Approximate Nearest Neighbor (ANN) Search - II

Sanjiv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 2010

Two popular ANN approaches

Tree approaches

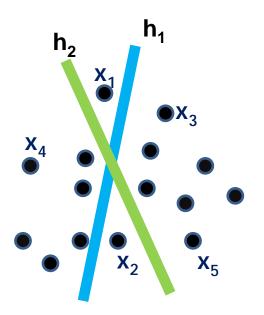
- Recursively partition the data: Divide and Conquer
- Expected query time: O(log n) (with constants exponential in dimension)
- Performance degrades with high-dimensional data
- Large storage needs
- Original data is required at run-time

Hashing approaches

- Each item in database represented as a code
- Significant reduction in storage
 - For 64 bit codes, just 8GB storage instead of 40TB
- Expected query time: O(1) or sublinear in n
 - Search in 64-bit hamming space: ~13 sec instead of ~15 hrs/query
- Compact codes preferred

Example: Binary Codes

Linear projection (hyperplane) based partitioning



X	x ₁	X ₂	X ₃	X ₄	X ₅
y ₁	0	1	1	0	1
y ₂	1	0	1	0	1
Уm					

010... 100... 111... 001... 110...

No recursive partitioning unlike trees!

1. Training

- Define a model to convert an input item in a code
- Learn the parameters of the model
 - Possibly using a subset of randomly sampled database items

1. Training

- Define a model to convert an input item in a code
- Learn the parameters of the model
 - Possibly using a subset of randomly sampled database items

Given input *x* Learn
$$h(x) = \{h_1(x), h_2(x), ..., h_m(x)\}$$
 $h_k(x) \in Z$

Example: Binary codes using linear projections

$$h_k(x) = \operatorname{sgn}(w_k^T x + b_k) \qquad h_k(x) \in \{-1, 1\}$$

equivalent to
$$y_k(x) = (1 + h_k(x))/2$$
 $y_k(x) \in \{0, 1\}$

1. Training

- Define a model to convert an input item in a code
- Learn the parameters of the model
 - Possibly using a subset of randomly sampled database items

Given input *x* Learn
$$h(x) = \{h_1(x), h_2(x), ..., h_m(x)\}$$
 $h_k(x) \in Z$

Example: Binary codes using linear projections

$$h_k(x) = \text{sgn}(w_k^T x + b_k) \qquad h_k(x) \in \{-1, 1\}$$
 equivalent to $y_k(x) = (1 + h_k(x))/2 \qquad y_k(x) \in \{0, 1\}$

Training goal: To learn parameters for *m* hash functions

$$\{w_k, b_k\}_{k=1,...,m}$$

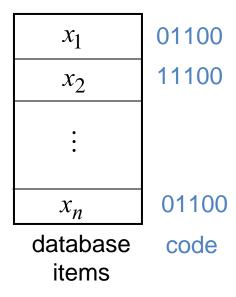
2. Indexing

- Represent each item in the database as a code
- In some cases, organize all the codes in a hash table (inverse-lookup): For a given code, return all the points with the same code

EECS6898 - Large Scale Machine Learning

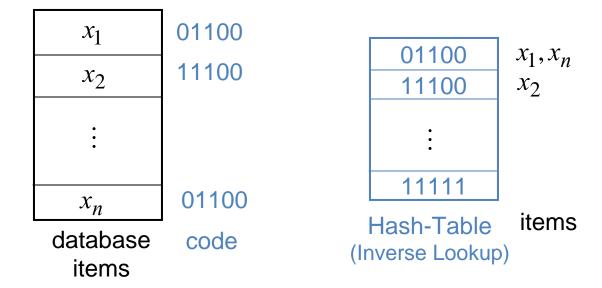
2. Indexing

- Represent each item in the database as a code
- In some cases, organize all the codes in a hash table (inverse-lookup):
 For a given code, return all the points with the same code



2. Indexing

- Represent each item in the database as a code
- In some cases, organize all the codes in a hash table (inverse-lookup):
 For a given code, return all the points with the same code



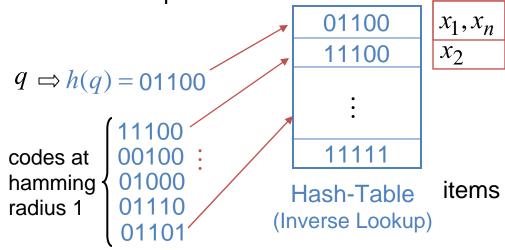
3. Querying

- Convert the query to code
- Find all items with the same code in database using hash table
 - Return all points within a small radius of query in code space
 - Use multiple codes (and tables) to increase recall
- Rank all the database items according to their distance from query in code space

EECS6898 - Large Scale Machine Learning

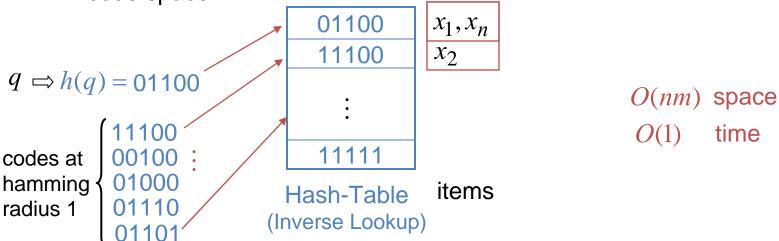
3. Querying

- Convert the query to code
- Find all items with the same code in database using hash table
 - Return all points within a small radius of query in code space
 - Use multiple codes (and tables) to increase recall
- Rank all the database items according to their distance from query in code space



