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Two popular ANN approaches

Tree approaches
— Recursively partition the data: Divide and Conquer
— Expected query time: O(log n) (with constants exponential in dimension)
— Performance degrades with high-dimensional data
— Large storage needs
— Original data is required at run-time

Hashing approaches
— Each item in database represented as a code

— Significant reduction in storage

» For 64 bit codes, just 8GB storage instead of 40TB
— Expected query time: O(1) or sublinear in n

e Search in 64-bit hamming space: ~13 sec instead of ~15 hrs/query
— Compact codes preferred

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning




Example: Binary Codes

Linear projection (hyperplane) based partitioning

0 I
010... 100... 111... OO1l... 110...

No recursive partitioning unlike trees!
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Hashing: Main Steps

1. Training
— Define a model to convert an input item in a code

— Learn the parameters of the model
» Possibly using a subset of randomly sampled database items
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Hashing: Main Steps

1. Training
— Define a model to convert an input item in a code

— Learn the parameters of the model
» Possibly using a subset of randomly sampled database items

Giveninput x  Learn h(x) ={m(x),hy(x),....h,(x)} " (x) e Z

Example: Binary codes using linear projections
b (x)=sgn(wi x+b,) I (x)e{-L15
equivalentto Y (x) =Q+h (x))/2 Yk (x) {0, 1}
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Hashing: Main Steps

1. Training
— Define a model to convert an input item in a code

— Learn the parameters of the model
» Possibly using a subset of randomly sampled database items

Giveninput x  Learn h(x) ={h(x),hy(x),.... h,(X)} " (x) € Z

Example: Binary codes using linear projections
b (x)=sgn(wi x+b,) I (x)e{-L15
equivalentto Y (x) =Q+h (x))/2 Yk (x) {0, 1}

Training goal: To learn parameters for m hash functions
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Hashing: Main Steps

2. Indexing
— Represent each item in the database as a code

— In some cases, organize all the codes in a hash table (inverse-lookup):
For a given code, return all the points with the same code
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Hashing: Main Steps

2. Indexing
— Represent each item in the database as a code

— In some cases, organize all the codes in a hash table (inverse-lookup):
For a given code, return all the points with the same code

X1 01100
X5 11100
X, 01100

database code
items
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Hashing: Main Steps

2. Indexing
— Represent each item in the database as a code

— In some cases, organize all the codes in a hash table (inverse-lookup):
For a given code, return all the points with the same code

X1 01100
X9 11100 11100 X5
X, 01100 11l

Hash-Table items

database code (Inverse Lookup)

items
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Hashing: Main Steps

3. Querying

Sanjiv Kumar

Convert the query to code

Find all items with the same code in database using hash table
* Return all points within a small radius of query in code space
» Use multiple codes (and tables) to increase recall

Rank all the database items according to their distance from query in
code space
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Hashing: Main Steps

3. Querying
— Convert the query to code
— | Find all items with the same code in database using hash table

* Return all points within a small radius of query in code space
» Use multiple codes (and tables) to increase recall

— Rank all the database items according to their distance from query in

code space
01100 X1, X,
/ 11100 | [
q = h(q) = onoV'
(11100

codes at [ 00100 : 11111
hamming{ 01000 ) itemn
radius1 | 01110 Inlj/arSh Iablle ems

| 01101 (Inverse Lookup)
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Hashing: Main Steps

3. Querying
— Convert the query to code
— Find all items with the same code in database using hash table

* Return all points within a small radius of query in code space
» Use multiple codes (and tables) to increase recall

— Rank all the database items according to their distance from query in

code space
01100 | |x1,x,
/////l 11100 | [*2
q = h(g)= OllOVv : O(nm) space
(11100 ' O@1) time
codes at | 00100 : 11111

hamming{ 01000 ) items
adius 1 | 01110 Hash-Table

Inverse Looku
| 01101 ( P)

