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Brief Intro
About Me

– PhD (Robotics Institute, School of Computer Science, CMU).
• Discriminative Graphical Models for image understanding

– Research Scientist at Google NY – 15th St & 8th Ave
– Large scale machine learning and computer vision
– Very large scale matrix decompositions and nearest neighbor search

About You
– Background in ML
– Machine learning application area (e.g., vision/speech/biology/finance)

Sanjiv

 

Kumar            9/8/2010 EECS6898 – Large Scale Machine Learning 2



Sanjiv

 

Kumar            9/8/2010 EECS6898 – Large Scale Machine Learning 3

Machine Learning
Given a few examples (training data), make a machine learn how to 

predict on new samples, or discover patterns in data

Statistics + Optimization + Computer Science

Past
– Significant advances in last several decades but focus on relatively 

small-scale applications – academic publications on UCI datasets!
– Large-scale kernel methods book (1998) has largest experiment with 

~50K training points! 

Current
– Landscape of machine learning applications has changed dramatically 

in last decade – Web, Finance, Biology,…
– “Throw more machines at it” is not always a solution
– Need to revisit traditional algorithms and models
– A strong model with approximate solution Vs a weaker model with exact 

solution?
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Machine Learning
Traditional CS view: Polynomial time algorithm, Wow!

Large-scale learning: Sometimes even O(n) is bad!

Need a shift in the way we think about developing or applying machine 
learning techniques

Simple example: Matrix multiplication

Our Goal: Add another dimension in the study of machine learning 
techniques: scalability

n

n

= )!( 3nO×
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What is “large scale”
 

?
Many definitions

– If data cannot fit in RAM
– Algorithm dependent – If a technique cannot be applied on a single 

machine in ‘reasonable’ time (e.g., for linear classifiers O(100K) is 
medium size but for kernel classifiers, it is large)

The size of datasets can be so huge that even linear methods may not 
be enough
– Finding nearest neighbors from a database of O(B+) items (for retrieval, 

kNN classification, density estimation, graph construction ...), is very 
expensive

The desired models (i.e., classes) and parameters may be huge
– Image categorization with O(10M) classes 

Data may be arriving on-line as streams at a rate higher than the 
learning rate of an algorithm
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Large-Scale Data
Web applications have practically evolved as the largest consumers of 

machine learning
– Documents and blogs
– User reviews
– Social networks 
– Images and videos
– Imaging every street / Creating Maps
– Scanned books

Other Sources
– Biology  (Genes data)
– Finance (fraud-detection, credit approval, time-series data)
– Astronomy
– Smart digital homes (continuous health records of a person)



Image/Video Search

– O(B+) images on the web and photo sharing sites (picasa, flicker…) 
– Large scale indexing and retrieval  (meta-data/content)
– Content-based automatic annotation: O(10M) classes ?
– Object/event/location recognition
– YouTube - more than 20 hours of video uploaded every minute

• Even real-time algorithms are not sufficient!
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Earth / Maps / StreetView

Make a single gigantic seamless image of 149 
million Sq Km land area !

– Understanding roads, buildings, etc. in the scene
– Estimate green cover in a city 
– Face/Car detection in street images
– Identify buildings, businesses,…

Map all the streets 
in the world !
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Digital Library/Book Search

Want to scan tens of millions of books !

– Document layout understanding 
– Text-image-table separation 
– Optical Character Recognition in hundreds of languages
– Translation
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Shopping/Product-Search

– O(M) products, O(B) reviews
– Sentiment Analysis
– Product recommendation for O(100M) users …
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Sequence Data
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Machine Translation

Speech Recognition Stock Prediction



Sequence Data

– Hundreds of languages
– Millions of words
– Huge number of models
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Graphical Data –
 

Social Networks

– About 500M users
– Information propagation
– Recommendation systems
– Effect of hubs
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Human Cell Lineage Tree

– History of body cells since conception
– Leaves are current body cells
– O(100T) leaves and O(100T) branches for one person
– About 100K times bigger than Human Genome
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Streaming Data

– News/Blogs/Social Networks
– Data arrives at a rate faster than we can learn from it
– Data distribution is usually not fixed !
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Massive Data –
 

Blessing or Liability?

Blessing
– Traditional theoretical analysis for many algorithms in statistics and 

machine learning suggest better learning as the training size increases 
(e.g., histogram is a very good approximation of true data density)

– Even simple techniques such as kNN can yield optimal results
– Stronger contextual features can be used without worrying about 

sparsity (e.g., n-grams with bigger n

 

for sequence data)

Liability
– How to handle huge amounts of data for training? 
– After a certain limit, does more data matter?
– Much of the data is unlabeled?
– Usually very noisy data (especially from the Web, e.g., image search)
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Things to worry about
Training time

– Usually offline but incremental learning for fast arriving data

Memory requirement
– 10 M books * 300 pages * 10 MB/page =  30,000 TB
– Loading time may overwhelm training
– Need to be creative about data storage – lossless compression

Test time
– Yes, that can depend on the training data size! (kernel methods)

Trivial Solutions
– Subsample the data, run standard methods

• accuracy may suffer, does not address large-scale modeling issues (e.g., 
many classes)

– Simply run through multiple machines
• Map-reduce style or message-passing style but algorithms may not 

parallelizable 

Good baseline !



