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Curse of Dimensionality

Many learning techniques scale poorly with data dimensionality ()

— Density estimation

» For example, Gaussian Mixture Models (GMM) - need to estimate covariance
matrices O(dz)

— Nearest Neighbor Search O(nd)
» Also, performance of trees and hashes suffers with high dimensionality

— Optimization techniques
« First order methods scale O(4) while second order 0(d?)

— Clustering, classification, regression,...
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Curse of Dimensionality

Many learning techniques scale poorly with data dimensionality (d)

— Density estimation

» For example, Gaussian Mixture Models (GMM) - need to estimate covariance
matrices O(dz)

— Nearest Neighbor Search O(nd)
» Also, performance of trees and hashes suffers with high dimensionality

— Optimization techniques
« First order methods scale O(4) while second order 0(d?)

— Clustering, classification, regression,...
Data Visualization — hard to do in high-dimensional spaces

Dimensionality Reduction

— Key Idea: Data dimensions in input space may be statistically dependent

» possible to retain most of the information in input space in a lower dimensional
space
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Dimensionality Reduction

50 x 50 pixel
faces

50 x 50 pixel
random images

Space of face images significantly smaller than 2562°%

Want to recover the underlying low-dimensional space !
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Dimensionality Reduction

Linear Techniques
— PCA, Metric MDS, Randomized projections
— Assume data lies in a subspace
— Work well in practice in many cases
— Can be a poor approximation for some data

Nonlinear Techniques

— Manifold learning methods
 Kernel PCA, LLE, ISOMAP,...

— Assume local linearity of data
— Need densely sampled data as input

— Other approaches
» Autoencoders (multi-layer Neural Networks),...

— Computationally more demanding than linear methods
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Principal Component Analysis (PCA)

Two views but same solution

1. Want to find best linear reconstruction of the data that minimizes mean
squared reconstruction error

2. Want to find best subspace that maximizes the projected data variance

. . . data mean
Suppose input data{x;}" 1, x; € R is centered i.e., X=X — 1t

Goal: To find a &-dim linear embedding y such that £ < d
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Principal Component Analysis (PCA)

Two views but same solution

1. Want to find best linear reconstruction of the data that minimizes mean
squared reconstruction error

2. Want to find best subspace that maximizes the projected data variance

. . . data mean
Suppose input data{x;}" 1, x; € R is centered i.e., X=X — 1t

Goal: To find a &-dim linear embedding y such that £ < d
. . ~ <k _ dxk fexd
Reconstruction View X =3>"_y;b;=By BeR"" yeR"

: ~ 12 2
argmin3ilx ~ %y = Xl ~ Byl st B B=1

A 2
B=argminHX—BBTXHF st. B'B=1 |and p=B'x
B~ \
v

d xn data matrix

Solution: Get top k left singular vectors of X (O(nd?)) and project data on them (O(nkd))
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Principal Component Analysis (PCA)

Max-Variance View

Want to find £-dim linear projection y = B!x such that

assuming data

~ T T T'p_
B =argmax7r(BT xx”B) st B'B=1| U0 G

B

Solution: Get top & eigenvectors of XX7 (O(nd?+d®)) and project data (O(nkd))

Left singular vectors of X = Eigenvectors of XX
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Principal Component Analysis (PCA)

Max-Variance View

Want to find £-dim linear projection y = B!x such that

B=arg maxTr(BTXXTB) st. B'B=1
B

assuming data
IS centered

Solution: Get top & eigenvectors of XX (O(nd?+d®)) and project data (O(nkd))

Left singular vectors of X = Eigenvectors of XX

Statistical assumption: Data is normally distributed

» More general versions (allow noise in the data)

- Factor Analysis and Probabilistic PCA

» Can be extended to a nonlinear version using kernels
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MultiDimensional Scaling (MDS)

Metric MDS: Given pairwise (Euclidean) distances among points, find a
low-dim embedding that preserves the original distances

X; eiRd,yl- e Rk
Y = arnginZ(Hyi_yjHZ_dy‘j X e RPNy e gphn
L,Jj

dy =|x; ~ x|
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MultiDimensional Scaling (MDS)

Metric MDS: Given pairwise (Euclidean) distances among points, find a
low-dim embedding that preserves the original distances

X; eiRd,yl- e Rk
Y = argmyinZ(Hyi—yjHZ_dl.].j X end y e b=
L]

dy =|x; ~ x|

First, n x n distance matrix (D) is converted into a similarity matrix (K)