Number of codes to search at radius » : O(m")
Buckets for many codes may be empty: with high probability for large m !
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Hashing: Main Steps

3. Querying
— Convert the query to code

— Find all items with the same code in database using hash table

* Return all points within a small radius of query in code space
» Use multiple codes (and tables) to increase recall

— Rank all the database items according to their distance from query in

code space
Table 1 Table 2
01100 |x1,X, 11100 Xy
Multiple 11100  |X2 00100 X2
Codes
(1
h™(x) O(nLm) space
each | 11111 10111 il .
m-bit ) I O(L) time
) 01100 00100
~—— —_—— —
q
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Hashing: Main Steps

3. Querying
— Convert the query to code

— Find all items with the same code in database using hash table
* Return all points within a small radius of query in code space
» Use multiple codes (and tables) to increase recall

— | Rank all the database items according to their distance from query in

code space
distance
X1 01100 0
Exhaustive X9 11100 1 et
distancesin ¢ = /(g) = 01100 > closest
code space k items
X, 01100 o
O(n) linear search ! database code At most m
' items distance levels

Sanjiv Kumar 10/12/2010
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Hashing Techniques

1. Unsupervised — use unlabeled data to learn hash functions

» Locality Sensitive Hashing (LSH), PCA Hashing, Spectral Hashing,
Min-Hashing, Kernel-LSH, ...

2. Supervised — use labeled pairs to learn hash functions
» Boosted Hashing, Binary Reconstructive Embedding, ...

3. Semi-Supervised — use labeled pairs and unlabeled data both
— Sequential Learning,...

4. Type of Hash Function
e Linear/Quasi-linear: LSH, Min-Hash, SH, PCA-Hash, ...
 Nonlinear: KLSH, RBM, BRE,...

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning
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Locality Sensitive Hashing (LSH)

A family of hash functions H ={i: X — Z} is called (11,7, p1, p2)- sensitive
if for any x1,xp € X

1 d(xl,xz) < n then Pr[h(xl) = ]’l(Xz)] > P1
If d(xl,xz) > 1y then Pr[h(xl) = h(Xz)] < D2.

where 1 <rp and py > p;
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Locality Sensitive Hashing (LSH)

A family of hash functions H ={i: X — Z} is called (11,7, p1, p2)- sensitive
if for any x1,xp € X

1 d(xl,xz) < n then Pr[h(xl) = ]’l(Xz)] > P1
If d(xl,xz) > 1y then Pr[h(xl) = h(Xz)] < D2.

where 1 <rp and py > p;

A simple LSH family

hk(x):\_(w,{x+bk)/tj Wy ~1%\(w) by ~U[0, 7]

N\
s-stable distribution
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Locality Sensitive Hashing (LSH)

A family of hash functions H ={i: X — Z} is called (11,7, p1, p2)- sensitive
if for any x1,xp € X

1 d(xl,xz) < n then Pr[h(xl) = ]’l(Xz)] > P1
If d(xl,xz) > 1y then Pr[h(xl) = h(Xz)] < D2.

where 11 <rp and py > p;

A simple LSH family

hk(x):\_(w,{x+bk)/tj Wy ~1%\(w) by ~U[0, 7]

N\
s-stable distribution

Special case: hk(x) 0 1 2 3 4

binary hashing
w;{x + Dby,

t
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s-Stable Distributions

A distribution P () is called s-stable if there exists an s > 0 such that for

any x € K9, and any w with i.i.d. w'~ P, then
o= [

= (o —x)" W~ (e — xp)| W'

Neighboring points tend to have similar projections = Binning projections has LSH property !
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s-Stable Distributions

A distribution P () is called s-stable if there exists an s > 0 such that for
any x € R9, and any w with i.i.d. w'~ P, then

xlw~ HxHS w

= (o —x)" W~ (e — xp)| W'

Neighboring points tend to have similar projections = Binning projections has LSH property !

