,x)=\sigma(w^Tx+w_0)$ $x\in\Re^d,y\in\{-1,1\}$

- Also common in other applications e.g., dimensionality reduction
 - Principal Components Analysis (PCA)
 - Linear Discriminant Analysis (LDA)

Linear Models

Popular in machine learning / Statistics due to their simplicity

Linear regression
$$y=w^Tx+w_0$$
 $x\in\Re^d,y\in\Re$

Linear SVM $y=\mathrm{sgn}(w^Tx+w_0)$ $x\in\Re^d,y\in\{-1,1\}$

Logistic Regression $p(y=1\,|\,x)=\sigma(w^Tx+w_0)$ $x\in\Re^d,y\in\{-1,1\}$

- Also common in other applications e.g., dimensionality reduction
 - Principal Components Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
- For real-world data, linear models usually not sufficient

How to learn nonlinear models?

One possible way of creating a nonlinear model

Map the input *x* nonlinearly

$$x \to \Phi(x)$$
 $x \in \mathbb{R}^d, \Phi(x) \in \mathbb{R}^D$ usually $D \ge d$

Learn a linear model in the new space

$$y = w^T \Phi(x)$$

Advantage of this view: Learning linear models well-known!

One possible way of creating a nonlinear model

Map the input x nonlinearly

$$x \to \Phi(x)$$
 $x \in \mathbb{R}^d, \Phi(x) \in \mathbb{R}^D$ usually $D \ge d$

Learn a linear model in the new space

$$y = w^T \Phi(x)$$

Advantage of this view: Learning linear models well-known!

Example: Quadratic Mapping

$$x = [x_1, x_2]^T \rightarrow \Phi(x) = [x_1, x_2, x_1^2, x_2^2, x_1x_2]^T$$

 $y = w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_2^2 + w_5x_1x_2$

One possible way of creating a nonlinear model

Map the input x nonlinearly

$$x \to \Phi(x)$$
 $x \in \mathbb{R}^d, \Phi(x) \in \mathbb{R}^D$ usually $D \ge d$

Learn a linear model in the new space

$$y = w^T \Phi(x)$$

Advantage of this view: Learning linear models well-known!

Example: Quadratic Mapping

$$x = [x_1, x_2]^T \rightarrow \Phi(x) = [x_1, x_2, x_1^2, x_2^2, x_1x_2]^T$$

- Issues
 - One has to choose the degree (d_0) of mapping
 - Exponential explosion in dimension of new space

$$D = O(d^{d_0})$$
 Intractable for even moderate d and d₀

Another related way: use of nonlinear basis functions

Map the input *x* nonlinearly

$$x \to \Phi(x) \quad x \in \mathbb{R}^d, \Phi(x) \in \mathbb{R}^D$$

$$\Phi(x) = [\Phi_1(x), ..., \Phi_D(x)]^T \quad \Phi_j(x) = f(x, \theta_j)$$

- Examples
 - Radial Basis Function $\Phi_j(x) = \exp(-\|x \mu_j\|^2 / \sigma_j^2)$
 - Sigmoid Function $\Phi_j(x) = \sigma((x \mu_j)/s_j)$
 - Also Fourier and wavelet bases

Another related way: use of nonlinear basis functions

Map the input *x* nonlinearly

$$x \to \Phi(x) \quad x \in \mathbb{R}^d, \Phi(x) \in \mathbb{R}^D$$

$$\Phi(x) = [\Phi_1(x), ..., \Phi_D(x)]^T \quad \Phi_j(x) = f(x, \theta_j)$$

- Examples
 - Radial Basis Function $\Phi_j(x) = \exp(-\|x \mu_j\|^2 / \sigma_j^2)$
 - Sigmoid Function $\Phi_j(x) = \sigma((x \mu_j)/s_j)$
 - Also Fourier and wavelet bases
- Learn a linear model in the new space $y = w^T \Phi(x)$
- Issues
 - Need to fix (number and parameters of) basis functions a-priori
 - With increased dimensionality, more basis functions needed

A flexible method for creating nonlinear models using Mercer kernels

Implicit (nonlinear) mapping of the input x such that

$$x \to \Phi(x)$$
 feature map may be unknown

Mercer Kernel $k(x, y) \rightarrow \Phi(x)^T \Phi(y)$ represents similarity between inputs

A flexible method for creating nonlinear models using Mercer kernels

Implicit (nonlinear) mapping of the input x such that

$$x\to \Phi(x)\qquad \text{feature map may be unknown}$$
 Mercer Kernel $\ k(x,y)\to \Phi(x)^T \, \Phi(y)$ represents similarity between inputs

Learn a linear model in the new space

$$y = w^T \Phi(x)$$

A flexible method for creating nonlinear models using Mercer kernels

Implicit (nonlinear) mapping of the input x such that

$$x\to \Phi(x)\qquad \text{feature map may be unknown}$$
 Mercer Kernel $\ k(x,y)\to \Phi(x)^T \, \Phi(y)$ represents similarity between inputs

Learn a linear model in the new space

$$y = w^T \Phi(x)$$
 but $\Phi(x)$ is not known!!

