Approximate Nearest Neighbor
(ANN) Search - II

Sanjiv Kumar, Google Research, NY

EECS-6898, Columbia University - Fall, 2010

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

Two popular ANN approaches

Tree approaches
— Recursively partition the data: Divide and Conquer
— Expected query time: O(log n) (with constants exponential in dimension)
— Performance degrades with high-dimensional data
— Large storage needs
— Original data is required at run-time

Hashing approaches
— Each item in database represented as a code

— Significant reduction in storage

» For 64 bit codes, just 8GB storage instead of 40TB
— Expected query time: O(1) or sublinear in n

e Search in 64-bit hamming space: ~13 sec instead of ~15 hrs/query
— Compact codes preferred

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

Example: Binary Codes

Linear projection (hyperplane) based partitioning

0 I
010... 100... 111... OO1l... 110...

No recursive partitioning unlike trees!

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 3

Hashing: Main Steps

1. Training
— Define a model to convert an input item in a code

— Learn the parameters of the model
» Possibly using a subset of randomly sampled database items

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

Hashing: Main Steps

1. Training
— Define a model to convert an input item in a code

— Learn the parameters of the model
» Possibly using a subset of randomly sampled database items

Giveninput x Learn h(x) ={m(x),hy(x),....h,(x)} " (x) e Z

Example: Binary codes using linear projections
b (x)=sgn(wi x+b,) I (x)e{-L15
equivalentto Y (x) =Q+h (x))/2 Yk (x) {0, 1}

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

Hashing: Main Steps

1. Training
— Define a model to convert an input item in a code

— Learn the parameters of the model
» Possibly using a subset of randomly sampled database items

Giveninput x Learn h(x) ={h(x),hy(x),.... h,(X)} " (x) € Z

Example: Binary codes using linear projections
b (x)=sgn(wi x+b,) I (x)e{-L15
equivalentto Y (x) =Q+h (x))/2 Yk (x) {0, 1}

Training goal: To learn parameters for m hash functions

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

Hashing: Main Steps

2. Indexing
— Represent each item in the database as a code

— In some cases, organize all the codes in a hash table (inverse-lookup):
For a given code, return all the points with the same code

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 7

Hashing: Main Steps

2. Indexing
— Represent each item in the database as a code

— In some cases, organize all the codes in a hash table (inverse-lookup):
For a given code, return all the points with the same code

X1 01100
X5 11100
X, 01100

database code
items

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 8

Hashing: Main Steps

2. Indexing
— Represent each item in the database as a code

— In some cases, organize all the codes in a hash table (inverse-lookup):
For a given code, return all the points with the same code

X1 01100
X9 11100 11100 X5
X, 01100 11l

Hash-Table items

database code (Inverse Lookup)

items

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

Hashing: Main Steps

3. Querying

Sanjiv Kumar

Convert the query to code

Find all items with the same code in database using hash table
* Return all points within a small radius of query in code space
» Use multiple codes (and tables) to increase recall

Rank all the database items according to their distance from query in
code space

10/12/2010 EECS6898 — Large Scale Machine Learning

10

Hashing: Main Steps

3. Querying
— Convert the query to code
— | Find all items with the same code in database using hash table

* Return all points within a small radius of query in code space
» Use multiple codes (and tables) to increase recall

— Rank all the database items according to their distance from query in

code space
01100 X1, X,
/ 11100 | [
q = h(q) = onoV'
(11100

codes at [00100 : 11111
hamming{ 01000) itemn
radius1 | 01110 Inlj/arSh Iablle ems

| 01101 (Inverse Lookup)

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

11

Hashing: Main Steps

3. Querying
— Convert the query to code
— Find all items with the same code in database using hash table

* Return all points within a small radius of query in code space
» Use multiple codes (and tables) to increase recall

— Rank all the database items according to their distance from query in

code space
01100 | |x1,x,
/////l 11100 | [*2
q = h(g)= OllOVv : O(nm) space
(11100 ' O@1) time
codes at | 00100 : 11111

hamming{ 01000) items
adius 1 | 01110 Hash-Table

Inverse Looku
| 01101 (P)

Number of codes to search at radius » : O(m")
Buckets for many codes may be empty: with high probability for large m !
Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

Hashing: Main Steps

3. Querying
— Convert the query to code

— Find all items with the same code in database using hash table

* Return all points within a small radius of query in code space
» Use multiple codes (and tables) to increase recall