1

K = - HDH Dy=d? H=1--110 1,-[L.1

n D
n entries
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MultiDimensional Scaling (MDS)

Metric MDS: Given pairwise (Euclidean) distances among points, find a
low-dim embedding that preserves the original distances
X; € iRd,y,- c KK
Y = argmyinZ(Hy,-—ysz—d,-jj X e RPNy e g
L]

dy =|x; ~ x|

First, n x n distance matrix (D) is converted into a similarity matrix (K)

1

K = - HDH Dy=d? H=1--110 1,-[L.1

n D
n entries

Solution: Best k-dim (k < d) linear embedding Y given by

Y'Yy =K ~U,3,U}

y =s¥2ul

Embedding identical to that from PCA on X
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Kernel (Nonlinear) PCA

Key Idea: Instead of finding linear projections in the original input space,

do it in the (implicit) feature space induced by a mercer kernel
k(x,z) = ®(x)T O(x)

ﬁnearf¥l4

S A R AR -
Fi s - 1" * -
:& A N x;( q 2
oy, B 4 - b % EEEEEEEEEEEE X A
g X X,
FA 3. N X5 g 7 » X
X N N Y - - x P ox iX
"r 5 "- - ", A . - x -
g ",*x A A i fox A e

7 kay =)
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Kernel (Nonlinear) PCA

Key Idea: Instead of finding linear projections in the original input space,

do it in the (implicit) feature space induced by a mercer kernel
k(x,z) = ®(x)T O(x)

Let’s focus on 1-dim projection,

PCA kernel PCA
Assumption: centered data Z?zlxl- =X1,=0 Z?Zlcl)(xi) =d(X)L, =0 1 =[..1"
entries
data covariance C = Xx7! C = cp()()q)()()T !
T
best direction b Cb = Ab ?zlq)(xi)(q)(xi) b): Ab
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Kernel (Nonlinear) PCA

Key Idea: Instead of finding linear projections in the original input space,

do it in the (implicit) feature space induced by a mercer kernel
k(x,z) = ®(x)T O(x)

Let’s focus on 1-dim projection,

PCA kernel PCA
Assumption: centered data )" x; = X1, =0 D P(x)=d(X)1, =0 L =[L., i
_ T T n entries
data covariance C=XX C=D(X)D(X)
T
best direction b Cbh=1b ?zlq)(xi)(q)(xi) b):
b=3" b)) b/ 2)= 3" 0 ®(x) -0

=d(X)a
b lies in the span of mapped input points !
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Kernel (Nonlinear) PCA

Key Idea: Instead of finding linear projections in the original input space,

do it in the (implicit) feature space induced by a mercer kernel
k(x,z) = ®(x)T O(x)

Let’s focus on 1-dim projection,

PCA kernel PCA
Assumption: centered data Z?zlxl- =X1,=0 Z?Zlcl)(xl.) =d(X)L, =0 1 =[..1"
n entries

C=0(X)D(X)
?zlq)(xi)(q)(xi)Tb):
b=3" b)) b/ 2)= 3" 0 ®(x) -0

1 i=1""1 1
=d(X)a
b lies in the span of mapped input points !

O(X)D(X) D(X)a = 1D(X)a

Premultiply by ®(x)’and replace ®(x)" o(x)=K
K20 =Ko = Ka=Jo Kis positive-definite (otherwise, other

solutions are not of interest)
Sanjiv Kumar 11/16/2010 EECS6898 — Large Scale Machine Learning 16
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Kernel (Nonlinear) PCA

Main Computation: Find top k eigenvectors of kernel matrix

Ko=la | O0’k)

Final solution: b ; = ®(X)a; but need to have unit-length
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Kernel (Nonlinear) PCA

Main Computation: Find top k eigenvectors of kernel matrix

Final solution: b ; = ®(X)a; but need to have unit-length

Projection of a point X;

Sanjiv Kumar 11/16/2010

Ko=la | O0’k)

T . T .
bjbj —1:>a-Koc-—1

= 4j0; 0‘] _1:>H JH _]/\/7

y; =) b =1 [1))K] a;
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Kernel (Nonlinear) PCA

Main Computation: Find top k eigenvectors of kernel matrix

Ko=la | O0’k)

Final solution: b ; = ®(X)a; but need to have unit-length
Ty _ T _
bjb] =1= Ochocj =1
r, B _ _
= 4050; =1=a;, =Y %

Projection of a point ; | 3 = CD(x,-)Tbj — (1/\/7}.)]{?05].

it column of K

What if we want to find a projection for a new point not seen during training ?