Distributed computing architecture on a cluster of machines
– Data is chunked and passed to multiple machines

Advantages
– Massively parallel thousands of nodes with generic hardware
– Fault-tolerant

Laws of diminishing returns
– High network costs
– Probability of at least one machine failing becomes high
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Hardware based solutions –
 

MapReduce

mappers

reducer(s)

Data(keyin ,valin )i

(keyout ,valout )i

Average color histogram from 
a billion images
(keyin ,valin )i

 

= (image-id, pixel-val)
(keyout ,valout )i

 

= (‘0’, 3D-hist)
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Hardware based solutions –
 

GPUs

– Based on CUDA parallel computing architecture from Nvidia
– Emphasis on executing many concurrent threads slowly instead of one 

thread fast as in CPUs

Advantages
– Massively parallel
– Hundreds of cores, millions of threads
– High throughput

Limitations
– May not be applicable for all tasks
– Generic hardware (CPUs) closing the gap

Applications
– Used successfully for many ML methods, e.g., Deep Networks (both 

Neural as well as Belief).
– Training cut down from weeks to hours 
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Data labeling Tools

Inexpensive, fast, can control quality!



Major Learning Paradigms
Supervised Learning

– Regression (to predict a continuous output)
– Classification (to predict a class or category)
– Ranking (to predict rank ordering)

Unsupervised Learning
– Clustering 
– Density Estimation
– Dimensionality Reduction
– Reconstruction - Sparse Coding

Semi-supervised Learning
– Graph propagation
– Manifold regularization
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Next: Explore popular techniques from these paradigms to check their 
scalability and what tools are needed to make them scalable.
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Regression

Expected age of the most likely viewer of this video?



Given: A labeled training set,

Goal: Learn a predictive function
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Regression –
 

Linear Regression
niii yx ...1},{ = ℜ∈ℜ∈ i

d
i yx ,

0);( wxwwxf T +=

wwλyxwwL T

i
ii

T +−= ∑ 2)()(

Absorbing        in     and augmenting          with extra 1 0w w sxi '

wwλwXywXy TTTT +−−= )()(

XyIλXXw T 1)(ˆ −+=

regularizersquared loss
),(~ 2IσxwΝy i

T
i ),0(~ 1IΝw −λ

)100(~),100(~ KOdMOn

x
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Given: A labeled training set,

Goal: Learn a predictive function
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Regression –
 

Linear Regression
niii yx ...1},{ = ℜ∈ℜ∈ i

d
i yx ,

0);( wxwwxf T +=

XyIXXw T 1)(ˆ −+= λ

)100(~),100(~ KOdMOn

)( 2ndO

)( 3dO

Matrix multiplication is slower than inversion!
Matrix inversion is intractable!
First-order linear solvers            ?bAw =

)100(~),100(~ KOdMOn

But this is just linear !



Given: A labeled training set,

Goal: Learn a predictive function                        
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Regression –
 

Kernel Ridge Regression
niii yx ...1},{ = ℜ∈ℜ∈ i

d
i yx ,

x

y

),();( 1 i
n
i i xxkααxf ∑ == Ignore bias for now



Given: A labeled training set,

Goal: Learn a predictive function                        
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niii yx ...1},{ = ℜ∈ℜ∈ i
d

i yx ,

yIλKα 1)(ˆ −+=

)( 2dnO

)( 3nO

is a measure of similarity between any two points. For mercer kernels: ),( yxk
)().(),( yxyxk ΦΦ=

Gaussian kernel: 

polynomial kernel:  

)/exp(),( 22 σyxyxk −−=
0).(),( dbyxyxk +=

)100(~),100(~ KOdMOn

Number of parameters 
same as number of points!

K ~ 40,000 TB!

Low-rank approximations
Building K and its inversion is intractable!

x

y

),();( 1 i
n
i i xxkααxf ∑ ==

Regression –
 

Kernel Ridge Regression



Given: A labeled training set,

Goal: Learn a predictive function                        
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yIK 1)(ˆ −+= λα

)( 3nO

Training

Testing ),()( 1 i
n
i i xxkαxf ∑ ==

Too slow for most practical purposes

Need to induce sparsity in     - L1 prior

Optimization not as clean as for L2 but not very difficult

Grows linearly with n

α

λOptimal choice of hyperparameters (   )?