— Rank all the database items according to their distance from query in

code space
Table 1 Table 2
01100 |x1,X, 11100 Xy
Multiple 11100 |X2 00100 X2
Codes
(1
h™(x) O(nLm) space
each | 11111 10111 il .
m-bit) I O(L) time
) 01100 00100
~—— —_—— —
q

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 13

Hashing: Main Steps

3. Querying
— Convert the query to code

— Find all items with the same code in database using hash table
* Return all points within a small radius of query in code space
» Use multiple codes (and tables) to increase recall

— | Rank all the database items according to their distance from query in

code space
distance
X1 01100 0
Exhaustive X9 11100 1 et
distancesin ¢ = /(g) = 01100 > closest
code space k items
X, 01100 o
O(n) linear search ! database code At most m
' items distance levels

Sanjiv Kumar 10/12/2010

EECS6898 — Large Scale Machine Learning

14

Hashing Techniques

1. Unsupervised — use unlabeled data to learn hash functions

» Locality Sensitive Hashing (LSH), PCA Hashing, Spectral Hashing,
Min-Hashing, Kernel-LSH, ...

2. Supervised — use labeled pairs to learn hash functions
» Boosted Hashing, Binary Reconstructive Embedding, ...

3. Semi-Supervised — use labeled pairs and unlabeled data both
— Sequential Learning,...

4. Type of Hash Function
e Linear/Quasi-linear: LSH, Min-Hash, SH, PCA-Hash, ...
 Nonlinear: KLSH, RBM, BRE,...

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

15

Locality Sensitive Hashing (LSH)

A family of hash functions H ={i: X — Z} is called (11,7, p1, p2)- sensitive
if for any x1,xp € X

1 d(xl,xz) < n then Pr[h(xl) =]’l(Xz)] > P1
If d(xl,xz) > 1y then Pr[h(xl) = h(Xz)] < D2.

where 1 <rp and py > p;

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 16

Locality Sensitive Hashing (LSH)

A family of hash functions H ={i: X — Z} is called (11,7, p1, p2)- sensitive
if for any x1,xp € X

1 d(xl,xz) < n then Pr[h(xl) =]’l(Xz)] > P1
If d(xl,xz) > 1y then Pr[h(xl) = h(Xz)] < D2.

where 1 <rp and py > p;

A simple LSH family

hk(x):_(w,{x+bk)/tj Wy ~1%\(w) by ~U[0, 7]

N\
s-stable distribution

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 17

Locality Sensitive Hashing (LSH)

A family of hash functions H ={i: X — Z} is called (11,7, p1, p2)- sensitive
if for any x1,xp € X

1 d(xl,xz) < n then Pr[h(xl) =]’l(Xz)] > P1
If d(xl,xz) > 1y then Pr[h(xl) = h(Xz)] < D2.

where 11 <rp and py > p;

A simple LSH family

hk(x):_(w,{x+bk)/tj Wy ~1%\(w) by ~U[0, 7]

N\
s-stable distribution

Special case: hk(x) 0 1 2 3 4

binary hashing
w;{x + Dby,

t

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 18

s-Stable Distributions

A distribution P () is called s-stable if there exists an s > 0 such that for

any x € K9, and any w with i.i.d. w'~ P, then
o= [

= (o —x)" W~ (e — xp)| W'

Neighboring points tend to have similar projections = Binning projections has LSH property !

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 19

s-Stable Distributions

A distribution P () is called s-stable if there exists an s > 0 such that for
any x € R9, and any w with i.i.d. w'~ P, then

xlw~ HxHS w

= (o —x)" W~ (e — xp)| W'

Neighboring points tend to have similar projections = Binning projections has LSH property !

Special Case: s = 2 (Euclidean distance)

Sanjiv Kumar

w' ~P, =N(0,1)= w~ N(0,I)

E[x'w]=0
Var[xT wl=F [xTWWTX] =x'E [WWT]X = HX\\%

xTW ~ Htzwl Gaussian distribution is 2-stable !

Which distribution is 1-stable? Cauchy !
One can find s-stable distribution for all s (0, 2]

10/12/2010 EECS6898 — Large Scale Machine Learning 20

Collision Probability

Suppose u = |(x; —x)|, and f;(a)is pdf of absolute of s-stable random variable,
l.e., a=|w'|, then probability of collision,

pu) =Prlh(x) = h(xp)] = [y /) £ (alu)(L-alt)da

p(u) increases as u decreases !