Special Case: s = 2 (Euclidean distance)

Sanjiv Kumar

w' ~P, =N(0,1)= w~ N(0,I)

E[x'w]=0
Var[xT wl=F [xTWWTX] =x'E [WWT]X = HX\\%

xTW ~ Htzwl Gaussian distribution is 2-stable !

Which distribution is 1-stable? Cauchy !
One can find s-stable distribution for all s (0, 2]
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Collision Probability

Suppose u = |(x; —x)|, and f;(a)is pdf of absolute of s-stable random variable,
l.e., a=|w'|, then probability of collision,

pu) =Prlh(x) = h(xp)] = [y /) £ (alu)(L-alt)da

p(u) increases as u decreases !
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Collision Probability

Suppose u = |(x; —x)|, and f;(a)is pdf of absolute of s-stable random variable,
l.e., a=|w'|, then probability of collision,

pu) =Prlh(x) = h(xp)] = [y /) £ (alu)(L-alt)da

p(u) increases as u decreases !

How to choose t ?
t =argmin p = argmin[log(@/ p;)/log@/ p,)]
t {

N Can be computed

analytically fors =1, 2
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Collision Probability

Suppose u = |(x; —x)|, and f;(a)is pdf of absolute of s-stable random variable,
l.e., a=|w'|, then probability of collision,

pu) =Prlh(x) = h(xp)] = [y /) £ (alu)(L-alt)da

p(u) increases as u decreases !

How to choose t ?
t =argmin p = argmin[log(@/ p;)/log@/ p,)]
t {

E:S: N Can be Computed

analytically fors =1, 2

Pl 1 pnottoo sensitive to t if
sufficiently away from O !

Datar et al.[5]
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Parameter selection in LSH

How many tables (L) and how many bits per table (m)?

Given a query ¢ and its near-neighbor x', suppose each hash function
satisfies

Prify(q) = i (x)]= py

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning
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Parameter selection in LSH

How many tables (L) and how many bits per table (m)?

Given a query ¢ and its near-neighbor x’, suppose each hash function
satisfies

Pria (q) = ki (X)]= py
For m-bit code  Pr[A(q) = h(x")]= p{"

Probability of collision falls exponentially with 72 !
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Parameter selection in LSH

How many tables (L) and how many bits per table (m)?

Given a query ¢ and its near-neighbor x’, suppose each hash function
satisfies

Pria (q) = ki (X)]= py
For m-bit code  Pr[A(q) = h(x")] = p{"

Probability of collision falls exponentially with m !

Probability that ¢ and x" will fail to collide for all L tables
L
<(-p")
Bound the probability that ¢ and x" will collide for at least one of L tables

1-(1- p"t <1-6

L>—log(1/6)/log(l— p{")
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Precision-Recall Tradeoff

e For high precision, longer codes (i.e. large m) preferred
 Large m reduces the probability of collision exponentially - low recall

« Many tables (large L) necessary to get good recall - Large storage

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning
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Precision-Recall Tradeoff

e For high precision, longer codes (i.e. large m) preferred
 Large m reduces the probability of collision exponentially - low recall

« Many tables (large L) necessary to get good recall - Large storage

Design L and m such that run-time is minimized for a given application:

Ttotal = Th + 7,
/ \

To compute L m-bit To compute exact
hash functions and distance with retrieved
retrieve points from points and return top k
tables via lookups (sublinear in n)

 Larger m increases T, but decreases T,
 Empirically estimate total time averaged over many queries
e Insome cases, 7. is simply vote over how many tables returned an item

How to avoid large number of tables?
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Multi-Probe LSH

Strategy to increase recall without using large number of tables

Basic idea
« If two neighbors do not fall in the same bucket, they should fall in a
nearby one, e.g., within a hamming distance of 1

probing sequence:
(ﬂ'll ﬁE: ﬂS: ﬁd., }

PN

> g1(q)+4A;
> alg
3 gi(q)
3 gi(g)+A4
> 9u(9)+As
> gi(q)
> gi(q)+A+
g1 semesesees .- gi  eeemesees == QO