3. Querying

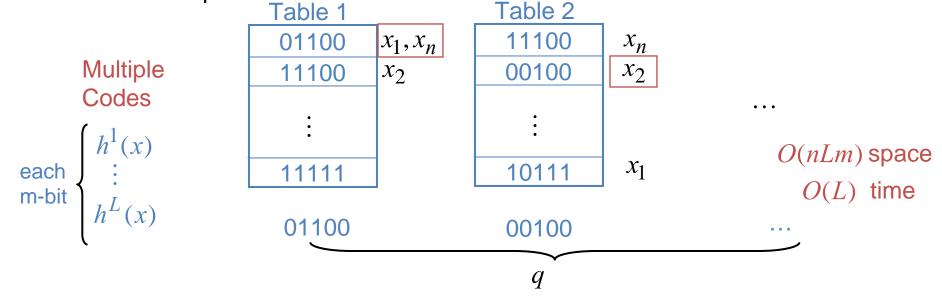
- Convert the query to code
- Find all items with the same code in database using hash table
 - Return all points within a small radius of query in code space
 - Use multiple codes (and tables) to increase recall
- Rank all the database items according to their distance from query in code space



Number of codes to search at radius $r: O(m^r)$ Buckets for many codes may be empty: with high probability for large m!

3. Querying

- Convert the query to code
- Find all items with the same code in database using hash table
 - Return all points within a small radius of query in code space
 - Use multiple codes (and tables) to increase recall
- Rank all the database items according to their distance from guery in code space

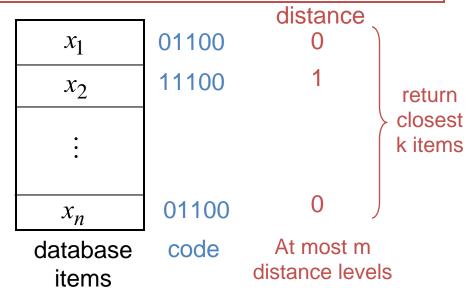


3. Querying

- Convert the query to code
- Find all items with the same code in database using hash table
 - Return all points within a small radius of query in code space
 - Use multiple codes (and tables) to increase recall
- Rank all the database items according to their distance from query in code space

Exhaustive distances in $q \Rightarrow h(q) = 01100$ code space

O(n) linear search!



Sanjiv Kumar

Hashing Techniques

- 1. Unsupervised use unlabeled data to learn hash functions
 - Locality Sensitive Hashing (LSH), PCA Hashing, Spectral Hashing, Min-Hashing, Kernel-LSH, ...
- 2. Supervised use labeled pairs to learn hash functions
 - Boosted Hashing, Binary Reconstructive Embedding,...
- 3. Semi-Supervised use labeled pairs and unlabeled data both
 - Sequential Learning,...
- 4. Type of Hash Function
 - Linear/Quasi-linear: LSH, Min-Hash, SH, PCA-Hash, ...
 - Nonlinear: KLSH, RBM, BRE,...

Locality Sensitive Hashing (LSH)

A family of hash functions $H = \{h : X \to Z\}$ is called (r_1, r_2, p_1, p_2) - sensitive if for any $x_1, x_2 \in X$

if
$$d(x_1, x_2) \le r_1$$
 then $\Pr[h(x_1) = h(x_2)] \ge p_1$,
if $d(x_1, x_2) > r_2$ then $\Pr[h(x_1) = h(x_2)] \le p_2$.
where $r_1 < r_2$ and $p_1 > p_2$

Locality Sensitive Hashing (LSH)

A family of hash functions $H = \{h : X \to Z\}$ is called (r_1, r_2, p_1, p_2) - sensitive if for any $x_1, x_2 \in X$

if
$$d(x_1, x_2) \le r_1$$
 then $\Pr[h(x_1) = h(x_2)] \ge p_1$,
if $d(x_1, x_2) > r_2$ then $\Pr[h(x_1) = h(x_2)] \le p_2$.
where $r_1 < r_2$ and $p_1 > p_2$

A simple LSH family

$$h_k(x) = \left[(w_k^T x + b_k)/t \right] \quad w_k \sim P_s(w) \quad b_k \sim U[0, t]$$

s-stable distribution

Locality Sensitive Hashing (LSH)

A family of hash functions $H = \{h: X \to Z\}$ is called (r_1, r_2, p_1, p_2) - sensitive if for any $x_1, x_2 \in X$

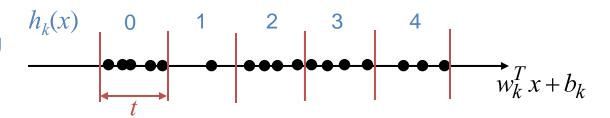
if
$$d(x_1, x_2) \le r_1$$
 then $\Pr[h(x_1) = h(x_2)] \ge p_1$,
if $d(x_1, x_2) > r_2$ then $\Pr[h(x_1) = h(x_2)] \le p_2$.
where $r_1 < r_2$ and $p_1 > p_2$

A simple LSH family

$$h_k(x) = \left\lfloor (w_k^T x + b_k)/t \right\rfloor \quad w_k \sim P_s(w) \quad b_k \sim U[0, t]$$
s-stable distribution

Special case: binary hashing

Sanjiv Kumar



s-Stable Distributions

A distribution $P_s(r)$ is called s-stable if there exists an $s \ge 0$ such that for any $x \in \Re^d$, and any w with i.i.d. $w^i \sim P_s$, then

$$x^{T} w \sim \|x\|_{S} w^{i}$$

$$\Rightarrow (x_{1} - x_{2})^{T} w \sim \|(x_{1} - x_{2})\|_{S} w^{i}$$

Neighboring points tend to have similar projections → Binning projections has LSH property!