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 21

Collision Probability

Suppose u = |(x; —x)|, and f;(a)is pdf of absolute of s-stable random variable,
l.e., a=|w'|, then probability of collision,

pu) =Prlh(x) = h(xp)] = [y /) £ (alu)(L-alt)da

p(u) increases as u decreases !

How to choose t ?
t =argmin p = argmin[log(@/ p;)/log@/ p,)]
t {

N Can be computed

analytically fors =1, 2

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 22

Collision Probability

Suppose u = |(x; —x)|, and f;(a)is pdf of absolute of s-stable random variable,
l.e., a=|w'|, then probability of collision,

pu) =Prlh(x) = h(xp)] = [y /) £ (alu)(L-alt)da

p(u) increases as u decreases !

How to choose t ?
t =argmin p = argmin[log(@/ p;)/log@/ p,)]
t {

E:S: N Can be Computed

analytically fors =1, 2

Pl 1 pnottoo sensitive to t if
sufficiently away from O !

Datar et al.[5]
Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 23

Parameter selection in LSH

How many tables (L) and how many bits per table (m)?

Given a query ¢ and its near-neighbor x', suppose each hash function
satisfies

Prify(q) = i (x)]= py

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

24

Parameter selection in LSH

How many tables (L) and how many bits per table (m)?

Given a query ¢ and its near-neighbor x’, suppose each hash function
satisfies

Pria (q) = ki (X)]= py
For m-bit code Pr[A(q) = h(x")]= p{"

Probability of collision falls exponentially with 72 !

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

25

Parameter selection in LSH

How many tables (L) and how many bits per table (m)?

Given a query ¢ and its near-neighbor x’, suppose each hash function
satisfies

Pria (q) = ki (X)]= py
For m-bit code Pr[A(q) = h(x")] = p{"

Probability of collision falls exponentially with m !

Probability that ¢ and x" will fail to collide for all L tables
L
<(-p")
Bound the probability that ¢ and x" will collide for at least one of L tables

1-(1- p"t <1-6

L>—log(1/6)/log(l— p{")

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 26

Precision-Recall Tradeoff

e For high precision, longer codes (i.e. large m) preferred
 Large m reduces the probability of collision exponentially - low recall

« Many tables (large L) necessary to get good recall - Large storage

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

27

Precision-Recall Tradeoff

e For high precision, longer codes (i.e. large m) preferred
 Large m reduces the probability of collision exponentially - low recall

« Many tables (large L) necessary to get good recall - Large storage

Design L and m such that run-time is minimized for a given application:

Ttotal = Th + 7,
/ \

To compute L m-bit To compute exact
hash functions and distance with retrieved
retrieve points from points and return top k
tables via lookups (sublinear in n)

 Larger m increases T, but decreases T,
 Empirically estimate total time averaged over many queries
e Insome cases, 7. is simply vote over how many tables returned an item

How to avoid large number of tables?
Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 28

Multi-Probe LSH

Strategy to increase recall without using large number of tables

Basic idea
« If two neighbors do not fall in the same bucket, they should fall in a
nearby one, e.g., within a hamming distance of 1

probing sequence:
(ﬂ'll ﬁE: ﬂS: ﬁd., }

PN

> g1(q)+4A;
> alg
3 gi(q)
3 gi(g)+A4
> 9u(9)+As
> gi(q)
> gi(q)+A+
g1 semesesees .- gi eeemesees == QO

Lv et al.[7]
Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

29

Multi-Probe LSH

Strategy to increase recall without using large number of tables

Basic idea
« If two neighbors do not fall in the same bucket, they should fall in a
nearby one, e.g., within a hamming distance of 1

probing sequence: How to choose the sequence?
(J&'IJAE:ﬂS:ﬁtl: }

q
tables with smaller average
q gap are given priority

> 0:(q)+A; T
> al(g ka-l-bk
S 9i1(9)
> 9i(9)+As q
2 gu(g)+As
> giq) Iy :
> Qi(Q)+Ay
‘ ‘ ‘ WZT x+by
gq semeseness .- gi memeemee = g
Lv et al.[7]

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 30

Data-Dependent Projections

— PCA-Hash: Let’s focus on binary codes

eigenvector

hy (x) = sgn(wkT x+b,) wy ~eigenvec (Cov(X))

Projection on max variance directions followed by median threshold

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

31

Data-Dependent Projections

— PCA-Hash: Let’s focus on binary codes

eigenvector

hy (x) = sgn(wkT x+b,) wy ~eigenvec (Cov(X))

Projection on max variance directions followed by median threshold

Performance degrades with larger number of bits
— Variance decreases rapidly for most real-world data
— Can one reuse the high variance directions?