Lv et al.[7]
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Multi-Probe LSH

Strategy to increase recall without using large number of tables

Basic idea
« If two neighbors do not fall in the same bucket, they should fall in a
nearby one, e.g., within a hamming distance of 1

probing sequence: How to choose the sequence?
(J&'IJAE:ﬂS:ﬁtl: }

q
tables with smaller average
q gap are given priority

> 0:(q)+A; T
> al(g ka-l-bk
S 9i1(9)
> 9i(9)+As q
2 gu(g)+As
> giq) Iy :
> Qi(Q)+Ay
‘ ‘ ‘ WZT x+by
gq  semeseness .- gi  memeemee = g
Lv et al.[7]
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Data-Dependent Projections

— PCA-Hash: Let’s focus on binary codes

eigenvector

hy (x) = sgn(wkT x+b,) wy ~eigenvec (Cov(X))

Projection on max variance directions followed by median threshold

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning
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Data-Dependent Projections

— PCA-Hash: Let’s focus on binary codes

eigenvector

hy (x) = sgn(wkT x+b,) wy ~eigenvec (Cov(X))

Projection on max variance directions followed by median threshold

Performance degrades with larger number of bits
— Variance decreases rapidly for most real-world data
— Can one reuse the high variance directions?
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Spectral Hash

Data-dependent learning of binary codes %(x) such that

R

similarity between x, -xj\ ,

min 3 () — ()
I,]

subject to Sh(x;)=0 Vk balanced partitioning / (x) e{-1 1}
I

D b (x))hy(x;)=0 Vk=[ uncorrelated
]
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Spectral Hash

Data-dependent learning of binary codes %(x) such that
ilarioy b -
Simi arlty etween X; .x/ \ ,
manWinh(xl-) —h(xj)H Graph Laplacian = O(n?)
]

subjectto XA (x;)=0 ¥k balanced partitioning 7 (x) € {~1, 1}
I
D b (x))hy(x;)=0 Vk=[ uncorrelated
I

Issues
— Computationally extremely expensive (needs complete NN search)
— Balanced graph partitioning problem even with single bit > NP hard

Approximation

— Assumes uniform data distribution and solves 1D Laplacian
eigenfunctions analytically
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Spectral Hash

Three main steps
— Extract max-variance directions using PCA
— Select which direction to pick next based on modes of 1D-Laplacian
» High variance PCA directions may be picked again
— Create bits by thresholding sinusoidal eigenfunctions at zero
» slower than simple thresholding

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning
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Spectral Hash

hy (x) = sgn(cos(awkT x)) wy; ~eigenvec (Cov(X))
Three main steps

— Extract max-variance directions using PCA

— Select which direction to pick next based on modes of 1D-Laplacian
» High variance PCA directions may be picked again

— Create bits by thresholding sinusoidal eigenfunctions
» slower than simple thresholding

In practice, PCA-hash with median threshold may do better
but both suffer from low-variance directions
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Spectral Hash Experiment

Spectral hashing

=
ot

{3

stumps boosting SSC

£ B

B

E
—
73]
I

Proportion good neighbors for hamming distance < 2

number of bits

— Testing using Hamming radius around the query
— Dense 384-dim vector - PCA-Hash gives similar or better performance
— For Hamming-radius testing, better to use LSH with median threshold

Weiss et al.[9]
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Shift-Invariant Kernel Embedding

Use random projections along with sinusoidal thresholding

Key idea
— Suppose similarity between a pair of points is given by a shift-invariant
kernel, i.e.,

$(x,2) = K(x,0) = K(x—y) <1 K(x-x)=K(0)=1

Examples  s(x,y) =exp(—y |x —sz /2) L,distance
s(x,y) =exp(—y |x - yHl) L, distance
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Shift-Invariant Kernel Embedding

Use random projections along with sinusoidal thresholding

Key idea
— Suppose similarity between a pair of points is given by a shift-invariant
kernel, i.e.,