EECS6898 – Large Scale Machine Learning

s-Stable Distributions

A distribution $P_s(r)$ is called s-stable if there exists an $s \ge 0$ such that for any $x \in \Re^d$, and any w with i.i.d. $w^i \sim P_s$, then

$$x^{T} w \sim \|x\|_{S} w^{i}$$

$$\Rightarrow (x_{1} - x_{2})^{T} w \sim \|(x_{1} - x_{2})\|_{S} w^{i}$$

Neighboring points tend to have similar projections → Binning projections has LSH property!

Special Case: s = 2 (Euclidean distance)

$$w^{i} \sim P_{s} = N(0, 1) \Rightarrow w \sim N(0, I)$$

$$E[x^{T}w] = 0$$

$$Var[x^{T}w] = E[x^{T}ww^{T}x] = x^{T}E[ww^{T}]x = ||x||_{2}^{2}$$

$$x^{T}w \sim ||x||_{2}w^{i} \quad \text{Gaussian distribution is 2-stable !}$$

Which distribution is 1-stable? Cauchy! One can find s-stable distribution for all $s \in (0, 2]$

Collision Probability

Suppose $u = ||(x_1 - x_2)||_s$ and $f_s(a)$ is pdf of absolute of s-stable random variable, i.e., $a = |w^i|$, then probability of collision,

$$p(u) = \Pr[h(x_1) = h(x_2)] = \int_0^t (1/u) f_s(a/u) (1 - a/t) da$$

p(u) increases as u decreases!

Collision Probability

Suppose $u = ||(x_1 - x_2)||_s$ and $f_s(a)$ is pdf of absolute of s-stable random variable, i.e., $a = |w^i|$, then probability of collision,

$$p(u) = \Pr[h(x_1) = h(x_2)] = \int_0^t (1/u) f_s(a/u) (1 - a/t) da$$

p(u) increases as u decreases!

How to choose t?

$$\hat{t} = \arg\min_{t} \rho = \arg\min_{t} [\log(1/p_1)/\log(1/p_2)]$$

EECS6898 – Large Scale Machine Learning

Can be computed analytically for s = 1, 2

Collision Probability

Suppose $u = ||(x_1 - x_2)||_s$ and $f_s(a)$ is pdf of absolute of s-stable random variable, i.e., $a = |w^i|$, then probability of collision,

$$p(u) = \Pr[h(x_1) = h(x_2)] = \int_0^t (1/u) f_s(a/u) (1 - a/t) da$$

p(u) increases as u decreases!

How to choose t?

10/12/2010

Sanjiv Kumar

 $\hat{t} = \arg\min_{t} \rho = \arg\min_{t} [\log(1/p_1)/\log(1/p_2)]$ Can be computed analytically for s = 1, 2 $\rho = \frac{\rho}{\log p}$ One too sensitive to t if sufficiently away from 0!

Datar et al.[5]

EECS6898 - Large Scale Machine Learning

Parameter selection in LSH

How many tables (L) and how many bits per table (m)?

Given a query q and its near-neighbor x', suppose each hash function satisfies

EECS6898 - Large Scale Machine Learning

$$\Pr[h_k(q) = h_k(x')] \ge p_1$$

Parameter selection in LSH

How many tables (L) and how many bits per table (m)?

Given a query q and its near-neighbor x', suppose each hash function satisfies

$$\Pr[h_k(q) = h_k(x')] \ge p_1$$

For m-bit code
$$Pr[h(q) = h(x')] \ge p_1^m$$

Probability of collision falls exponentially with m!

Parameter selection in LSH

How many tables (L) and how many bits per table (m)?

Given a query q and its near-neighbor x', suppose each hash function satisfies

$$\Pr[h_k(q) = h_k(x')] \ge p_1$$

For m-bit code
$$Pr[h(q) = h(x')] \ge p_1^m$$

Probability of collision falls exponentially with m!

Probability that q and x' will fail to collide for all L tables

$$\leq (1-p_1^m)^L$$

Bound the probability that q and x' will collide for at least one of L tables

$$1 - (1 - p_1^m)^L \le 1 - \delta$$

$$L \ge -\log(1/\delta)/\log(1-p_1^m)$$

Precision-Recall Tradeoff

- For high precision, longer codes (i.e. large m) preferred
- Large m reduces the probability of collision exponentially \rightarrow low recall

EECS6898 - Large Scale Machine Learning

Many tables (large L) necessary to get good recall \rightarrow Large storage

Precision-Recall Tradeoff

- For high precision, longer codes (i.e. large m) preferred
- Large m reduces the probability of collision exponentially \rightarrow low recall
- Many tables (large L) necessary to get good recall \rightarrow Large storage

Design *L* and *m* such that run-time is minimized for a given application:

$$T_{total} = T_h + T_r$$

To compute L m-bit To compute exact tables via lookups

hash functions and distance with retrieved retrieve points from points and return top k (sublinear in n)

- Larger m increases T_n but decreases T_r
- Empirically estimate total time averaged over many queries
- In some cases, T_r is simply vote over how many tables returned an item

How to avoid large number of tables?

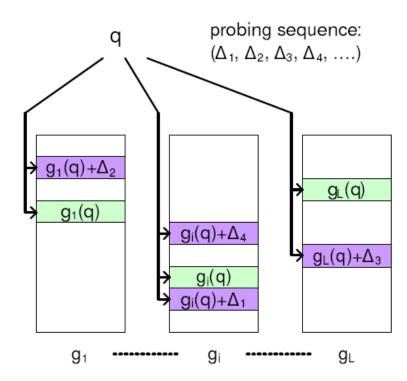
Sanjiv Kumar

Multi-Probe LSH

Strategy to increase recall without using large number of tables

Basic idea

If two neighbors do not fall in the same bucket, they should fall in a nearby one, e.g., within a hamming distance of 1