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 32

Spectral Hash

Data-dependent learning of binary codes %(x) such that

R

similarity between x, -xj\ ,

min 3 () — ()
I,]

subject to Sh(x;)=0 Vk balanced partitioning / (x) e{-1 1}
I

D b (x))hy(x;)=0 Vk=[uncorrelated
]

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 33

Spectral Hash

Data-dependent learning of binary codes %(x) such that
ilarioy b -
Simi arlty etween X; .x/ \ ,
manWinh(xl-) —h(xj)H Graph Laplacian = O(n?)
]

subjectto XA (x;)=0 ¥k balanced partitioning 7 (x) € {~1, 1}
I
D b (x))hy(x;)=0 Vk=[uncorrelated
I

Issues
— Computationally extremely expensive (needs complete NN search)
— Balanced graph partitioning problem even with single bit > NP hard

Approximation

— Assumes uniform data distribution and solves 1D Laplacian
eigenfunctions analytically

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 34

Spectral Hash

Three main steps
— Extract max-variance directions using PCA
— Select which direction to pick next based on modes of 1D-Laplacian
» High variance PCA directions may be picked again
— Create bits by thresholding sinusoidal eigenfunctions at zero
» slower than simple thresholding

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

35

Spectral Hash

hy (x) = sgn(cos(awkT x)) wy; ~eigenvec (Cov(X))
Three main steps

— Extract max-variance directions using PCA

— Select which direction to pick next based on modes of 1D-Laplacian
» High variance PCA directions may be picked again

— Create bits by thresholding sinusoidal eigenfunctions
» slower than simple thresholding

In practice, PCA-hash with median threshold may do better
but both suffer from low-variance directions

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 36

Spectral Hash Experiment

Spectral hashing

=
ot

{3

stumps boosting SSC

£ B

B

E
—
73]
I

Proportion good neighbors for hamming distance < 2

number of bits

— Testing using Hamming radius around the query
— Dense 384-dim vector - PCA-Hash gives similar or better performance
— For Hamming-radius testing, better to use LSH with median threshold

Weiss et al.[9]
Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 37

Shift-Invariant Kernel Embedding

Use random projections along with sinusoidal thresholding

Key idea
— Suppose similarity between a pair of points is given by a shift-invariant
kernel, i.e.,

$(x,2) = K(x,0) = K(x—y) <1 K(x-x)=K(0)=1

Examples s(x,y) =exp(—y |x —sz /2) L,distance
s(x,y) =exp(—y |x - yHl) L, distance

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 38

Shift-Invariant Kernel Embedding

Use random projections along with sinusoidal thresholding

Key idea
— Suppose similarity between a pair of points is given by a shift-invariant
kernel, i.e.,

$(x,2) = K(x,y) = K(x—y) <1 K(x-x)=K(0)=1

Examples s(x,y) =exp(—y |x —yH2 /2) L, distance
s(x,y) =exp(—y |x - yHl) L, distance

Want to learn m-bit
code h(x) such that f(K(x—y)) < (&/ m)d gy (h(x), h()’)J) < f2(K(x—y))

Y
\)rmalized Hamming distan7

decreasing functions - small for similar points

AD) =10 =0, 41(0)=f2(0)=c>0

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 39

Shift-Invariant Kernel Embedding

Main steps

— Approximate shift-invariant kernels as dot products of random
fourier features

— Pick directions from distribution induced by kernel - similar to
s-stable directions

— Create bits by thresholding sinusoidal eigenfunctions

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 40

Shift-Invariant Kernel Embedding

standard
conversion into 0/1

Ty (x) = sgn(cos(wkT X+by)+t,) w, ~N(O,yl) b ~U[O, 2x] # ~U[-1,1]
—

critical for performance

Main steps

— Approximate shift-invariant kernels as dot products of random
fourier features

— Pick directions from distribution induced by kernel - similar to
s-stable directions