- "Kernel Trick"
 - If possible, formulate the problem such that feature map appears only in dot products → replace these by kernel function

A flexible method for creating nonlinear models using Mercer kernels

Implicit (nonlinear) mapping of the input x such that

$$x\to \Phi(x)\qquad \text{feature map may be unknown}$$
 Mercer Kernel $\ k(x,y)\to \Phi(x)^T \, \Phi(y)$ represents similarity between inputs

Learn a linear model in the new space

$$y = w^T \Phi(x)$$
 but $\Phi(x)$ is not known!!

- "Kernel Trick"
 - If possible, formulate the problem such that feature map appears only in dot products → replace these by kernel function
- Issues
 - Need to fix the family of kernels, e.g, RBF kernel, Polynomial kernel, ...
 - Kernel parameters usually hand-tuned
 - Multiple kernels can be combined to define an effective single kernel

Multiple kernel learning

Given: A labeled training set, $\{x_i, y_i\}_{i=1...n}$ $x_i \in \Re^d, y_i \in \Re$

Linear Regression
$$y = w^T x$$

Kernel Regression $y = w^T \Phi(x)$

$$L(w) = \sum_{i=1..n} (w^T \Phi(x_i) - y_i)^2 + \lambda w^T w$$

$$\frac{\partial L(w)}{\partial w} = 0 \Rightarrow w = \sum_{i} (-1/\lambda)(w^T \Phi(x_i) - y_i) \Phi(x_i)$$

Given: A labeled training set, $\{x_i, y_i\}_{i=1...n}$ $x_i \in \Re^d, y_i \in \Re$

Linear Regression
$$y = w^T x$$

Kernel Regression $v = w^T \Phi(x)$

$$L(w) = \sum_{i=1..n} (w^{T} \Phi(x_i) - y_i)^{2} + \lambda w^{T} w$$

$$\frac{\partial L(w)}{\partial w} = 0 \Rightarrow w = \sum_{i} (-1/\lambda)(w^{T} \Phi(x_{i}) - y_{i}) \Phi(x_{i})$$

$$w = \sum_{i} \alpha_{i} \Phi(x_{i})$$

 $w = \sum_{i} \alpha_{i} \Phi(x_{i})$ solution lives in the span of feature maps!

Suppose $\Phi = [\Phi(x_1),...,\Phi(x_n)]_{D \times n}$ Design Matrix (transposed)

$$w = \Phi \alpha$$

 $w = \Phi \alpha$ reparametrization of coefficients

$$L(w) = (y - \Phi^T w)^T (y - \Phi^T w) + \lambda w^T w$$

Given: A labeled training set, $\{x_i, y_i\}_{i=1...n}$ $x_i \in \Re^d, y_i \in \Re$

$$y = w^T \Phi(x) = \alpha^T \Phi^T \Phi(x) = \sum_{i=1}^n \alpha_i k(x, x_i)$$

Given: A labeled training set, $\{x_i, y_i\}_{i=1...n}$ $x_i \in \Re^d, y_i \in \Re$

$$y = w^T \Phi(x) = \alpha^T \Phi^T \Phi(x) = \sum_{i=1}^n \alpha_i k(x, x_i)$$

Estimating α

$$L(\alpha) = (y - \Phi^T \Phi \alpha)^T (y - \Phi^T \Phi \alpha) + \lambda \alpha^T \Phi^T \Phi \alpha$$

Gram or Kernel Matrix $\Phi^T \Phi = K$ $= [k(x_i, x_j)]_{i=1}^{j=1,...,n}$

$$L(\alpha) = (y - K\alpha)^{T} (y - K\alpha) + \lambda \alpha^{T} K\alpha$$

$$\frac{\partial L(\alpha)}{\partial \alpha} = 0 \Longrightarrow K(K + \lambda I)\alpha = Ky$$

If *K* is positive definite, $\alpha = (K + \lambda I)^{-1} y$

Given: A labeled training set, $\{x_i, y_i\}_{i=1...n}$ $x_i \in \mathbb{R}^d, y_i \in \mathbb{R}$

$$y = w^T \Phi(x) = \alpha^T \Phi^T \Phi(x) = \sum_{i=1}^n \alpha_i k(x, x_i)$$

Estimating α

$$L(\alpha) = (y - \Phi^T \Phi \alpha)^T (y - \Phi^T \Phi \alpha) + \lambda \alpha^T \Phi^T \Phi \alpha$$

Gram or Kernel Matrix $\Phi^T \Phi = K$

$$L(\alpha) = (y - K\alpha)^{T} (y - K\alpha) + \lambda \alpha^{T} K\alpha$$

$$\frac{\partial L(\alpha)}{\partial \alpha} = 0 \Longrightarrow K(K + \lambda I)\alpha = Ky$$

If *K* is positive definite, $\alpha = (K + \lambda I)^{-1} y$

Equivalent to doing linear ridge regression with $x' \in \Re^n$

$$x' = \left[k(x, x_i), \dots, k(x, x_n)\right]^T$$
 so $\Phi = K$

One difference: regularizer will be $\alpha^T \alpha$ instead of $\alpha^T K \alpha$