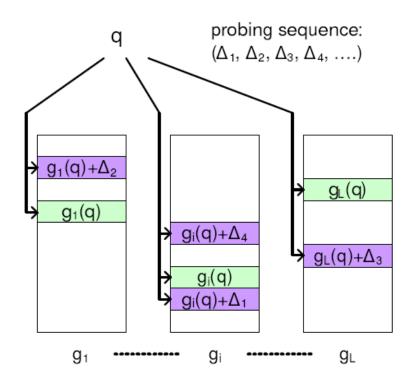
Lv et al.[7]

Multi-Probe LSH

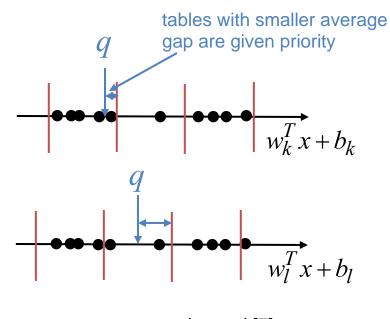
Strategy to increase recall without using large number of tables

Basic idea

If two neighbors do not fall in the same bucket, they should fall in a nearby one, e.g., within a hamming distance of 1



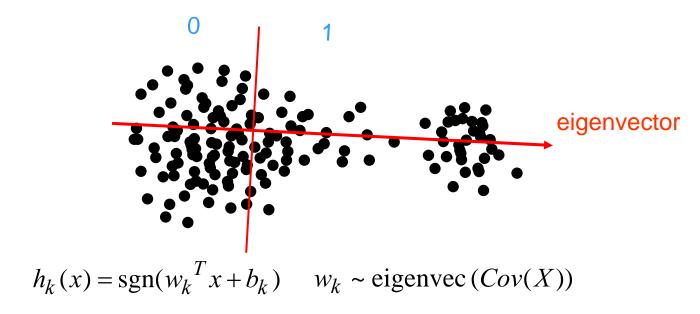
How to choose the sequence?



Lv et al.[7]

Data-Dependent Projections

– PCA-Hash: Let's focus on binary codes

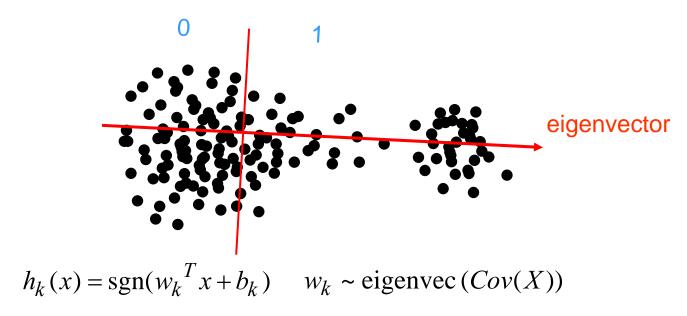


Projection on max variance directions followed by median threshold

EECS6898 - Large Scale Machine Learning

Data-Dependent Projections

PCA-Hash: Let's focus on binary codes



Projection on max variance directions followed by median threshold

Performance degrades with larger number of bits

- Variance decreases rapidly for most real-world data
- Can one reuse the high variance directions?

Data-dependent learning of binary codes h(x) such that

similarity between
$$x_i, x_j$$

$$\min \sum_{i,j} W_{ij} \left\| h(x_i) - h(x_j) \right\|^2$$
 subject to
$$\sum_i h_k(x_i) = 0 \quad \forall \ k \quad \text{balanced partitioning} \ h_k(x) \in \{-1, 1\}$$

$$\sum_i h_k(x_i) h_l(x_i) = 0 \quad \forall \ k \neq l \quad \text{uncorrelated}$$

EECS6898 - Large Scale Machine Learning

Data-dependent learning of binary codes h(x) such that

similarity between
$$x_i, x_j$$

$$\min \sum_{i,j} W_{ij} \| h(x_i) - h(x_j) \|^2 \qquad \text{Graph Laplacian} \Rightarrow \text{O(n^2)}$$

$$\text{subject to} \qquad \sum_i h_k(x_i) = 0 \quad \forall \ k \qquad \text{balanced partitioning} \ h_k(x) \in \{-1,1\}$$

$$\sum_i h_k(x_i) h_l(x_i) = 0 \quad \forall \ k \neq l \quad \text{uncorrelated}$$

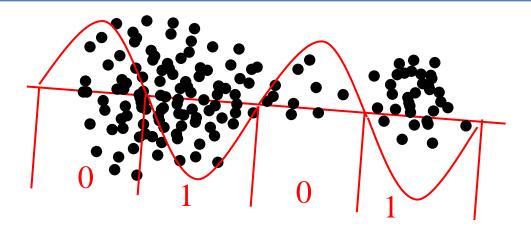
Issues

- Computationally extremely expensive (needs complete NN search)
- Balanced graph partitioning problem even with single bit \rightarrow NP hard

Approximation

 Assumes uniform data distribution and solves 1D Laplacian eigenfunctions analytically

EECS6898 - Large Scale Machine Learning

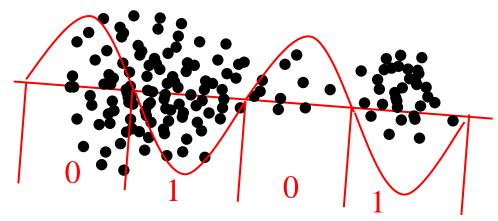


Three main steps

- Extract max-variance directions using PCA
- Select which direction to pick next based on modes of 1D-Laplacian
 - High variance PCA directions may be picked again
- Create bits by thresholding sinusoidal eigenfunctions at zero