— Create bits by thresholding sinusoidal eigenfunctions

Performance (with hamming ranking) better if large number

of bits are used !
Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 41

Shift-Invariant Kernel Embedding

SIKE —=Tesis Spectral Hash
| q—— s N : —o— 32 bits i
: 2600 —e—Gabits A ? ' ' —6— 15 bits
128 bits 1 632 bits
| —e—2s81its —®—54 bits
0.8} 515 bits 0.8 128 bits |
q B, | —e— 1024 bits +:?g :::t:
- 1 e —8— 1024 bits
-5 . £ 0.6} 1
8 @
g 3
004 0.4
0.2} 02+
0 i i i - 0 i i i i
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Sanjiv Kumar

Recall

Recall

Test using exhaustive hamming ranking with all database items
Dense 384-dim vectors
After 256 bits, performance of Spectral Hash falls

Even regular LSH quite powerful if large number of bits are used

Raginsky et al.[11]

10/12/2010 EECS6898 — Large Scale Machine Learning 42

Min-Hash

A method to estimate Jaccard similarity between sets (or vectors)
— Jaccard similarity between two sets (4, B) or two vectors (x, y)

ANB _ > min(x', ")
AU B| > max(x', ")

J(A4,B) = J(x,y) vVxy' =0

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

43

Min-Hash

A method to estimate Jaccard similarity between sets (or vectors)
— Jaccard similarity between two sets (4, B) or two vectors (x, y)

‘AHB‘ X me(x y) xi i>0
AUB)= > max(x' y){ -

— The above two definitions equivalent - represent each set as a binary
vector of length [4U B

J(4,B) =

relation with L, ?

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 44

Min-Hash

A method to estimate Jaccard similarity between sets (or vectors)
— Jaccard similarity between two sets (4, B) or two vectors (x, y)

‘AHB‘ X me(x y) xi i>0
AUB)= > max(x' y){ -

— The above two definitions equivalent - represent each set as a binary
vector of length [4U B

— Suppose 4, (.) is a random function that maps each item to a real number

J(4,B) =

relation with L, ?

I (x') =y (x7) and Pr[iy (x') < Iy (x/)]=0.5
simple choice A, (x')=U[0,1]

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 45

Min-Hash

A method to estimate Jaccard similarity between sets (or vectors)
— Jaccard similarity between two sets (4, B) or two vectors (x, y)

‘AHB‘ me(x y) in z>0
AUB > max(x’ y)\

— The above two definitions equivalent - represent each set as a binary
vector of length [4U B

— Suppose 4, (.) is a random function that maps each item to a real number

J(A,B) = J(x,y) =

relation with L, ?

b (x') = by (x7) and Pr[h, (x') < h, (x/)]=0.5
simple choice A, (x')=U[0,1]

min-hash m(A4, k) =argmin hy (xi)

x'eA

Prim(A4,h) =m(B,h.)]=J(4,B)

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 46

Min-Hash

min-hash m(4,h;)=argmin i, (xi)

x'eAd

suppose m(AU B, h;) = x"
if xecANB = x" =m(4, h,) &x" =m(B,)

AN

Thus Pr[m(4, hy) =m(B, ;)] = AUB

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

47

Min-Hash

min-hash m(A4, k) =argmin i (x;)

x;eA

suppose m(AU B, h) = x"
if xecANB =x" =m(4, h,) &x" =m(B,)

4NB

Thus Prim(4, by) = m(B, hk)]=‘AUB‘

Sketches

— For retrieval efficiency, min-hashes are grouped in s-tuples. For s
random functions (/,..., 4),

sketch (A) = (m(A4,h),...,m(A4, hy))
Pr[sketch (A) = sketch (B)] = J (4, B)®
* In practice, many sketches are created and sets (i.e. vectors) that have at
least k sketches in common are retrieved for further testing.

» Generalizations to non-binary vectors, continuous valued vectors possible

» Good performance for high-dim (but mostly sparse) vectors

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 48

Kernel Locality Sensitive Hashing (KLSH)

Learn LSH-type codes but when only kernel similarity, &(x,y), iIs known
— Data may not be given in explicit vector space

A different view of LSH
Pria(x) = h(y)] = sim (x, y)

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

49

Kernel Locality Sensitive Hashing (KLSH)

Learn LSH-type codes but when only kernel similarity, &(x,y), iIs known
— Data may not be given in explicit vector space

A different view of LSH
/[O, 1]

PriA(x) = h(y)] = sim (x, y)
query-time to find (1+¢)-neighbor O(n1/(1+‘9))