Can we approximate the kernel problem with a linear one?

Sparse methods

niii yx ...1},{ = ℜ∈ℜ∈ i
d

i yx ,

Number of parameters 
same as number of points!

),();( 1 i
n
i i xxkααxf ∑ ==

Regression –
 

Kernel Ridge Regression
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Classification

Is this email spam/fraud?



Given a labeled training set,                      
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Classification –
 

Support Vector Machine
niii yx ...1},{ = }1,1{, −∈ℜ∈ i

d
i yx

)sgn();( 0wxwwxf T +=
w

10 =+ wxwT

10 −=+ wxwT

00 =+ wxwT

wwT/2

wwTmin

1)( 0 ≥+ wxwy i
T

is.t.

Want to learn
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Given a labeled training set,                      
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Classification –
 

Support Vector Machine
niii yx ...1},{ = }1,1{, −∈ℜ∈ i

d
i yx

)sgn();( 0wxwwxf T +=
w

10 =+ wxwT

10 −=+ wxwT

00 =+ wxwT
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i
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s.t.

Want to learn

i∀



Given a labeled training set,                      
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Classification –
 

Support Vector Machine
niii yx ...1},{ = }1,1{, −∈ℜ∈ i

d
i yx

)sgn();( 0wxwwxf T +=
w

10 =+ wxwT

10 −=+ wxwT

00 =+ wxwT

wwT/2

Using Lagrange multipliers (with KKT conditions)

jj
T

ij
n
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n

i
i αxxyyαα )(max

,1
∑∑ −

=
0=∑

i
ii yα

Cαi ≤≤0

∑= i iii xyαw

wwTmin ∑+
i

iξC

1)( 0 ≥+ wxwy i
T

i iξ−

0≥iξ

Dual

Primal

s.t.

Want to learn

Testing O(d) 

Fast training in O(n)
cutting-plane
stachastic gradient descent
quasi-Newton
coordinate descent

i∀



Given a labeled training set,                      
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Classification –
 

Kernel SVM

niii yx ...1},{ = }1,1{, −∈ℜ∈ i
d

i yx

∑ Φ= i iii xyαw )(

))(sgn();( 0wxwwxf T +Φ=

Cannot solve in primal 
since Φ(x) is unknown!

)().(),( yxyxk ΦΦ=



Given a labeled training set,                      
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Classification –
 

Kernel SVM

niii yx ...1},{ = }1,1{, −∈ℜ∈ i
d

i yx

Dual

∑ Φ= i iii xyαw )(

αKαα TT −1max

0=yαT

Cαi ≤≤0

)(~)( 32 nOnO

)()(# nOO sv ≈Testing 

Training 

Low-rank approximation of K

Linear approximation of K

)().(),( yxyxk ΦΦ=))(sgn();( 0wxwwxf T +Φ=

Cannot solve in primal 
since Φ(x) is unknown!

)),(sgn();( 0αxxkyααxf ii
i

i += ∑
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Ranking
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Ranking
A simple margin-based formulation

2
),,( )1,0max(min F

T
xxq

T WλWxqWxq ++− −+∑
−+

xWqxqf T=),( dxq ℜ∈,

Given a query q

 

and a database X

Given many (query, relevant, irrelevant) triplets
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Ranking
A simple margin-based formulation

2
),,( )1,0max(min F

T
xxq

T WλWxqWxq ++− −+∑
−+

xWqxqf T=),( dxq ℜ∈,

Given a query q

 

and a database X

Given many (query, relevant, irrelevant) triplets

O(n3) triplets for dataset of size n

O(d2) complexity –

 

large d in many applications

Low-rank approximation or sparse W

First order methods very successful

dd ×
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Distance Metric Learning

Given a large collection of items and associated 
features, find a similarity metric!

×
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Distance Metric Learning
Many applications

– kNN-classification, clustering, density estimation, graph construction

niix ...1}{ =

[Weinberger K. et al.]

)(min ),( jiSxx A xxd
ji

−∑ ∈

1)()( ≥−−− jiAkiA xxdxxd ),,( kji∀

0fA

Semi-Definite Programming (SDP): ~O(d3)
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Unsupervised –
 

Kernel Density Estimation

Given an unlabeled training set,                             learn a 
nonparametric density function
– To compute data likelihood (e.g. for Bayesian prediction)
– For large datasets, nonparametric density can approximate true density 

very well

niix ...1}{ =
)(xp

d
ix ℜ∈
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Unsupervised –
 

Kernel Density Estimation

Given a unlabeled training set,               learn a nonparametric density 
function

niix ...1}{ =
)(xp

∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

i

i
h

xxk
hn

xp
1

11)(

),( 2IσxΝ i

- Too expensive for large n
- Many kernels have rapid (exponential) fall off
- Nearest Neighbors sufficient but expensive for large n