EECS6898 - Large Scale Machine Learning

slower than simple thresholding



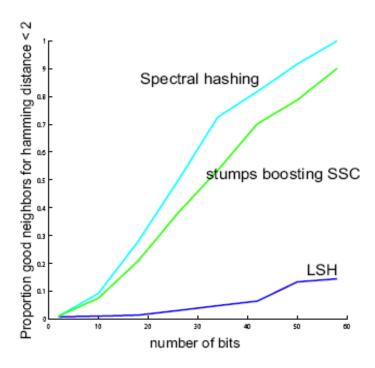
$$h_k(x) = \operatorname{sgn}(\cos(\alpha w_k^T x))$$
 $w_k \sim \operatorname{eigenvec}(Cov(X))$

Three main steps

- Extract max-variance directions using PCA
- Select which direction to pick next based on modes of 1D-Laplacian
 - High variance PCA directions may be picked again
- Create bits by thresholding sinusoidal eigenfunctions
 - slower than simple thresholding

In practice, PCA-hash with median threshold may do better but both suffer from low-variance directions

Spectral Hash Experiment



- Testing using Hamming radius around the query
- Dense 384-dim vector → PCA-Hash gives similar or better performance
- For Hamming-radius testing, better to use LSH with median threshold

Use random projections along with sinusoidal thresholding

Key idea

 Suppose similarity between a pair of points is given by a shift-invariant kernel, i.e.,

$$s(x,y) = K(x,y) = K(x-y) \le 1 \qquad K(x-x) = K(0) = 1$$
Examples $s(x,y) = \exp(-\gamma \|x-y\|^2/2)$ L₂ distance $s(x,y) = \exp(-\gamma \|x-y\|_1)$ L₁ distance

Use random projections along with sinusoidal thresholding

Key idea

 Suppose similarity between a pair of points is given by a shift-invariant kernel, i.e.,

$$s(x, y) = K(x, y) = K(x - y) \le 1$$
 $K(x - x) = K(0) = 1$

Examples $s(x, y) = \exp(-\gamma ||x - y||^2 / 2)$ L₂ distance

 $s(x, y) = \exp(-\gamma ||x - y||_1)$ L₁ distance

Want to learn m-bit code h(x) such that

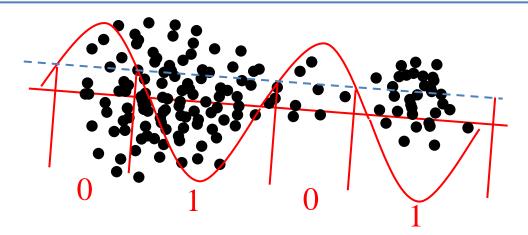
$$f_1(K(x-y)) \le (1/m)d_H(h(x),h(y)) \le f_2(K(x-y))$$

normalized Hamming distance

decreasing functions → small for similar points

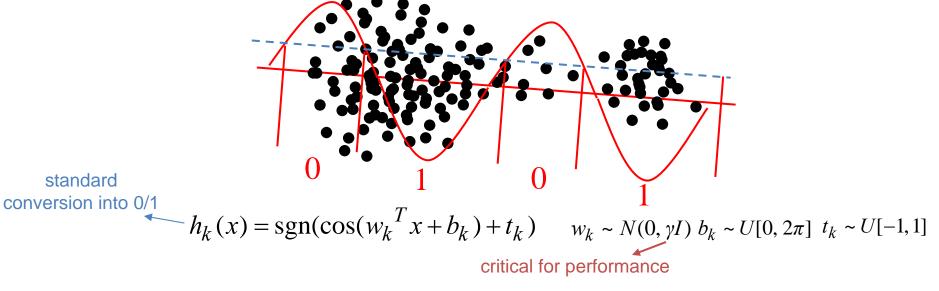
$$f_1(1) = f_2(1) = 0$$
, $f_1(0) = f_2(0) = c > 0$

EECS6898 – Large Scale Machine Learning



Main steps

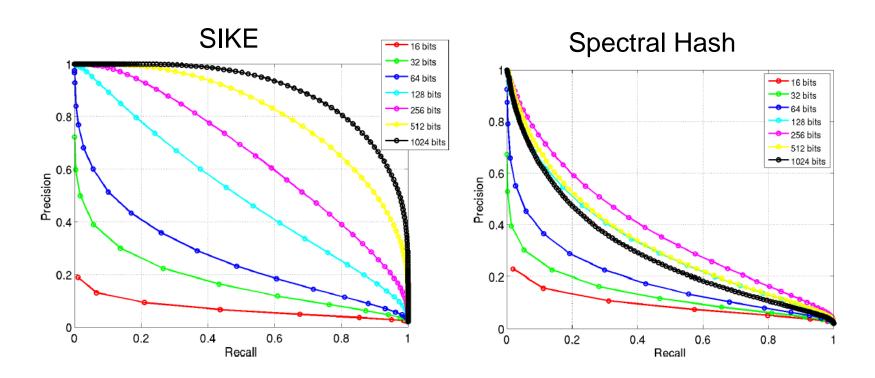
- Approximate shift-invariant kernels as dot products of random fourier features
- Pick directions from distribution induced by kernel → similar to s-stable directions
- Create bits by thresholding sinusoidal eigenfunctions



Main steps

- Approximate shift-invariant kernels as dot products of random fourier features
- Pick directions from distribution induced by kernel → similar to s-stable directions
- Create bits by thresholding sinusoidal eigenfunctions

Performance (with hamming ranking) better if large number of bits are used!