Example

if ~ N(O, I
Sim(x,y):xTy hk(X):{l’ It rix>07 (0.7)

0 otherwise

T
N

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 50

Kernel Locality Sensitive Hashing (KLSH)

Learn LSH-type codes but when only kernel similarity, &(x,y), iIs known
— Data may not be given in explicit vector space

A different view of LSH
/[O, 1]

PriA(x) = h(y)] = sim (x, y)
query-time to find (1+¢)-neighbor O(n1/(1+8))

Example

if 1 ~ N(0, I
Sim(x,y):xTy hk(X):{l’ Itrx>07 ©.7)

0 otherwise

T
N

Suppose we are given only similarity implicit (unknown) feature vector

sim (x,) = k(x,) = 0() (@)

How to compute the hash function when vector is not known ?
Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 51

Kernel Locality Sensitive Hashing (KLSH)

Goal: To find appropriate random projection in implicit feature space rTCD(x)

From RKHS argument

r= Z?:lwiq)(xi) ~ Z{;lwid)(xi) randomly chosen p <<n
= Dw

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

Kernel Locality Sensitive Hashing (KLSH)

Goal: To find appropriate random projection in implicit feature space rTCD(x)

From RKHS argument
r= Z?:lwiq)(xi) ~ Zf;lwid)(xi) randomly chosen p <<n
= Pw

Find w such that E[r] =0, E[rrT] =1

weK V2

K=0'd, e = [0,0101..]"

Y

of 1's is a parameter

h(®(x)) = sgn(r’ ®(x) =sgn 37 wik(x, x;)

non-linear hashing

usually slower run-time !

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 53

KLSH vs LSH

Sanjiv Kumar

Recall

10/12/2010

RBF Kernel Linear Scan
= BB KLSH

== -2 Linear Scan
=—de—| -2 | SH

200 300 400 500 ®OOD TOO

800 900 1000
Number of nearest neighbors (k)

n = 100K image patches

EECS6898 — Large Scale Machine Learning

Kulis et al.[12]

54

Semantic Hashing (RBM)

Nonlinear method to create binary codes using Restricted Boltzmann
Machines (RBMS)

— Special type of Markov Random Fields _
h O Q binary
W

p(v,h) =exp{-E(v,h)} Z

p(v)=2,p(v,h) . O O O

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

55

Semantic Hashing (RBM)

Nonlinear method to create binary codes using Restricted Boltzmann
Machines (RBMS)

— Special type of Markov Random Fields _
h O O binary

p(v,h) =exp{-E(v,h)} Z

W
p(v)=2,p(v,h) . Q O O

plh; =1v)=0(b;+2,;w;v;) o(x)=1@1+e™)
p(v; | h) = N(f(h),)

Learn parameters (W and b) using (approx) max-likelinood p(v)

How to learn codes ? - Stack multiple RBMs (Deep Belief Networks)

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

Semantic Hashing (RBM)

Deep Belief Networks
— Similar functionality as multi-layer Neural Nets

T RBM| I 2000 |
a I w i [So]
| | 300 I | 1 W, +e5
::i::::11:11:::i:f:f:7:::*:1: | 500 |
o =00 1 RBME —
1 W, i | 32 | Code Layer
I - T— i S L
!_7 S T _:I I 5 0 0 I
| =00 | RBM T wlhi,
'y i [500 |
i v Wy i 1 “-’-1[+E.1
| I 2000 | | | 2000 |
Recursive Pretraining Fine—tuning
Output of each stage Back-propagation
used as input to next (coordinate descent) with

Auto-encoding objective

Many parameters, architecture choices, usually slow to train and to apply !

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning Salakhutdinov et al.[8] 57

Binary Reconstructive Embedding

Construct binary codes by minimizing difference between original (metric)
distance and hamming distance

Iy, (x) =sgn(wf v(x)) where v(x)=[L K (xg, %), K (3 ,2)]"

kernel chosen randomly
or learned

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 58

Binary Reconstructive Embedding

Construct binary codes by minimizing difference between original (metric)
distance and hamming distance

hy (x) = Sgn(wkv(x)) where v(x)=[1, K(x; ,x),..., K(x; x)]

kernel chosen randomly
or learned

W:argmin Z[dM(Xl,X) dH(xz’x)]
(x x;)el

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 59

Binary Reconstructive Embedding

Construct binary codes by minimizing difference between original (metric)
distance and hamming distance

e (x) =sgn(wi v(x)) where v(x)=[L K (x;,x),.... K (g, x)]"

kernel chosen randomly
or learned

N

W =argmin Z[a’M(x,-,xj)—a’H(x,-,xj)]2

/4 (xl_’)yg/]ﬂ \

W2 —x,|° @A I () =y ()T

» Data scaled to unit norm to remove the effect of scale (but this changes
the distance between points), uniform scaling better