Empirical Kernel Map

Given: A labeled training set, $\{x_i, y_i\}_{i=1...n}$ $x_i \in \Re^d, y_i \in \Re$

$$y = w^T \Phi(x) = \alpha^T \Phi^T \Phi(x) = \sum_{i=1}^n \alpha_i k(x, x_i)$$

Estimating α

$$L(\alpha) = (y - \Phi^T \Phi \alpha)^T (y - \Phi^T \Phi \alpha) + \lambda \alpha^T \Phi^T \Phi \alpha$$

Gram or Kernel Matrix $\Phi^T \Phi = K$

$$L(\alpha) = (y - K\alpha)^{T} (y - K\alpha) + \lambda \alpha^{T} K\alpha$$

$$\frac{\partial L(\alpha)}{\partial \alpha} = 0 \Longrightarrow K(K + \lambda I)\alpha = Ky$$

If *K* is positive definite, $\alpha = (K + \lambda I)^{-1} y$

Equivalent to doing linear ridge regression with $x' \in \Re^n$

$$x' = [k(x, x_i), ..., k(x, x_n)]^T$$

so $\Phi = K$

One difference: regularizer will be $\alpha^T \alpha$ instead of $\alpha^T K \alpha$

Empirical Kernel Map

Advantage of Kernel View

- Original data is not needed directly, we only need k(x, y) for any pair
- Original data does not need to be a vector, only k(x, y) should be defined

EECS6898 - Large Scale Machine Learning

18

Training

$$\alpha = (K + \lambda I)^{-1} y$$

$$O(n^2 d)$$

$$O(n^3)$$

Number of parameters same as number of points!

 $n \sim O(100M), d \sim O(100K)$

K ~ 40,000 TB! Building K and its inversion is intractable! Approximations, first-order optimization?

Training

$$\alpha = (K + \lambda I)^{-1} y$$

$$O(n^2 d)$$

$$O(n^3)$$

Number of parameters same as number of points!

 $n \sim O(100M), d \sim O(100K)$

K ~ 40,000 TB! Building K and its inversion is intractable! Approximations, first-order optimization?

Testing

$$y = \sum_{i=1}^{n} \alpha_i k(x, x_i)$$
 Grows linearly with n

Too slow for most practical purposes

Need to induce sparsity in α - L₁ prior Sparse kernel machines

Support Vector Machine (SVM)

Given a labeled training set, $\{x_i, y_i\}_{i=1...n}$ $x_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$

Want to learn $f(x; w) = \operatorname{sgn}(w^T x + w_0)$

Primal min
$$w^T w + C \sum_i \xi_i$$

s.t. $y_i (w^T x_i + w_0) \ge 1 - \xi_i \quad \forall i$
 $\xi_i \ge 0$

Using Lagrange multipliers (with KKT conditions)

$$w = \sum_{i} \alpha_i y_i x_i$$

Dual
$$\max \sum_{i=1}^{n} \alpha_i - \sum_{i,j}^{n} \alpha_i (y_i y_j x_i^T x_j) \alpha_j$$

$$\sum_{i} \alpha_i y_i = 0$$

$$0 \le \alpha_i \le C$$

Fast training in O(nd)

cutting-plane stochastic gradient descent quasi-Newton coordinate descent

Testing O(d)

Kernel SVM

Given a labeled training set,
$$\{x_i, y_i\}_{i=1...n}$$
 $x_i \in \Re^d, y_i \in \{-1, 1\}$

$$f(x; w) = \text{sgn}(w^T \Phi(x) + w_0)$$
 $k(x, y) = \Phi(x) \cdot \Phi(y)$

Cannot solve in primal since $\Phi(x)$ is unknown!

$$w = \sum_{i} \alpha_i y_i \Phi(x_i)$$

Note: Can be solved in primal if kernel SVM viewed as optimizing "regularized hinge loss" with empirical kernel map

Dual
$$\max \ \alpha^T 1 - \alpha^T K' \alpha$$
 $K' = [y_i y_j k(x_i, x_j)]_{i,j=1,...,n}$
$$\alpha^T y = 0$$
 Training $O(n^2) \sim O(n^3)$
$$0 \le \alpha_i \le C$$
 Testing $O(\#_{SV}) \approx O(n)$

$$f(x;\alpha) = \operatorname{sgn}(\sum_{i} \alpha_{i} y_{i} k(x, x_{i}) + \alpha_{0})$$

How to do fast training and testing?

Approximations

1. Subsample the data

Randomly pick a small number of points $p \ll n$

$$y = \sum_{i=1}^{n} \alpha_i k(x, x_i) \approx \sum_{i=1}^{p} \alpha_i k(x, x_i)$$

- Training: O(npd) Testing: O(pd)
- Better sampling for specific applications, e.g., kernel/logistic regression
 - Find p centers in the data using e.g., k-medoid
 - Use random-projection based clustering for large d
- Selective sampling in some cases
 - Greedily pick points from the whole set based on a given criterion

EECS6898 – Large Scale Machine Learning

Approximations

1. Subsample the data

Randomly pick a small number of points p << n

$$y = \sum_{i=1}^{n} \alpha_i k(x, x_i) \approx \sum_{i=1}^{p} \alpha_i k(x, x_i)$$