- Test using exhaustive hamming ranking with all database items
- Dense 384-dim vectors
- After 256 bits, performance of Spectral Hash falls
- Even regular LSH quite powerful if large number of bits are used

Raginsky et al.[11]

A method to estimate Jaccard similarity between sets (or vectors)

Jaccard similarity between two sets (A, B) or two vectors (x, y)

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} \qquad J(x,y) = \frac{\sum_{i} \min(x^{i}, y^{i})}{\sum_{i} \max(x^{i}, y^{i})} \quad \forall \ x^{i}, y^{i} \ge 0$$

EECS6898 - Large Scale Machine Learning

A method to estimate Jaccard similarity between sets (or vectors)

Jaccard similarity between two sets (A, B) or two vectors (x, y)

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} \qquad J(x,y) = \frac{\sum_{i} \min(x^{i}, y^{i})}{\sum_{i} \max(x^{i}, y^{i})} \quad \forall x^{i}, y^{i} \ge 0$$
relation with L₁?

The above two definitions equivalent \rightarrow represent each set as a binary vector of length $|A \cup B|$

EECS6898 - Large Scale Machine Learning

A method to estimate Jaccard similarity between sets (or vectors)

Jaccard similarity between two sets (A, B) or two vectors (x, y)

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} \qquad J(x,y) = \frac{\sum_{i} \min(x^{i}, y^{i})}{\sum_{i} \max(x^{i}, y^{i})} \quad \forall x^{i}, y^{i} \ge 0$$
relation with L₁?

- The above two definitions equivalent \rightarrow represent each set as a binary vector of length $|A \cup B|$
- Suppose h_k (.) is a random function that maps each item to a real number

$$h_k(x^i) \neq h_k(x^j) \quad \text{and} \quad \Pr[h_k(x^i) < h_k(x^j)] = 0.5$$
 simple choice $h_k(x^i) = U[0,1]$

A method to estimate Jaccard similarity between sets (or vectors)

Jaccard similarity between two sets (A, B) or two vectors (x, y)

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} \qquad J(x,y) = \frac{\sum_{i} \min(x^{i}, y^{i})}{\sum_{i} \max(x^{i}, y^{i})} \quad \forall x^{i}, y^{i} \ge 0$$
relation with L₁?

- The above two definitions equivalent \rightarrow represent each set as a binary vector of length $|A \cup B|$
- Suppose h_k (.) is a random function that maps each item to a real number

$$h_k(x^i) \neq h_k(x^j)$$
 and $\Pr[h_k(x^i) < h_k(x^j)] = 0.5$

simple choice $h_k(x^i) = U[0,1]$

min-hash
$$m(A, h_k) = \arg\min_{x^i \in A} h_k(x^i)$$

$$\Pr[m(A, h_k) = m(B, h_k)] = J(A, B)$$

min-hash
$$m(A, h_k) = \arg\min_{x^i \in A} h_k(x^i)$$

suppose
$$m(A \cup B, h_k) = x^u$$
 if $x^u \in A \cap B \Rightarrow x^u = m(A, h_k) \& x^u = m(B, h_k)$ Thus $\Pr[m(A, h_k) = m(B, h_k)] = \frac{|A \cap B|}{|A \cup B|}$

EECS6898 - Large Scale Machine Learning

min-hash
$$m(A, h_k) = \arg\min_{x_i \in A} h_k(x_i)$$

suppose
$$m(A \cup B, h_k) = x^u$$
 if $x^u \in A \cap B \Rightarrow x^u = m(A, h_k) \& x^u = m(B, h_k)$ Thus $\Pr[m(A, h_k) = m(B, h_k)] = \frac{|A \cap B|}{|A \cup B|}$

Sketches

Sanjiv Kumar

 For retrieval efficiency, min-hashes are grouped in s-tuples. For s random functions $(h_1,...,h_s)$,

$$sketch (A) = (m(A, h_1), ..., m(A, h_s))$$
$$Pr[sketch (A) = sketch (B)] = J(A, B)^s$$

- In practice, many sketches are created and sets (i.e. vectors) that have at least k sketches in common are retrieved for further testing.
- Generalizations to non-binary vectors, continuous valued vectors possible
- Good performance for high-dim (but mostly sparse) vectors

Learn LSH-type codes but when only kernel similarity, k(x,y), is known

Data may not be given in explicit vector space

A different view of LSH

$$\Pr[h(x) = h(y)] = sim(x, y)$$

EECS6898 - Large Scale Machine Learning

Learn LSH-type codes but when only kernel similarity, k(x,y), is known

Data may not be given in explicit vector space

A different view of LSH

$$\Pr[h(x) = h(y)] = sim(x, y)$$

query-time to find (1+ ε)-neighbor $O(n^{1/(1+\varepsilon)})$

Example

$$sim(x, y) = x^{T} y \qquad h_{k}(x) = \begin{cases} 1, & \text{if } r^{T} x > 0 \quad r \sim N(0, I) \\ 0 & \text{otherwise} \end{cases}$$

$$\Pr[\operatorname{sgn}(r^T x) = \operatorname{sgn}(r^T y)] = 1 - \frac{1}{\pi} \cos^{-1} \left(\frac{x^T y}{\|x\| \|y\|} \right)$$

Learn LSH-type codes but when only kernel similarity, k(x,y), is known

Data may not be given in explicit vector space

A different view of LSH

$$\Pr[h(x) = h(y)] = sim(x, y)$$

query-time to find (1+ ε)-neighbor $O(n^{1/(1+\varepsilon)})$

Example

$$sim(x, y) = x^{T} y \qquad h_{k}(x) = \begin{cases} 1, & \text{if } r^{T} x > 0 \quad r \sim N(0, I) \\ 0 & \text{otherwise} \end{cases}$$

$$\Pr[\operatorname{sgn}(r^T x) = \operatorname{sgn}(r^T y)] = 1 - \frac{1}{\pi} \cos^{-1} \left(\frac{x^T y}{\|x\| \|y\|} \right)$$

Suppose we are given only similarity

implicit (unknown) feature vector

$$sim(x, y) = k(x, y) = \Phi(x)^{T} \Phi(y)$$

How to compute the hash function when vector is not known?