» Coordinate Descent for optimization, deals with discontinuities

« EXpensive to compute codes, learning appropriate anchors for kernel
representations hard

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 60

Binary Reconstructive Embedding

Testing based on points retrieved within hamming radius 3

=3
. < o
= o ==

—

Prop. of good neighbors with Hamm. dstance <
=

Sanjiv Kumar

LSH is quite close even for moderate number of bits !

10/12/2010

EECS6898 — Large Scale Machine Learning

Kulis et al.[13]

LabelMe Nursery
. o -

g
#0.8
E ==s Spectral hashing
:‘E 0.6r mm R B

==BRE) %ﬂ'q-' *'—S:l:'-' TTTT I

==sSpectral hashing 5 PR L

IIIIIRBM -gl{]

==LSH = F

' 20 0 40 50 o 20 0 40 50
Number of bits Number of bits

61

Semi-supervised Hashing

Suppose a few neighbor pairs and a few non-neighbor pairs are given

B—7 Neighbor pair
A---A Non-neighbor pair

Maximum entropy principle

Semi-supervised Formulation

max {.J(hi(X;)) + 7 - %ntrﬂpy(hk (X)E}

hk \ J

Y I .
Empirical fitness Regularizer
(labeled data) (all data)

Wang et al.[14]

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 62

Flickr-270K

e
Y

=
=

=
[

*
-F»

=

\
0.15F— BI;E \‘K \
SHorth \;‘ \\

1
0
1
\

e
)
N,

Precision within Hamming radius 2
z 2
Precision of the first 500 samples

eSS e N\
0.05-HeSPLH
% 16 4 32 B 05 16 24 32 o 48 64
The number of bits The number of bits

4 g 120 :
3.5 ..._.gLSH E !
= H ®
2 > Harn F 8o/
g eSSHnononh o
'; PLH ... g &
) g :
E é‘ Q 40 ’ |
8 o "
= O i
0.5 4 & & O '
‘ \
0 | = —— 9
8 16 24 32 8 64 1 4 o
The number of bits The number of bits

Wang et al.[15]

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 63

References

8.
9.

10.
11.

12.

13.

14.

15.

A. Broder, “On the resemblance and containment of documents,” In Compression and Complexity of Sequences, 1997.

P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse of dimensionality,” in Proc. of
30th ACM Symposium on Theory of Computing, 1998

A. Gionis, P. Indyk, R. motwani, “Similarity Search in High Dimensions via Hashing,” In VLDB, 1999.

G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with parameter-sensitive hashing,” in Proc. of the
IEEE International Conference on Computer Vision, 2003.

M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-sensitive hashing scheme based on p-stable distributions,”
in Annual Symposium on Computational Geometry, 2004.

G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-Neighbor Methods in Learning and Vision: Theory and Practice
(Neural Information Processing). The MIT Press, 2006.

Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multiprobe LSH: efficient indexing for high-dimensional
similarity search,” in Proceedings of the 33rd international conference on Very large databases, 2007

R. Salakhutdinov and G. Hinton, “Semantic Hashing,” ACM SIGIR, 2007.

Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2008.

O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash and tf-idf weighting. BMVC., 2008.
M. Raginsky and S. Lazebnik, “Locality-Sensitive Binary Codes from Shift-Invariant Kernels,” in Proc. of Advances in
neural information processing systems, 2009.

B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scalable image search,” Proc. of the IEEE
International Conference on Computer Vision, 2009.

B. Kulis and T. Darrell, “Learning to Hash with Binary Reconstructive Embeddings,” in Proc. of Advances in Neural
Information Processing Systems, 2009

J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for scalable image retrieval,” in IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), 2010.

J. Wang, S. Kumar, and S.-F. Chang, “Sequential projection learning for hashing with compact codes,” in Proceedings
of the 27th International Conference on Machine Learning, 2010.

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning 64

	Approximate Nearest Neighbor (ANN) Search - II
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Hashing Techniques
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Spectral Hash
	Spectral Hash
	Spectral Hash Experiment
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	References