- Training: O(npd) Testing: O(pd)
- Better sampling for specific applications, e.g., kernel/logistic regression
 - Find p centers in the data using e.g., k-medoid
 - Use random-projection based clustering for large d
- Selective sampling in some cases
 - Greedily pick points from the whole set based on a given criterion

2. Low-rank approximation of kernel matrix

- Use sampling-based methods
- Incomplete Cholesky

3. Sparsification of kernel matrix

Make the kernel matrix sparse by thresholding the entries

Approximations

- 4. Approximate kernel matrix-vector product
 - E.g., using ANN (kd-trees)
- 5. Fast Optimization Methods
 - Many methods proposed for specific techniques e.g., SVM
 - Decomposition methods
 - Block coordinate-descent → slow beyond O(100K) points
 - Stochastic or online methods
- 6. Kernel Approximation
 - Instead of matrix speed-up, approximate kernel function directly

EECS6898 - Large Scale Machine Learning

- Some kernels can be computed fast fairly accurately
 - Fast Gauss Transform: Hermite or Taylor approximation of Gaussian kernels
- Approximate linearization of kernels
 - Linear methods very fast to train and test
 - Possible for certain types of kernels

Kernel Linearization

Approximate linearization possible using empirical kernel map

$$x' = [k(x, x_i), ..., k(x, x_n)]^T$$

• But no gain since it is n-dim vector and requires n kernel computations

Kernel Linearization

Approximate linearization possible using empirical kernel map

$$x' = [k(x, x_i), ..., k(x, x_n)]^T$$

• But no gain since it is n-dim vector and requires n kernel computations

Can we approximate the feature map with a low-dim vector?

Kernel Linearization
$$k(x, y) = \Phi(x)^T \Phi(y) \approx z(x)^T \underbrace{z(y)}_{\in \Re^D, D << n}$$

Kernel Linearization

Approximate linearization possible using empirical kernel map

$$x' = [k(x, x_i), ..., k(x, x_n)]^T$$

• But no gain since it is n-dim vector and requires n kernel computations

Can we approximate the feature map with a low-dim vector?

Kernel Linearization
$$k(x, y) = \Phi(x)^T \Phi(y) \approx z(x)^T \underbrace{z(y)}_{\in \Re^D, D << n}$$

Suppose the kernel is shift-invariant:

$$k(x, y) = k'(x - y) = k'(\Delta)$$

Gaussian
$$k(x,y) = \exp\{-\|x-y\|_2^2 / 2\sigma^2\}$$

$$k(x,y) = \exp\{-\|x-y\|_1 / \lambda\}$$
 Laplacian
$$k'(\Delta) = \exp\{-\|\Delta\|_2^2 / 2\sigma^2\}$$

$$k'(\Delta) = \exp\{-\|\Delta\|_1 / \lambda\}$$

Random Fourier Features

$$z(x) = [z_j(x)]_{D \times 1}$$

$$z_j(x) = \sqrt{2/D}\cos(\omega_j x + b) \quad \omega_j \sim P(\omega) \quad b \sim U(0, 2\pi)$$

Random Fourier Features

$$z(x) = [z_j(x)]_{D \times 1}$$

$$z_j(x) = \sqrt{2/D}\cos(\omega_j x + b) \quad \omega_j \sim P(\omega) \quad b \sim U(0, 2\pi)$$

Gaussian $\omega_{jk} \sim N(0,1)$

Laplacian $\omega_{jk} \sim Cauchy(0,1)$

Main Theory

A continuous shift-invariant kernel is positive definite if and only if $k'(\Delta)$ is the Fourier transform of a non-negative measure. [Bochner]

$$k'(x-y) = \int p(\omega)e^{j\omega^{T}(x-y)}d\omega$$

 $p(\omega)$ - Inverse Fourier Transform of $k'(\Delta)$

Main Theory

A continuous shift-invariant kernel is positive definite if and only if $k'(\Delta)$ is the Fourier transform of a non-negative measure. [Bochner]

$$k'(x-y) = \int p(\omega)e^{j\omega^{T}(x-y)}d\omega$$

- since k'(.) and p(.) both are real, use real part of complex exponentials

$$k(x,y) = E[z_{\omega}(x).z_{\omega}(y)]$$
 if $z_{\omega}(x) = \sqrt{2}\cos(\omega^{T}x + b)$

- Reduce variance by concatenating many (D) dimensions in $z_{\omega}(.)$

$$z_{\omega}(x)^{T} z_{\omega}(y) = (1/D) \sum_{j=1}^{D} z_{\omega_{j}}(x) z_{\omega_{j}}(y) \quad z_{\omega_{j}}(x) = \sqrt{(2/D)} \cos(\omega^{T} x + b)$$

Main Theory

A continuous shift-invariant kernel is positive definite if and only if $k'(\Delta)$ is the Fourier transform of a non-negative measure. [Bochner]

$$k'(x-y) = \int p(\omega)e^{j\omega^{T}(x-y)}d\omega$$

- since k'(.) and p(.) both are real, use real part of complex exponentials

$$k(x,y) = E[z_{\omega}(x).z_{\omega}(y)]$$
 if $z_{\omega}(x) = \sqrt{2}\cos(\omega^{T}x + b)$