$(x,2) = K(x,y) = K(x—y) <1 K(x-x)=K(0)=1

Examples  s(x,y) =exp(—y |x —yH2 /2) L, distance
s(x,y) =exp(—y |x - yHl) L, distance

Want to learn m-bit
code h(x) such that  f(K(x—y)) < (&/ m)d gy (h(x), h()’)J) < f2(K(x—y))

Y
\)rmalized Hamming distan7

decreasing functions - small for similar points

AD) =10 =0, 41(0)=f2(0)=c>0
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Shift-Invariant Kernel Embedding

Main steps

— Approximate shift-invariant kernels as dot products of random
fourier features

— Pick directions from distribution induced by kernel - similar to
s-stable directions

— Create bits by thresholding sinusoidal eigenfunctions
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Shift-Invariant Kernel Embedding

standard
conversion into 0/1

Ty (x) = sgn(cos(wkT X+by)+t,)  w, ~N(O,yl) b ~U[O, 2x] # ~U[-1,1]
—

critical for performance

Main steps

— Approximate shift-invariant kernels as dot products of random
fourier features

— Pick directions from distribution induced by kernel - similar to
s-stable directions

— Create bits by thresholding sinusoidal eigenfunctions

Performance (with hamming ranking) better if large number

of bits are used !
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Shift-Invariant Kernel Embedding

SIKE —=Tesis Spectral Hash
| q—— s N : —o— 32 bits i
: 2600 —e—Gabits A ? ' ' —6— 15 bits
128 bits 1 632 bits
| —e—2s81its —®—54 bits
0.8} 515 bits 0.8 128 bits |
q B, | —e— 1024 bits +:?g :::t:
- 1 e —8— 1024 bits
-5 . £ 0.6} 1
8 @
g 3
004 0.4
0.2} 02+
0 i i i - 0 i i i i
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Sanjiv Kumar

Recall

Recall

Test using exhaustive hamming ranking with all database items
Dense 384-dim vectors
After 256 bits, performance of Spectral Hash falls

Even regular LSH quite powerful if large number of bits are used

Raginsky et al.[11]
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Min-Hash

A method to estimate Jaccard similarity between sets (or vectors)
— Jaccard similarity between two sets (4, B) or two vectors (x, y)

ANB _ > min(x', ")
AU B| > max(x', ")

J(A4,B) = J(x,y) vVxy' =0

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning
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Min-Hash

A method to estimate Jaccard similarity between sets (or vectors)
— Jaccard similarity between two sets (4, B) or two vectors (x, y)

‘AHB‘ X me(x y) xi i>0
AUB )= > max(x' y){ -

— The above two definitions equivalent - represent each set as a binary
vector of length [4U B

J(4,B) =

relation with L, ?
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Min-Hash

A method to estimate Jaccard similarity between sets (or vectors)
— Jaccard similarity between two sets (4, B) or two vectors (x, y)

‘AHB‘ X me(x y) xi i>0
AUB )= > max(x' y){ -

— The above two definitions equivalent - represent each set as a binary
vector of length [4U B

— Suppose 4, (.) is a random function that maps each item to a real number

J(4,B) =

relation with L, ?

I (x') =y (x7) and Pr[iy (x') < Iy (x/)]=0.5
simple choice A, (x')=U[0,1]
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Min-Hash

A method to estimate Jaccard similarity between sets (or vectors)
— Jaccard similarity between two sets (4, B) or two vectors (x, y)

‘AHB‘ me(x y) in z>0
AUB > max(x’ y)\

— The above two definitions equivalent - represent each set as a binary
vector of length [4U B

— Suppose 4, (.) is a random function that maps each item to a real number

J(A,B) = J(x,y) =

relation with L, ?

