Approximate Nearest Neighbor (ANN) Search - I

Sanjiv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 2010

Matching and Retreival

Matching and Retreival

Typical Procedure

- 1. Convert the database items as well as query into vectors in an appropriate feature space
- 2. Define a distance or similarity measure for a pair of vectors
- 3. Find nearest neighbors by explicit search over entire database

Approximate !

* Vector space not necessary if similarity can be defined for items directly

Kernel Density Estimation

Given an unlabeled training set, $\{x_i\}_{i=1...n}$ learn a nonparametric density function p(x)

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} k \left(\frac{x - x_i}{h} \right)$$

$$\underbrace{N(x_i, \sigma^2 I)}_{N(x_i, \sigma^2 I)}$$

- Too expensive for large n
- Many kernels have rapid (exponential) fall off
- Nearest Neighbors sufficient but expensive for large n

Large-scale Approximate NN search

- Similar arguments for training parametric models e.g., Gaussian Mixture Models with large number of components!

Graph-based methods

Commonly used by many machine learning techniques

- Spectral clustering, manifold learning, semi-supervised learning, ...

Pairwise NN search problem $- O(n^2)$!

10/5/2010 EECS6898 – Large Scale Machine Learning Sanjiv Kumar

Formal Definition

Given a database $X = \{x_i\}_{i=1...n}$ $x_i \in \Re^d$ and a query $q \in \Re^d$

 ε -Neighbor $\hat{x} \in X$ such that $d(q, \hat{x}) \leq \varepsilon$

Nearest Neighbor $\hat{x} \in X$ such that $d(q, \hat{x}) \leq d(q, x) \quad \forall x \in X \quad O(nd)!$

Formal Definition

Given a database $X = \{x_i\}_{i=1...n}$ $x_i \in \Re^d$ and a query $q \in \Re^d$

 ε -Neighbor $\hat{x} \in X$ such that $d(q, \hat{x}) \leq \varepsilon$

Nearest Neighbor $\hat{x} \in X$ such that $d(q, \hat{x}) \leq d(q, x) \quad \forall x \in X \quad O(nd)!$

To find nearest neighbor of a query in n = 1B database with d = 10K: 15 hrs To build graphs with n = 10M, d = 10K: 155 yrs

Formal Definition

Given a database $X = \{x_i\}_{i=1...n}$ $x_i \in \Re^d$ and a query $q \in \Re^d$

 ε -Neighbor $\hat{x} \in X$ such that $d(q, \hat{x}) \leq \varepsilon$

Nearest Neighbor $\hat{x} \in X$ such that $d(q, \hat{x}) \leq d(q, x) \quad \forall x \in X \quad O(nd)!$

To find nearest neighbor of a query in n = 1B database with d = 10K: 15 hrs To build graphs with n = 10M, d = 10K: 155 yrs

Speed-up possible

- Distance-preserving dimensionality reduction e.g., randomized projections ! → usually not sufficient for large databases
- Fast distance evaluation or reduce the search space

What about storage?

Formal Definition

Given a database $X = \{x_i\}_{i=1...n}$ $x_i \in \Re^d$ and a query $q \in \Re^d$

 ε -Neighbor $\hat{x} \in X$ such that $d(q, \hat{x}) \leq \varepsilon$

Nearest Neighbor $\hat{x} \in X$ such that $d(q, \hat{x}) \leq d(q, x) \quad \forall x \in X \quad O(nd)!$

To find nearest neighbor of a query in n = 1B database with d = 10K: 15 hrs To build graphs with n = 10M, d = 10K: 155 yrs

Speed-up possible

- Distance-preserving dimensionality reduction e.g., randomized projections ! → usually not sufficient for large databases
- Fast distance evaluation or reduce the search space

What about storage?

For n = 1B database with d = 10K: 40 TB

Formal Definition

Given a database $X = \{x_i\}_{i=1...n}$ $x_i \in \Re^d$ and a query $q \in \Re^d$

 ϵ -Neighbor $\hat{x} \in X$ such that $d(q, \hat{x}) \leq \epsilon$

Nearest Neighbor $\hat{x} \in X$ such that $d(q, \hat{x}) \leq d(q, x) \quad \forall x \in X \quad O(nd)!$

To find nearest neighbor of a query in n = 1B database with d = 10K: 15 hrs To build graphs with n = 10M, d = 10K: 155 yrs

Speed-up possible

- Distance-preserving dimensionality reduction e.g., randomized projections $! \rightarrow$ usually not sufficient for large databases
- Fast distance evaluation or reduce the search space

What about storage?