- Reduce variance by concatenating many (D) dimensions in $z_{\omega}(.)$

$$z_{\omega}(x)^{T} z_{\omega}(y) = (1/D) \sum_{j=1}^{D} z_{\omega_{j}}(x) z_{\omega_{j}}(y) \quad z_{\omega_{j}}(x) = \sqrt{(2/D)} \cos(\omega^{T} x + b)$$

Hoeffding Bound
$$\Pr(\left|z(x)^T z(y) - k(x, y)\right| \ge \varepsilon) \le 2\exp(-D\varepsilon^2/4)$$

Example Results

Regression and Classification errors

Training
$$\min_{w} \left(\left\| Z^T w - y \right\|_2^2 + \lambda \left\| w \right\|_2^2 \right)$$
 Testing $f(x) = w^T z(x)$

Dataset	Fourier+LS	CVM	Exact SVM
CPU	3.6%	5.5%	11%
regression	20 secs	51 secs	31 secs
6500 instances 21 dims	D = 300		ASVM
Census	5%	8.8%	9%
regression	36 secs	7.5 mins	13 mins
18,000 instances 119 dims	D = 500		SVMTorch
Adult	14.9%	14.8%	15.1%
classification	9 secs	73 mins	7 mins
32,000 instances 123 dims	D = 500		SVM^{light}
Forest Cover	11.6%	2.3%	2.2%
classification	71 mins	7.5 hrs	44 hrs
522,000 instances 54 dims	D = 5000		libSVM
KDDCUP99 (see footnote)	7.3%	6.2% (18%)	8.3%
classification	1.5 min	1.4 secs (20 secs)	< 1 s
4,900,000 instances 127 dims	D = 50		SVM+sampling

EECS6898 - Large Scale Machine Learning

Learning Low Dimensional Features

Instead of randomization, can we learn low-dim features directly?

Key Idea: project (high-dim) implicit features $\Phi(x)$ on D basis vectors

Learning Low Dimensional Features

Instead of randomization, can we learn low-dim features directly?

Key Idea: project (high-dim) implicit features $\Phi(x)$ on D basis vectors

Given a set of basis vectors
$$\{h_i\}_{i=1...D}$$
 $h_i \in \Re^d$ and $\{\Phi(h_i)\}_{i=1...D}$

Low-dim representation using implicit feature space

$$\hat{v}_{x} = \arg\min_{v_{x}} \|\Phi(x) - Hv_{x}\|^{2} \qquad H = [\Phi(h_{1}), ... \Phi(h_{D})]$$
$$= (H^{T}H)^{-1}(H^{T}\Phi(x))$$

Learning Low Dimensional Features

Instead of randomization, can we learn low-dim features directly?

Key Idea: project (high-dim) implicit features $\Phi(x)$ on D basis vectors

Given a set of basis vectors $\{h_i\}_{i=1...D}$ $h_i \in \Re^d$ and $\{\Phi(h_i)\}_{i=1...D}$

Low-dim representation using implicit feature space

$$\hat{v}_{x} = \arg\min_{v_{x}} \|\Phi(x) - Hv_{x}\|^{2} \qquad H = [\Phi(h_{1}), ... \Phi(h_{D})]$$
$$= (H^{T}H)^{-1}(H^{T}\Phi(x))$$

To approximate kernel
$$k(x, y) = \Phi(x)^T \Phi(y) \approx (Hv_x)^T (Hv_y) = v_x^T H^T H v_y$$

$$= (H^T \Phi(x))^T (H^T H)^{-1} (H^T \Phi(y))$$

$$= (k_h(x))^T K_{hh}^{-1} (k_h(y))$$

$$k_h(x) = [k(h_1, x), ...k(h_D, x)]^T$$

$$K_{hh} = [k(h_i, h_j)]_{i,j=1,...,D}$$

$$K_{hh}^{-1} = G^T G$$

Sanjiv Kumar

Learning Low Dimensional Features

Instead of randomization, can we learn low-dim features directly?

Key Idea: project (high-dim) implicit features $\Phi(x)$ on D basis vectors

Given a set of basis vectors $\{h_i\}_{i=1...D}$ $h_i \in \Re^d$ and $\{\Phi(h_i)\}_{i=1...D}$

Low-dim representation using implicit feature space

$$\hat{v}_{x} = \arg\min_{v_{x}} \|\Phi(x) - Hv_{x}\|^{2} \qquad H = [\Phi(h_{1}), ... \Phi(h_{D})]$$
$$= (H^{T}H)^{-1}(H^{T}\Phi(x))$$

To approximate kernel
$$k(x, y) = \Phi(x)^T \Phi(y) \approx (Hv_x)^T (Hv_y) = v_x^T H^T H v_y$$
$$= (H^T \Phi(x))^T (H^T H)^{-1} (H^T \Phi(y))$$

 $=(k_h(x))^T K_{hh}^{-1}(k_h(y))$

Desired linearization

$$z(x) = Gk_h(x)$$

$$k_h(x) = [k(h_1, x), ...k(h_D, x)]^T$$

$$K_{hh} = [k(h_i, h_j)]_{i,j=1,...,D}$$

$$K_{hh}^{-1} = G^T G$$

How to get h's?