« Known as “out-of-sample” extension

* Not as straightforward as for linear PCA

» Can be thought of as adding another row and column in kernel Matrix

« To avoid recomputing eigendecomposition of extended Kernel matrix, use
Nystrom method to approximate the new embedding (recall matrix approximations)
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Centering in Feature Space

We assumed that data was centered in feature space
— Easy to do with features {x;}

— How to do it in mapped feature space {®(x)} as explicit mapping may be
unknown ?
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Centering in Feature Space

We assumed that data was centered in feature space
— Easy to do with features {x;}

— How to do it in mapped feature space {®(x)} as explicit mapping may be
unknown ?

We want: @ =(1/n)Y ", D(x;) D(x;) < O(x;)— D

But we need data only through kernel matrix, so get “centered” kernel matrix

~

K=K-1, K-K1 +1 K1
|

I’ll’l)l] :1/1’1, l,] 21,...,1’1
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Centering in Feature Space

We assumed that data was centered in feature space
— Easy to do with features {x;}

— How to do it in mapped feature space {®(x)} as explicit mapping may be

unknown ?
We want: @ =(1/n)Y ", D(x;) D(x;) « D(x;) - D

But we need data only through kernel matrix, so get “centered” kernel matrix

~

K=K-1, K-K1 +1 K1

o)y =1/, i =Ly /
N I
Interpretation K;; = K;; —m; —m; +m K
mean of i row l
mean of /i col renn(?[ﬁgsoifnalg m;
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Locally Linear Embedding (LLE)

Key Idea: Given sufficient samples, each data point and its neighbors
are assumed to lie close to a locally linear patch.

— Try to reconstruct each data point from its ¢ neighbors 0(»n%d)

X; = ZWijxj j ~ i indicates neighbors of i
j~i
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Locally Linear Embedding (LLE)

Key Idea: Given sufficient samples, each data point and its neighbors
are assumed to lie close to a locally linear patch.

— Try to reconstruct each data point from its ¢ neighbors 0(»n%d)

X; ® 2, w;x;  j~iindicates neighbors of i
j~i

— Learn the weights by solving 0(dn®)

2
i j~iWiij'H st 2~ =1

argmin .
w
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Locally Linear Embedding (LLE)

Key Idea: Given sufficient samples, each data point and its neighbors
are assumed to lie close to a locally linear patch.

— Try to reconstruct each data point from its ¢ neighbors 0(»n%d)

X; & 2, w;x;  j~iindicates neighbors of i
j~i

— Learn the weights by solving 0(dn®)

2
i j~iWiij'H st 2wy =1

argmin .
w

— Assumption: Same weights reconstruct the low-dim embedding also

2 T
Vi — j~iwijyjH S.L. Zl-yl-:O (1/’4)2,%)/1' =1

argmin .
Y

construct a sparse n x n matrix M = ([ — W)T(] — W) Getbottom k eigenvectors
ignoring the last 0 (»%k)
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PCA vs LLE

PCA
A face image translated in space
against random background
n=961,d=3009,t=4,k=2

LLE

Roweis & Saul [5]
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ISOMAP

Find the low-dimensional representation that best preserves geodesic
distances between points 2> MDS with geodesic distances

Sanjiv Kumar 11/16/2010 EECS6898 — Large Scale Machine Learning
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ISOMAP

Find the low-dimensional representation that best preserves geodesic
distances between points 2> MDS with geodesic distances

i Yj

Output co-ordinates ¥ = argmin Z(Hy,- —ysz —Aij)
Y l,]

\

Geodesic distance

Recovers true (convex) manifold asymptotically !
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ISOMAP

Given #n Input points:

1. Find ¢ nearest neighbors for each
point : O(n?)

2. Find shortest path distance for
every (i, /), A, : O(n? log n)

B

-
3. Construct n X n matrix K with E’ ﬁi
entries as centered Al-jz o
— K is a dense matrix

4. Optimalkrecmi!gmﬁ/allr‘n/s: Zka?g(e’r,gxfectors O(n?k) !
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ISOMAP Experiment

Face image taken with two pose variations (left-right and up-down), and
1-D illumination direction, d = 4096, n = 698