b (x') = by (x7) and Pr[h, (x') < h, (x/)]=0.5
simple choice A, (x')=U[0,1]

min-hash  m(A4, k) =argmin hy (xi)

x'eA

Prim(A4,h) =m(B,h.)]=J(4,B)
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Min-Hash

min-hash  m(4,h;)=argmin i, (xi)

x'eAd

suppose m(AU B, h;) = x"
if xecANB = x" =m(4, h,) &x" =m(B, )

AN

Thus Pr[m(4, hy) =m(B, ;)] = AUB

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning
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Min-Hash

min-hash m(A4, k) =argmin i (x;)

x;eA

suppose m(AU B, h) = x"
if xecANB =x" =m(4, h,) &x" =m(B, )

4NB

Thus Prim(4, by) = m(B, hk)]=‘AUB‘

Sketches

— For retrieval efficiency, min-hashes are grouped in s-tuples. For s
random functions (/,..., 4),

sketch (A) = (m(A4,h),...,m(A4, hy))
Pr[sketch (A) = sketch (B)] = J (4, B)®
* In practice, many sketches are created and sets (i.e. vectors) that have at
least k sketches in common are retrieved for further testing.

» Generalizations to non-binary vectors, continuous valued vectors possible

» Good performance for high-dim (but mostly sparse) vectors
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Kernel Locality Sensitive Hashing (KLSH)

Learn LSH-type codes but when only kernel similarity, &(x,y), iIs known
— Data may not be given in explicit vector space

A different view of LSH
Pria(x) = h(y)] = sim (x, y)

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning
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Kernel Locality Sensitive Hashing (KLSH)

Learn LSH-type codes but when only kernel similarity, &(x,y), iIs known
— Data may not be given in explicit vector space

A different view of LSH
/[O, 1]

PriA(x) = h(y)] = sim (x, y)
query-time to find (1+¢)-neighbor O(n1/(1+‘9))

Example

if ~ N(O, I
Sim(x,y):xTy hk(X):{l’ It rix>07 (0.7)

0 otherwise

T
N
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Kernel Locality Sensitive Hashing (KLSH)

Learn LSH-type codes but when only kernel similarity, &(x,y), iIs known
— Data may not be given in explicit vector space

A different view of LSH
/[O, 1]

PriA(x) = h(y)] = sim (x, y)
query-time to find (1+¢)-neighbor O(n1/(1+8))

Example

if 1 ~ N(0, I
Sim(x,y):xTy hk(X):{l’ Itrx>07 ©.7)

0 otherwise

T
N

Suppose we are given only similarity implicit (unknown) feature vector

sim (x,) = k(x,) = 0() (@)

How to compute the hash function when vector is not known ?
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Kernel Locality Sensitive Hashing (KLSH)

Goal: To find appropriate random projection in implicit feature space rTCD(x)

From RKHS argument

r= Z?:lwiq)(xi) ~ Z{;lwid)(xi) randomly chosen p <<n
= Dw
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Kernel Locality Sensitive Hashing (KLSH)

Goal: To find appropriate random projection in implicit feature space rTCD(x)

From RKHS argument
r= Z?:lwiq)(xi) ~ Zf;lwid)(xi) randomly chosen p <<n
= Pw

Find w such that E[r] =0, E[rrT] =1

weK V2

K=0'd, e = [0,0101..]"

Y

# of 1's is a parameter

h(®(x)) = sgn(r’ ®(x) =sgn 37 wik(x, x;)

non-linear hashing

usually slower run-time !
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KLSH vs LSH

Sanjiv Kumar

Recall

10/12/2010

RBF Kernel Linear Scan
= BB KLSH

== -2 Linear Scan
=—de—| -2 | SH

200 300 400 500 ®OOD  TOO

800 900 1000
Number of nearest neighbors (k)

n = 100K image patches

EECS6898 — Large Scale Machine Learning

Kulis et al.[12]
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Semantic Hashing (RBM)

Nonlinear method to create binary codes using Restricted Boltzmann
Machines (RBMS)