Learning Low Dimensional Features

Learning the basis vectors using a few sampled points

Use Stochastic Gradient Descent to obtain $\{h_i\}$

EECS6898 - Large Scale Machine Learning

Experiment

d = 1000, 256-class classification

Learned Randomized

Algorithms	BOW-Linear	BOW-Gaussian	EMK-Fourier	EMK-CKSVD
15 training	17.4 ± 0.7	19.1 ± 0.8	22.6 ± 0.7	23.2 ± 0.6
30 training	22.7 ± 0.4	24.4 ± 0.6	30.1 ± 0.5	30.5 ± 0.4
45 training	26.9 ± 0.3	28.3 ± 0.5	34.1 ± 0.5	34.4 ± 0.4
60 training	29.3 ± 0.6	30.9 ± 0.4	37.4 ± 0.6	37.6 ± 0.5

D = 1000

Additive homogeneous kernels for $x, y \in \mathbb{R}^d$ defined as.

$$k(x,y) = \sum_{j=1}^{d} k_d(x_j, y_j) \quad \text{suppose } x_j, y_j \ge 0, \ \forall \ j$$
$$k_d(ca, cb) = ck_d(a, b) \qquad a, b \text{ are scalars}$$

- Intersection kernel $k(x, y) = \sum_{j=1}^{d} \min(x_j, y_j)$
- Bhattacharya (Hellinger) kernel $k(x, y) = \sum_{i=1}^{d} \sqrt{x_i y_i}$

EECS6898 - Large Scale Machine Learning

- Chi-square kernel $k(x,y) = \sum_{j=1}^{d} x_j y_j / (x_j + y_j)$

Additive homogeneous kernels for $x, y \in \Re^d$ defined as.

$$k(x,y) = \sum_{j=1}^{d} k_d(x_j, y_j) \quad \text{suppose } x_j, y_j \ge 0, \ \forall \ j$$
$$k_d(ca, cb) = ck_d(a, b) \qquad a, b \text{ are scalars}$$

- Intersection kernel $k(x, y) = \sum_{j=1}^{d} \min(x_j, y_j)$
- Bhattacharya (Hellinger) kernel $k(x, y) = \sum_{i=1}^{d} \sqrt{x_i y_i}$
- Chi-square kernel $k(x,y) = \sum_{i=1}^{d} x_i y_i / (x_i + y_i)$

Signature of a homogeneous kernel

$$k_d(a,b) = k_d(\sqrt{ab}\sqrt{\frac{a}{b}}, \sqrt{ab}\sqrt{\frac{b}{a}}) = \sqrt{ab}\,k_d(\sqrt{\frac{a}{b}}, \sqrt{\frac{b}{a}}) = \sqrt{ab}\,\mathbf{K}(\log\frac{b}{a})$$

Kernel Signature
$$\mathbf{K}(\omega) = k_d (e^{-\omega/2}, e^{\omega/2}), \ \omega = \log \frac{b}{a}$$

Signature for homogeneous kernels can be written as Fourier Transform,

$$\mathbf{K}(\omega) = \int_{-\infty}^{\infty} e^{-i\lambda\omega} \kappa(\lambda) d\lambda$$

$$k_d(a,b) = \Psi(a)^T \Psi(b) = \int_{-\infty}^{+\infty} [\Psi(a)]_{\lambda}^* [\Psi(b)]_{\lambda} d\lambda \qquad k_d(a,b) = \sqrt{ab} \operatorname{\mathbf{K}}(\log \frac{b}{a})$$

Signature for homogeneous kernels can be written as Fourier Transform,

$$\mathbf{K}(\omega) = \int_{-\infty}^{\infty} e^{-i\lambda\omega} \kappa(\lambda) d\lambda$$

$$k_d(a,b) = \Psi(a)^T \Psi(b) = \int_{-\infty}^{+\infty} [\Psi(a)]_{\lambda}^* [\Psi(b)]_{\lambda} d\lambda \qquad k_d(a,b) = \sqrt{ab} \operatorname{K}(\log \frac{b}{a})$$

infinite dimensional vector $[\Psi(a)]_{\lambda} = e^{-i\lambda \log a} \sqrt{a\kappa(\lambda)}$

inverse Fourier Transform $\kappa(\lambda) = (1/2\pi) \int_{-\infty}^{\infty} e^{i\lambda\omega} \mathbf{K}(\omega) d\omega$

Signature for homogeneous kernels can be written as Fourier Transform,

$$\mathbf{K}(\omega) = \int_{-\infty}^{\infty} e^{-i\lambda\omega} \kappa(\lambda) d\lambda$$

$$k_d(a,b) = \Psi(a)^T \Psi(b) = \int_{-\infty}^{+\infty} [\Psi(a)]_{\lambda}^* [\Psi(b)]_{\lambda} d\lambda \qquad k_d(a,b) = \sqrt{ab} \operatorname{K}(\log \frac{b}{a})$$

infinite dimensional vector
$$[\Psi(a)]_{\lambda} = e^{-i\lambda \log a} \sqrt{a\kappa(\lambda)}$$

inverse Fourier Transform
$$\kappa(\lambda) = (1/2\pi) \int_{-\infty}^{\infty} e^{i\lambda\omega} \mathbf{K}(\omega) d\omega$$

can be computed explicitly for many kernels

How to get finite linear map?