‘_,@IHIW !i

» n o
@.J:‘l @. —1@) ® .-.

o+

—7

Up-down pose

Tanenbaum et al. [7]

= . " -— )

m
I;K
)

. N Left-right pose
. Ui Lighting direction
Issue: oning

» Quite sensitive to false edges in the graph (“short-circuit”)
* One wrong edge may cause the shortest paths to change drastically
 Better to use expected commute time between two nodes - Laplacian Eigenmaps
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Laplacian Eigenmaps

Minimize weighted distances between neighbors

2
Y =argmin ¥ Pyl _yjHZ

Yo Dby

Another formulation

Y =argminTr[Y LY]
%

S.t YTDY:I

Sanjiv Kumar 11/16/2010 EECS6898 — Large Scale Machine Learning
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Laplacian Eigenmaps

Minimize weighted distances between neighbors

1. Find ¢ nearest neighbors for each point : O(»?)

jHZ/O'Z) if i~

0 otherwise

W.. =

y

2. Compute weight matrix - {exp(xi x

3. Compute normalized laplacian
K=1-D?wpt? where D;=3 W;

4. Optimal k£ reduced dims: U,

v
Bottom eigenvectors O(n?k) but can do much faster using

of K ignoring last Arnoldi’s/Lanczos method since matrix is sparse
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Maximum Variance Unfolding (MVU)

Key Idea: Find embedding with maximum variance that Preserves
angles and lengths for edges between nearest neighbors

Angles/distances preservation constraint

5 o If there is an edge (i, j) in the o Y
Hy,- — yjH = Hxi —XJ-H graph formed by pairwise ) \E_\

connecting all # nearest neighbors
\‘\./

X

Weinberger and Saul [12]
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Maximum Variance Unfolding (MVU)

Key Idea: Find embedding with maximum variance that Preserves
angles and lengths for edges between nearest neighbors

Angles/distances preservation constraint

2 o If there is an edge (i, j) in the
Hyl- — yjH = Hxl- — xjH graph formed by pairwise
connecting all # nearest neighbors

Centering constraint (for translational invariance)

Zi y; = 0 Weinberger and Saul [12]

Optimization Criterion
— Maximize squared pairwise distances between embeddings

2 :
arg m;';lx zi’ JH Yi—y JH s.t. above constraints

Same as maximizing variance of the outputs !
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Maximum Variance Unfolding (MVU)

Reformulation: Using a kernel K, such that K;; = y,-Tyj

Angles/distances preservation

2
Kil'_ZKij +ij :dl] :HXI'—X'

2
i

Sanjiv Kumar 11/16/2010 EECS6898 — Large Scale Machine Learning

35



Maximum Variance Unfolding (MVU)

Reformulation: Using a kernel K, such that K;; = yiTyj

Angles/distances preservation

2 2
Kij— 2Ky +K j; =djf =|x; —x;|

Centering constraint
2
2;yi=0= HZ,%‘H = Z,-J-Kij =0

Symmetric Positive-Definite constraint
K > 0 Semi-Definite Program !  O(n3+c3)

# of constraints
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Maximum Variance Unfolding (MVU)

Reformulation: Using a kernel K, such that K;; = y,-Tyj

Angles/distances preservation

2
Kil'_ZKij +ij :dl] :HXI'—X'

2
i

Centering constraint

3,0 =0= X" = X, Ky =0

Symmetric Positive-Definite constraint

K > 0 Semi-Definite Program !  O(n3+c3)
Max-variance objective function 7r(K) # of constraints
Final solution Y = Z}C/ZUZ Top k eigenvalues and eigenvectors of K

Can relax the hard constraints via slack variables !
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PCA vs MVU

0.0 0.2 0.4 0.6 0.8 1.0

Trefoil knot, n =1617,d=3,t=5k=2 A teapot viewed rotated 180 deg in a
plane, n =200,d =23028,t=4,k=1

Weinberger and Saul [12]
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Large-Scale Face Manifold Learning

Construct Web dataset
— Extracted 18M faces from 2.5B internet images

— ~15 hours on 500 machines
— Faces normalized to zero mean and unit variance

Graph construction
— Approx Nearest Neighbor — Spill Trees
— 5NN, ~2days Can be done much faster using appropriate hashes !