Goal: To find appropriate random projection in implicit feature space $|r^T\Phi(x)|$

$$r^T\Phi(x)$$

From RKHS argument

$$r = \sum_{i=1}^{n} w_i \Phi(x_i) \approx \sum_{i=1}^{p} w_i \Phi(x_i)$$
 randomly chosen $p << n$
= Φw

Goal: To find appropriate random projection in implicit feature space $|r^T\Phi(x)|$

From RKHS argument

$$r = \sum_{i=1}^{n} w_i \Phi(x_i) \approx \sum_{i=1}^{p} w_i \Phi(x_i)$$
 randomly chosen $p << n$
= Φw

Find w such that E[r] = 0, $E[rr^T] = I$

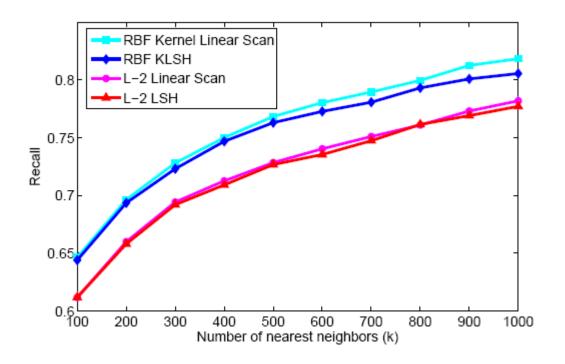
$$w = K^{-1/2}e_s$$
 $K = \Phi^T \Phi, e_s = [0,0,1,0,1...]^T$ # of 1's is a parameter

$$h(\Phi(x)) = \operatorname{sgn}(r^T \Phi(x)) = \operatorname{sgn}\sum_{i=1}^p w_i k(x, x_i)$$

non-linear hashing

usually slower run-time!

KLSH vs LSH



n = 100K image patches

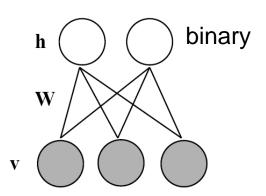
Semantic Hashing (RBM)

Nonlinear method to create binary codes using Restricted Boltzmann Machines (RBMs)

EECS6898 - Large Scale Machine Learning

Special type of Markov Random Fields

$$p(v,h) = \exp\{-E(v,h)\}/Z$$
$$p(v) = \sum_{h} p(v,h)$$

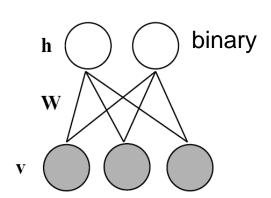


Semantic Hashing (RBM)

Nonlinear method to create binary codes using Restricted Boltzmann Machines (RBMs)

Special type of Markov Random Fields

$$p(v,h) = \exp\{-E(v,h)\}/Z$$
$$p(v) = \sum_{h} p(v,h)$$



$$p(h_j = 1 | v) = \sigma(b_j + \sum_i w_{ij} v_i) \quad \sigma(x) = 1/(1 + e^{-x})$$
$$p(v_i | h) = N(f(h), \tau I)$$

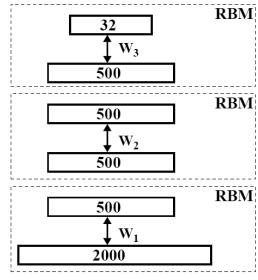
Learn parameters (W and b) using (approx) max-likelihood p(v)

How to learn codes ? → Stack multiple RBMs (Deep Belief Networks)

Semantic Hashing (RBM)

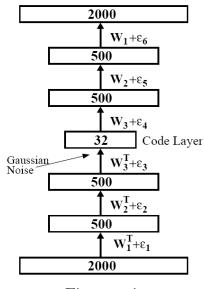
Deep Belief Networks

Similar functionality as multi-layer Neural Nets



Recursive Pretraining

Output of each stage used as input to next



Fine-tuning

Back-propagation (coordinate descent) with Auto-encoding objective

Many parameters, architecture choices, usually slow to train and to apply!

Construct binary codes by minimizing difference between original (metric) distance and hamming distance

$$h_k(x) = \operatorname{sgn}(w_k^T v(x))$$
 where $v(x) = [1, K(x_{k_1}, x), ..., K(x_{k_s}, x)]^T$ kernel chosen randomly or learned

Construct binary codes by minimizing difference between original (metric) distance and hamming distance

$$h_k(x) = \operatorname{sgn}(w_k^T v(x))$$
 where $v(x) = [1, K(x_{k_1}, x), ..., K(x_{k_s}, x)]^T$ kernel chosen randomly or learned

EECS6898 – Large Scale Machine Learning

$$\hat{W} = \arg\min_{W} \sum_{(x_i, x_j) \in T} \left[d_M(x_i, x_j) - d_H(x_i, x_j) \right]^2$$

Construct binary codes by minimizing difference between original (metric) distance and hamming distance

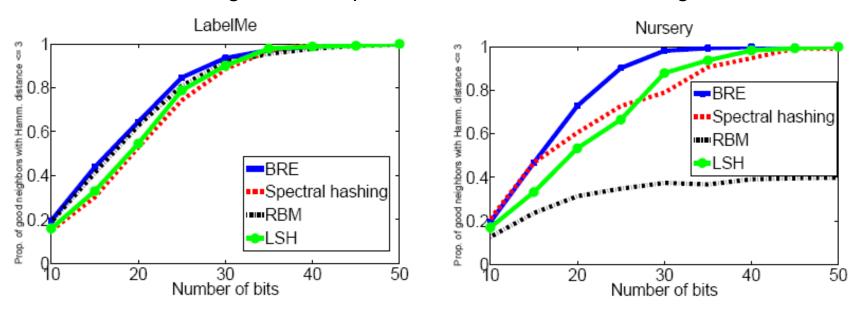
$$h_k(x) = \operatorname{sgn}(w_k^T v(x))$$
 where $v(x) = [1, K(x_{k_1}, x), ..., K(x_{k_s}, x)]^T$ kernel chosen randomly or learned

$$\hat{W} = \arg\min_{W} \sum_{(x_i, x_j) \in T} [d_M(x_i, x_j) - d_H(x_i, x_j)]^2$$

$$(1/2) ||x_i - x_j||^2 \qquad (1/4m) \sum_{k=1}^m [h_k(x_i) - h_k(x_j)]^2$$

- Data scaled to unit norm to remove the effect of scale (but this changes) the distance between points), uniform scaling better
- Coordinate Descent for optimization, deals with discontinuities
- Expensive to compute codes, learning appropriate anchors for kernel representations hard