Use finite number of samples with a certain period – determined empirically

Sanjiv Kumar

Example Kernels

kernel	k(x, y)	$\mathcal{K}(\omega)$	$\kappa(\lambda)$
Hellinger's	\sqrt{xy}	1	$\delta(\lambda)$
χ^2	$2\frac{xy}{x+y}$	$\operatorname{sech}(\omega/2)$	$\operatorname{sech}(\pi\lambda)$
intersection	$\min\{x,y\}$	$e^{- \omega /2}$	$\frac{2}{\pi} \frac{1}{1 + 4\lambda^2}$

EECS6898 - Large Scale Machine Learning

Experiment

n = 1500, d = 1200, 101-class classification

		χ^2 kernel		inters. kernel		
mthd.	dm.	acc.	time	acc.	time	
kernel	_	64.2 ± 1.7	388.4 ± 8.7	$62.2{\pm}1.8$	354.7 ± 24.4	
appr.	1	$62.4{\pm}1.6$	20.7 ± 0.3	$62.0{\pm}1.4$	22.9 ± 0.7	
appr.	3	$64.2{\scriptstyle\pm1.5}$	$58.4{\pm}7.2$	$63.9{\pm}1.2$	$66.5{\pm}2.3$	
appr.	5	$64.0{\pm}1.6$	$101.3{\pm}0.7$	64.0 ± 1.7	$105.8 {\pm} 6.5$	

EECS6898 - Large Scale Machine Learning

Linearization of Intersection Kernel

Intersection kernel

$$k(x,y) = \sum_{j=1}^{d} \min(x_j, y_j) \qquad x_j, y_j \in [0,1]$$
normalized feature vectors

$$\min(x_j, y_j) \approx \Phi(x_j)^T \Phi(y_j)$$

$$\Phi(a) = \sqrt{1/N} \underbrace{U(Na)}_{\text{pseudo-binary representation}}$$

Example
$$N = 10, a = 0.25, U(Na)$$

 $U(Na) = U(2.5) = [1,1,0.5,0,0,...,0]^T$

For high accuracy, N should be large

Issue: Original dimension gets blown by a factor of N

Experiment

		15 examples		
Encoding	Training Algorithm	Training Time(s)	Accuracy(%)	
identity	LIBLINEAR	18.57 (0.87)	41.19 (0.94)	
identity	LIBSVM (int kernel)	844.13 (2.10)	50.15 (0.61)	
snow= ϕ_1	LIBLINEAR	45.22 (1.17)	46.02 (0.58)	
ϕ_2	LIBLINEAR	42.31 (1.43)	48.70 (0.61)	
ϕ_2	PWLSGD	238.98 (2.49)	49.89 (0.45)	

EECS6898 – Large Scale Machine Learning

SVM prediction
$$f(x) = \text{sgn}[\sum_{i=1}^{m} \alpha_i y_i k(x, x_i) + \alpha_0]$$
 sum is over m support vectors $O(md)$

Intersection kernel
$$k(x, v) = \sum_{j=1}^{d} \min(x(j), v(j))$$

SVM prediction
$$f(x) = \text{sgn}[\sum_{i=1}^{m} \alpha_i y_i k(x, x_i) + \alpha_0]$$
 sum is over m support vectors $O(md)$

Intersection kernel
$$k(x, v) = \sum_{j=1}^{d} \min(x(j), v(j))$$

$$f(x) = \text{sgn}[\sum_{i=1}^{m} \alpha_i y_i \sum_{j=1}^{d} \min(x(j), x_i(j)) + \alpha_0]$$

$$f(x) = \operatorname{sgn}\left[\sum_{i=1}^{d} \sum_{i=1}^{m} \alpha_i y_i \min(x(j), x_i(j)) + \alpha_0\right] \quad \text{swap summation}$$

SVM prediction
$$f(x) = \text{sgn}[\sum_{i=1}^{m} \alpha_i y_i k(x, x_i) + \alpha_0]$$
 sum is over m support vectors $O(md)$

Intersection kernel
$$k(x, v) = \sum_{j=1}^{d} \min(x(j), v(j))$$

$$f(x) = \text{sgn}[\sum_{i=1}^{m} \alpha_i y_i \sum_{j=1}^{d} \min(x(j), x_i(j)) + \alpha_0]$$

$$f(x) = \operatorname{sgn}\left[\sum_{j=1}^{d} \sum_{i=1}^{m} \alpha_i y_i \min(x(j), x_i(j)) + \alpha_0\right] \quad \text{swap summation}$$

$$f_j(x(j))$$

$$f_j(s) = \sum_{i=1}^m \alpha_i y_i \min(s, x_i(j))$$

SVM prediction
$$f(x) = \text{sgn}[\sum_{i=1}^{m} \alpha_i y_i k(x, x_i) + \alpha_0]$$
 sum is over m support vectors $O(md)$