EEEEEE
bd Rd Bd G Bd R
EEEEESD
E B ﬁ B E B Talwalkar, Kumar, Rowley [13]

39
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Neighborhood Graph Construction

Connect each node (face) with its neighbors

Is the graph connected?
— Depth-First-Search to find largest connected component
— 10 minutes on a single machine

— Largest component depends on number of NN ( #)

#Comp | % Largest
4.3M 0.03 %
285K 80.1 %

277K 82.2 %
275K 83.1 %

N W DN =] ~

Talwalkar, Kumar, Rowley [13]
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Samples from connected components

From Largest - =
Component | j l ﬂ = ,:T
"EFEL]

Components
B B B B R B

Talwalkar, Kumar, Rowley [13]

. N b
g
v } "
- i
" 2
>
|
|
ak
]
]
1
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Graph Manipulation

Approximating Geodesics
— Shortest paths between pairs of face images
— Computing for all pairs infeasible O(»?log n) !

Key Idea: Need only a few columns of K for sampling-based
spectral decomposition

— require shortest paths between a few ( /) nodes and all other
nodes

— 1 hour on 500 machines (/ = 10K)

Computing Embeddings (k£ = 100)
— Nystrom: 1.5 hours, 500 machine
— Col-Sampling: 6 hours, 500 machines
— Projections: 15 mins, 500 machines

Talwalkar, Kumar, Rowley [13]
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CMU-PIE Dataset

68 people, 13 poses, 43 illuminations, 4 expressions
35,247 faces detected by a face detector

Classification and clustering on poses

Sanjiv Kumar 11/16/2010 EECS6898 — Large Scale Machine Learning
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Optimal 2D embeddings

dimension 2

Sanjiv Kumar

30007
20007

1000f

-2000¢

0_

1000

PCA

—309%0 2000 0 2000 4000

dimension 2

dimension 1

x 10° Col-Sampling Isomap

% 4 0 1 2 3

dimension 1

11/16/2010

dimension 2

dimension 2

x 10" Nystrom Isomap
2_
1 L
D_
_1 L
_2_
= 2 0 2 4
dimension 1 x 10"
x 107 Laplacian Eigenmap
15t
101
5t -
. B,
0_ -l
_5_
-8 -6 -4 -2 0
dimension 1 x 107

EECS6898 — Large Scale Machine Learning

Talwalkar, Kumar, Rowley [13]
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Clustering

K-means clustering after transformation (£ = 100)
— K fixed to be the same as number of classes

Two metrics

Purity - points within a cluster come from the same class
Accuracy - points from a class form a single cluster

Methods | Purity (%) Accuracy (%)
PCA | 54.6 (+1.3) | 46.8 (£1.3)
Nystrom Isomap | 59.9 (£1.5) | 53.7 (£4.4)
Col-Sampling Isomap | 56.5 (+0.7) | 49.4 (£3.8)
Laplacian Eigenmap | 39.3 (£4.9) | 74.7 (£5.1)

Matrix K is not guaranteed to be positive semi-definite in Isomap !
- Nystrom: EVD of ¥ (can ignore negative eigenvalues)
o . . :
Col-sampling: SVD of C (signs are lost) ! Taiwalkar, Kumar, Rowley [13]
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Experiments - Classification

K-Nearest Neighbor Classification after Embedding

(%) Classification error for 10 random splits
Methods | K =1 K=3
Nystrom Isomap | 11.0 (£0.5) | 14.0 (£0.6)
Col-Sampling Isomap | 12.0 (+0.4) | 15.3 (£0.6)
Laplacian Eigenmap | 12.7 (+0.7) | 16.6 (£0.5)

Talwalkar, Kumar, Rowley [13]
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18 M-Manifold in 2D

Nystrom |SOmap Talwalkar, Kumar, Rowley [13]
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Shortest Paths on Manifold

-

FaN
a -
[ it

18M samples not
enough!

Talwalkar, Kiimar, Rowley [13]
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People Hopper Interface

Sanjiv Kumar

Showing 11 friends...

Sanjiv

11/16/2010

Orkut Gadget
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Manifold Learning - Open Questions

 Does a manifold really exist for a given dataset?
* |Isitreally connected or convex?

» Instead of lying on a manifold, may be data lives in small clusters in
different subspaces?

» Any practical benefits of nonlinear dimensionality reduction
(manifold learning) in clustering/classification?
— Most of the results on toy data, no real practical utility so far
— In practice, PCA enough to give most of the benefits (if any)

» Instead of looking for yet another manifold learning method, better to
focus on solving if a manifold exists and how to quantify that
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