For n = 1B database with d = 10K: 40 TB

Approximate Nearest Neighbor $y \in X$ such that $d(q, y) \leq (1 + \varepsilon) d(q, \hat{x})$ Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning

Conditions to be a metric

- 1. Non-negative: $d(x, y) \ge 0$, d(x, x) = 0
- 2. Symmetric: d(x, y) = d(y, x)
- 3. Triangle Inequality: $d(x, y) + d(y, z) \ge d(x, z)$

Conditions to be a metric

- 1. Non-negative: $d(x, y) \ge 0$, d(x, x) = 0
- 2. Symmetric: d(x, y) = d(y, x)
- 3. Triangle Inequality: $d(x, y) + d(y, z) \ge d(x, z)$

Example of a distance measure which is not a metric:

KL-divergence
$$KL(p,q) = \int p(x) \log \frac{p(x)}{q(x)} dx$$

"distance" between two distributions

- not symmetric
- does not satisfy triangle inequality

Conditions to be a metric

- 1. Non-negative: $d(x, y) \ge 0$, d(x, x) = 0
- 2. Symmetric: d(x, y) = d(y, x)
- 3. Triangle Inequality: $d(x, y) + d(y, z) \ge d(x, z)$

$$L_p - \text{metric } d(x, y) = \left(\sum_{j=1}^d |x_j - y_j|^p\right)^{1/p}$$

Conditions to be a metric

- 1. Non-negative: $d(x, y) \ge 0$, d(x, x) = 0
- 2. Symmetric: d(x, y) = d(y, x)
- 3. Triangle Inequality: $d(x, y) + d(y, z) \ge d(x, z)$

$$L_p - \text{metric } d(x, y) = \left(\sum_{j=1}^d |x_j - y_j|^p\right)^{1/p}$$
 What is L_0, L_∞ ?

Conditions to be a metric

- 1. Non-negative: $d(x, y) \ge 0$, d(x, x) = 0
- 2. Symmetric: d(x, y) = d(y, x)
- 3. Triangle Inequality: $d(x, y) + d(y, z) \ge d(x, z)$

$$L_p - \text{metric } d(x, y) = \left(\sum_{j=1}^d |x_j - y_j|^p\right)^{1/p} \quad \text{What is } L_0, L_\infty?$$

cosine distance

$$\cos(x, y) = x^T y / \|x\| \|y\|$$

If vectors are unit L_2 -norm $L_2(x, y) = 2 - 2\cos(x, y)$

Conditions to be a metric

- 1. Non-negative: $d(x, y) \ge 0$, d(x, x) = 0
- 2. Symmetric: d(x, y) = d(y, x)
- 3. Triangle Inequality: $d(x, y) + d(y, z) \ge d(x, z)$

Mahalanobis distance
$$d(x, y) = (x - y)^T A (x - y)$$

symmetric positive semi-definite matrix

Conditions to be a metric

- 1. Non-negative: $d(x, y) \ge 0$, d(x, x) = 0
- 2. Symmetric: d(x, y) = d(y, x)
- 3. Triangle Inequality: $d(x, y) + d(y, z) \ge d(x, z)$

Mahalanobis distance $d(x, y) = (x - y)^T A (x - y)$

symmetric positive semi-definite matrix

$$A = U \Sigma U^{T} = (U \Sigma^{1/2})(U \Sigma^{1/2})^{T} = BB^{T}$$
$$\widetilde{x} = B^{T} x \implies d(x, y) = (\widetilde{x} - \widetilde{y})^{T} (\widetilde{x} - \widetilde{y})$$

Equivalent to L₂ distance in linearly transformed space

Learning Distance Metric

Given a large collection of items and associated features, learn a distance metric!

Learning Distance Metric

Many applications

- kNN-classification, clustering, density estimation, graph construction

 $A \succ 0$

Now onwards, focus on ANN techniques

[Weinberger K. et al.]

Sanjiv Kumar

10/5/2010

EECS6898 – Large Scale Machine Learning

Two popular ANN approaches

Tree approaches

- Recursively partition the data: Divide and Conquer
- Expected query time: O(log n)
- Many variants: KD tree, Ball tree, PCA-tree, Vantage Point tree...
- Shown to perform very well in relatively low-dim data

Hashing approaches

- Each image in database represented as a code
- Significant reduction in storage
- Expected query time: O(1) or O(n)
- Compact codes preferred

KD-Tree

Building K-Dimensional Tree

- Axis-parallel splits
- Find the dimension of largest variance (remove outliers)
- Binary partitioning: Split the data along median \rightarrow balanced partitioning
- Split recursively until each node has only one point (leaves)