Intersection kernel
$$k(x, v) = \sum_{j=1}^{d} \min(x(j), v(j))$$

$$f(x) = \text{sgn}[\sum_{i=1}^{m} \alpha_i y_i \sum_{j=1}^{d} \min(x(j), x_i(j)) + \alpha_0]$$

$$f(x) = \operatorname{sgn}[\sum_{j=1}^{d} \sum_{i=1}^{m} \alpha_i y_i \min(x(j), x_i(j)) + \alpha_0] \quad \text{swap summation}$$

$$f_j(x(j))$$

$$f_j(s) = \sum_{i=1}^m \alpha_i y_i \min(s, x_i(j))$$

sort the jth dim of all support vectors

$$\frac{\min(s, \bar{x}_i(j)) = \bar{x}_i(j)}{\bar{x}_1(j)} \qquad \frac{\min(s, \bar{x}_i(j)) = s}{\bar{x}_m(j)} \qquad \bar{x}_m(j)$$

Suppose r is the largest integer such that $\overline{x}_r(j) \le s$

$$f_{j}(s) = \sum_{i=1}^{m} \overline{\alpha}_{i} \overline{y}_{i} \min(s, \overline{x}_{i}(j))$$

$$= \sum_{1 \le i \le r} \overline{\alpha}_{i} \overline{y}_{i} \overline{x}_{i}(j) + s \sum_{r < i \le m} \overline{\alpha}_{i} \overline{y}_{i} = A(r) + sB(r)$$

Suppose r is the largest integer such that $\overline{x}_r(j) \le s$

$$f_{j}(s) = \sum_{i=1}^{m} \overline{\alpha}_{i} \overline{y}_{i} \min(s, \overline{x}_{i}(j))$$

$$= \sum_{1 \le i \le r} \overline{\alpha}_{i} \overline{y}_{i} \overline{x}_{i}(j) + s \sum_{r < i \le m} \overline{\alpha}_{i} \overline{y}_{i} = A(r) + sB(r)$$

Simple procedure:

Sanjiv Kumar

- 1. Sort each dimension of m support vectors can be done offline
- 2. For each test point, find the location of its jth-dim value in the jth-sorted list using binary search $O(\log m)$
- 3. Keep cumulative sum of $\sum_{i=1}^{r} \overline{\alpha}_{i} \overline{y}_{i} \overline{x}_{i}(j)$ and $\sum_{i=r+1}^{m} \overline{\alpha}_{i} \overline{y}_{i}$ 2*m* extra storage

Time complexity $O(d \log m)$ instead of O(d m) Exact computation!

Approximate Prediction

Key Idea: Instead of keeping m values of A(r) and B(r), store values at much reduced (equidistant) locations and make piecewise linear or piecewise constant approximation

Traditional function approximation: Can be done for any univariate function

Time complexity O(d) instead of O(d m) Approximate computation!

EECS6898 - Large Scale Machine Learning

Experiment

	Model parameters		SVM kernel type		fast IKSVMs		
Dataset	#SVs	#features	linear	intersection	binary search	piecewise-const	piecewise-lin
INRIA Ped	3363	1360	0.07 ± 0.00	659.1±1.92	2.57 ± 0.03	$0.34{\pm}0.01$	0.43 ± 0.01
DC Ped	5474 ± 395	656	0.03 ± 0.00	459.1±31.3	1.43 ± 0.02	$0.18{\pm}0.01$	$0.22{\pm}0.00$
Caltech 101	175±46	1360	0.07 ± 0.01	24.77±1.22	1.63 ± 0.12	$0.33{\pm}0.03$	$0.46 {\pm} 0.03$

m

d

100 knots

30 knots

Exact methods

References

- 1. G. Wahba, Spline Models for Observational Data. SIAM, 1990.
- 2. B. Boser, I. Guyon, and V. Vapnik, "A training algorithm for optimal margin classifiers," Computational Learning Theory, 1992.
- 3. C. Cortes and V. Vapnik, "Support Vector Networks," Machine Learning, 1995.
- 4. B. Scholkopf and A. Smola, "Learning with Kernels", MIT Press, Cambridge, MA, 2002.
- 5. M. Hein and O. Bousquet, "Hilbertian Metrics and Positive Definite Kernels on Probability Measures," AISTAT, 2005.
- 6. Large Scale Kernel Machines, Edited by L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Neural Information Processing Series, MIT Press, Cambridge, MA., 2007.
- 7. A. Rahimi & B. Recht, "Random Features for Large-Scale Kernel Machines," NIPS, 2007.
- 8. S. Maji, A. Berg & J. Malik, "Classification using Intersection Kernel Support Vector Machines is Efficient", CVPR 2008.
- 9. S. Maji & A. Berg, "Max-Margin Additive Classifiers for Detection", ICCV, 2009.
- 10. L. Bo & C. Sminchisescu, "Efficient Match Kernels between Sets of Features for Visual Recognition," NIPS 2009.
- 11. A. Vedaldi & A. Zisserman, "Efficient Additive Kernels via Explicit Feature Maps", CVPR 2010.