— Special type of Markov Random Fields _
h O Q binary
W

p(v,h) =exp{-E(v,h)} Z

p(v)=2,p(v,h) . O O O

Sanjiv Kumar 10/12/2010 EECS6898 — Large Scale Machine Learning

55



Semantic Hashing (RBM)

Nonlinear method to create binary codes using Restricted Boltzmann
Machines (RBMS)

— Special type of Markov Random Fields _
h O O binary

p(v,h) =exp{-E(v,h)} Z

W
p(v)=2,p(v,h) . Q O O

plh; =1v)=0(b;+2,;w;v;) o(x)=1@1+e™)
p(v; | h) = N(f(h),)

Learn parameters (W and b) using (approx) max-likelinood p(v)

How to learn codes ? - Stack multiple RBMs (Deep Belief Networks)
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Semantic Hashing (RBM)

Deep Belief Networks
— Similar functionality as multi-layer Neural Nets

T RBM| I 2000 |
a I w i [So ]
| | 300 I | 1 W, +e5
::i::::11:11:::i:f:f:7:::*:1: | 500 |
o =00 1 RBME —
1 W, i | 32 | Code Layer
I - T— i S L
!_7 S T _:I I 5 0 0 I
| =00 | RBM T wlhi,
'y i [ 500 |
i v Wy i 1 “-’-1[+E.1
| I 2000 | | | 2000 |
Recursive Pretraining Fine—tuning
Output of each stage Back-propagation
used as input to next (coordinate descent) with

Auto-encoding objective

Many parameters, architecture choices, usually slow to train and to apply !
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Binary Reconstructive Embedding

Construct binary codes by minimizing difference between original (metric)
distance and hamming distance

Iy, (x) =sgn(wf v(x)) where v(x)=[L K (xg, %), K (3 ,2)]"

kernel chosen randomly
or learned
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Binary Reconstructive Embedding

Construct binary codes by minimizing difference between original (metric)
distance and hamming distance

hy (x) = Sgn(wkv(x)) where v(x)=[1, K(x; ,x),..., K(x; x)]

kernel chosen randomly
or learned

W:argmin Z[dM(Xl,X ) dH(xz’x )]
(x x;)el
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Binary Reconstructive Embedding

Construct binary codes by minimizing difference between original (metric)
distance and hamming distance

e (x) =sgn(wi v(x)) where v(x)=[L K (x;,x),.... K (g, x)]"

kernel chosen randomly
or learned

N

W =argmin Z[a’M(x,-,xj)—a’H(x,-,xj)]2

/4 (xl_’)yg/]ﬂ \

W2 —x,|° @A I () =y ()T

» Data scaled to unit norm to remove the effect of scale (but this changes
the distance between points), uniform scaling better

» Coordinate Descent for optimization, deals with discontinuities

« EXpensive to compute codes, learning appropriate anchors for kernel
representations hard
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Binary Reconstructive Embedding

Testing based on points retrieved within hamming radius 3

=3
. < o
= o ==

—

Prop. of good neighbors with Hamm. dstance <
=

Sanjiv Kumar

LSH is quite close even for moderate number of bits !

10/12/2010

EECS6898 — Large Scale Machine Learning

Kulis et al.[13]

LabelMe Nursery
. o -

g
#0.8
E ==s Spectral hashing
:‘E 0.6r mm R B

==BRE ) %ﬂ'q-' *'—S:l:'-' TTTT I

==sSpectral hashing 5 PR L

IIIIIRBM -gl{]

==LSH = F

' 20 0 40 50 o 20 0 40 50
Number of bits Number of bits
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Semi-supervised Hashing

Suppose a few neighbor pairs and a few non-neighbor pairs are given

B—7 Neighbor pair
A---A Non-neighbor pair

Maximum entropy principle

Semi-supervised Formulation

max {.J(hi(X;)) + 7 - %ntrﬂpy(hk (X)E}

hk \ J

Y I .
Empirical fitness Regularizer
(labeled data) (all data)

Wang et al.[14]
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