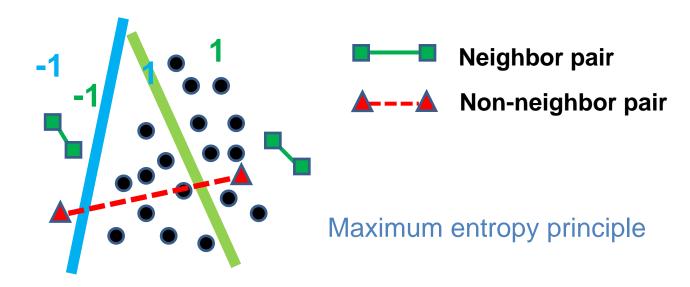
Testing based on points retrieved within hamming radius 3



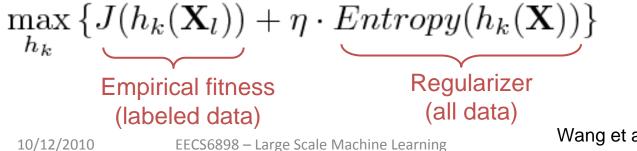
LSH is quite close even for moderate number of bits!

Semi-supervised Hashing

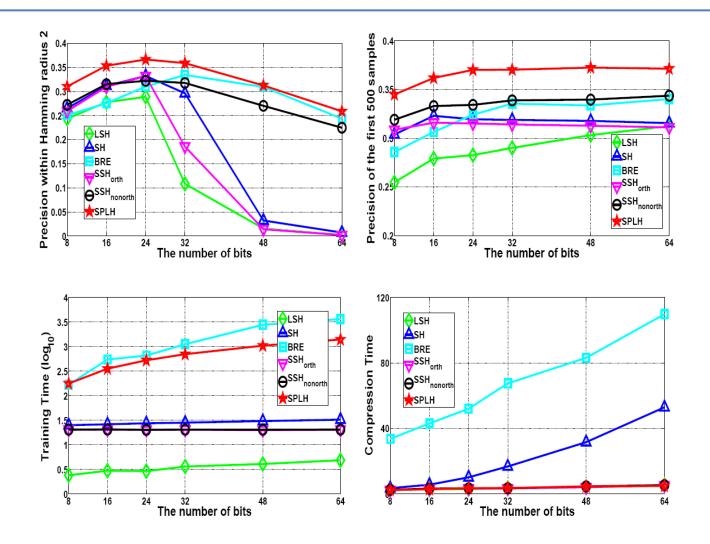
Suppose a few neighbor pairs and a few non-neighbor pairs are given



Semi-supervised Formulation



Flickr-270K



EECS6898 - Large Scale Machine Learning

References

- A. Broder, "On the resemblance and containment of documents," In Compression and Complexity of Sequences, 1997. 1.
- 2. P. Indyk and R. Motwani, "Approximate nearest neighbors: towards removing the curse of dimensionality," in *Proc. of* 30th ACM Symposium on Theory of Computing, 1998
- A. Gionis, P. Indyk, R. motwani, "Similarity Search in High Dimensions via Hashing," In VLDB, 1999. 3.
- G. Shakhnarovich, P. Viola, and T. Darrell, "Fast pose estimation with parameter-sensitive hashing," in *Proc. of the* 4. IEEE International Conference on Computer Vision, 2003.
- 5. M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, "Locality-sensitive hashing scheme based on p-stable distributions," in Annual Symposium on Computational Geometry, 2004.
- 6. G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-Neighbor Methods in Learning and Vision: Theory and Practice (Neural Information Processing). The MIT Press, 2006.
- Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, "Multiprobe LSH: efficient indexing for high-dimensional 7. similarity search," in Proceedings of the 33rd international conference on Very large databases, 2007
- R. Salakhutdinov and G. Hinton, "Semantic Hashing," ACM SIGIR, 2007. 8.
- Y. Weiss, A. Torralba, and R. Fergus, "Spectral hashing," in NIPS, 2008. 9.
- 10. O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash and tf-idf weighting. BMVC., 2008.
- M. Raginsky and S. Lazebnik, "Locality-Sensitive Binary Codes from Shift-Invariant Kernels," in *Proc. of Advances in* neural information processing systems, 2009.
- 12. B. Kulis and K. Grauman, "Kernelized locality-sensitive hashing for scalable image search," Proc. of the IEEE International Conference on Computer Vision, 2009.
- B. Kulis and T. Darrell, "Learning to Hash with Binary Reconstructive Embeddings," in *Proc. of Advances in Neural* Information Processing Systems, 2009
- J. Wang, S. Kumar, and S.-F. Chang, "Semi-supervised hashing for scalable image retrieval," in *IEEE Computer* Society Conference on Computer Vision and Pattern Recognition (CVPR), 2010.
- 15. J. Wang, S. Kumar, and S.-F. Chang, "Sequential projection learning for hashing with compact codes," in *Proceedings* of the 27th International Conference on Machine Learning, 2010.