Large-scale Approximate NN search

- Similar arguments for training parametric models e.g., Gaussian Mixture Models 
with large number of components! 
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Dimensionality Reduction / Clustering

– Each face represented by 10K-dim vector (i.e., pixels) 
– Faces are structured objects so dim reduction is possible
– Extract millions of face images from Web
– Can we also find meaningful clusters?
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Dimensionality Reduction
Linear dimensionality reduction

– Principal Component Analysis (PCA), Multidimensional Scaling (MDS)
– Need to compute singular vectors of        data matrix X 
– Randomized methods: randomly sample a few directions from a fixed 

distribution for projections – with high probability preserves the pairwise 
distance given enough projections

Nonlinear dimensionality reduction (manifold learning)

nd × )( 2ndO



Minimize weighted distances between neighbors

1. Find t

 

nearest neighbors for each image : O(n2)

2. Compute weight matrix W:

Laplacian
 

Eigenmaps/Spectral Clustering

⎪⎩

⎪
⎨
⎧ −−=

otherwise0

~ if)/exp( 22
jiσxxW ji

ij
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Minimize weighted distances between neighbors

1. Find t

 

nearest neighbors for each image : O(n2)

2. Compute weight matrix W:

Laplacian
 

Eigenmaps/Spectral Clustering

⎪⎩

⎪
⎨
⎧ −−=

otherwise0

~ if)/exp( 22
jiσxxW ji

ij

Approximate Nearest Neighbors

For 10M points                       
– 155 yrs on one machine         
– 10 weeks on 1000 machines

Sanjiv

 

Kumar            9/8/2010 EECS6898 – Large Scale Machine Learning 44



Minimize weighted distances between neighbors

1. Find t

 

nearest neighbors for each image : O(n2)

2. Compute weight matrix W:

3. Compute normalized Laplacian

4. Optimal k

 

reduced dims: Uk

Laplacian
 

Eigenmaps/Spectral Clustering

Fast matrix-vector product based methods for sparse matrix

⎪⎩

⎪
⎨
⎧ −−=

otherwise0

~ if)/exp( 22
jiσxxW ji

ij

2/12/1 −−−= WDDIG
∑= j ijii WD

Approximate Nearest Neighbors
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Bottom eigenvectors of G, ignoring last
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Semisupervised

– Goal: Gender Classification
– A few labeled faces are available but many unlabeled

Female

Male
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Semisupervised
 

–
 

Graph Propagation

Given a labeled set,                                            
and an unlabeled set

Want to find the labels for unlabeled points

Steps:
1. Build a sparse neighborhood graph using all the points
2. Construct the symmetric weight matrix W
3. Compute a stochastic transition matrix T by normalizing columns of W

liii yx ...1)},{( = },...,1{, Cyx i
d

i ∈ℜ∈
ulliix ++= ,...,1}{

ulliiy ++= ,...,1}{

Intuition: Neighboring points have similar labels

luluuu YTTIY 1)( −−=
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Semisupervised
 

–
 

Graph Propagation

Given a labeled set,                                            
and an unlabeled set

Want to find the labels for unlabeled points

Steps:
1. Build a sparse neighborhood graph using all the points
2. Construct the symmetric weight matrix W
3. Compute a stochastic transition matrix T by normalizing columns of W

liii yx ...1)},{( = },...,1{, Cyx i
d

i ∈ℜ∈
ulliix ++= ,...,1}{

ulliiy ++= ,...,1}{

Intuition: Neighboring points have similar labels

luluuu YTTIY 1)( −−=

nn× sparse

Manifold regularization: Loss over labeled pts and smoothness of 
labels over all the points  Complexity similar to manifold learning
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Topics
Randomized Algorithms 

Matrix Approximations I (low-rank approximation, decomposition)

Matrix Approximations II (sparse matrices, matrix completion)

Approximate Nearest Neighbor Search I (trees)

Approximate Nearest Neighbor Search II (hashes)

Fast Optimization (first-order methods)

Kernel Methods I (fast training)

Kernel Methods II (fast testing)

Dimensionality Reduction (linear and nonlinear methods)

Sparse Methods/Streaming (sparse coding...)
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Course Overview
13 classes, Tuesdays 12:35 – 2:25 pm

TA: Jun Wang / Junfeng He 

Office hours: Tuesdays 2:25 pm – 3:25 pm (email: sanjivk@google.com)

Course Website: www.sanjivk.com/EECS6898

Evaluation
– Three assignments, 20% x 3, No midterm
– One final project (~6 weeks long), 40%
– Final based on project presentation and report

Focus on algorithms and tools that make large-scale learning possible!
– Can be applied to many existing machine learning algorithms
– Practical performance and utility
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