KD-Tree: Properties

- Binary tree of depth $O(\log(n))$
- Total nodes: (2n-1) (n-1 internal and n leaves)
- Construction time: O(ndlog(n))
- Memory: nonleaf node (dim, threshold), leaf node data id
- Need to store the original data also

KD-Tree: Search

- Given a query q, push down the tree to a leaf: $O(\log(n))$
- Backtracking: search all potential leaves that may contain NN of q
- Maintain the nearest neighbor and min distance seen so far
- Branch-and-bound to check if leaves under a node may have smaller distance than seen so far

KD-Tree: Branch-and-Bound Verification

- In the beginning, best guess of NN: x_l and $\rho^* = d(q, x_l)$, $x^* = x_l$
- Draw a ball of radius ρ^{\star} around q and see which hyper-rectangles are intersected by the ball
- If during search, $\rho_t = d(q, x_t) < \rho^*$, $\rho^* = \rho_t$, $x^* = x_t$
- Easy to modify search for k-nearest neighbors

Order in which nodes are searched: Last-Bin-First or Best-Bin-First? How many nodes do we need to look at during backtracking?

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning

- Suppose $X = \{x_i\}_{i=1...n} x_i \sim p(x), i.i.d.$
- Let q be a query, and S(q,k) be the smallest ball centered at q containing exactly k nearest neighbors

Want to find expected number of leaves intersected by ball

- Suppose $X = \{x_i\}_{i=1...n} x_i \sim p(x), i.i.d.$
- Let q be a query, and S(q,k) be the smallest ball centered at q containing exactly k nearest neighbors

Want to find expected number of leaves intersected by ball

Volume of the ball $v_k(q) = \int_{s(q,k)} dx$

Volume of hypercube $V_k(q) = G(d)v_k(q)$ containing the ball

- Suppose $X = \{x_i\}_{i=1...n} x_i \sim p(x), i.i.d.$
- Let q be a query, and S(q,k) be the smallest ball centered at q containing exactly k nearest neighbors

Want to find expected number of leaves intersected by ball

Volume of the ball $v_k(q) = \int_{s(q,k)} dx$ Volume of hypercube $V_k(q) = G(d)v_k(q)$ containing the ball

increases with d

- Suppose $X = \{x_i\}_{i=1...n} x_i \sim p(x), i.i.d.$
- Let q be a query, and S(q,k) be the smallest ball centered at q containing exactly k nearest neighbors

Want to find expected number of leaves intersected by ball

Volume of the ball $v_k(q) = \int_{s(q,k)} dx$

Volume of hypercube $V_k(q) = G(d)v_k(q)$ containing the ball

increases with d

Expected Volume $E[V_k(q)] = G(d)E[v_k(q)]$ = kG(d)/(n+1)p(q)

Assuming constant density in ball, and $E[\pi_k(q)] = k/(n+1)$ robability mass in ball

- Suppose $X = \{x_i\}_{i=1...n} x_i \sim p(x), i.i.d.$
- Let q be a query, and S(q,k) be the smallest ball centered at q containing exactly k nearest neighbors

Want to find expected number of leaves intersected by ball

Volume of the ball $v_k(q) = \int_{s(q,k)} dx$

Volume of hypercube $V_k(q) = G(d)v_k(q)$ containing the ball increases with d

Expected Volume $E[V_k(q)] = G(d)E[v_k(q)]$ = kG(d)/(n+1)p(q)

Assuming constant density in ball, and $E[\pi_k(q)] = k/(n+1)$ robability mass in ball

Expected edge-length = $(kG(d)/(n+1)p(q))^{1/d}$

Expected edge-length of hypercube containing the k-NN ball around query = $(kG(d)/(n+1)p(q))^{1/d}$

Assuming leaf hyper-rectangle to be a hypercube, its expected edge length $= (1/(n+1)p(x_l))^{1/d}$

Expected edge-length of hypercube containing the k-NN ball around query = $(kG(d)/(n+1)p(q))^{1/d}$

Assuming leaf hyper-rectangle to be a hypercube, its expected edge length $= (1/(n+1)p(x_l))^{1/d}$

Suppose, $p(q) \approx p(x_l)$

Expected number of leaves overlapping the hypercube around query $= \left[\left(kG(d) \right)^{1/d} + 1 \right]^{d}$

Expected edge-length of hypercube containing the k-NN ball around query = $(kG(d)/(n+1)p(q))^{1/d}$

Assuming leaf hyper-rectangle to be a hypercube, its expected edge length $= (1/(n+1)p(x_l))^{1/d}$

Suppose, $p(q) \approx p(x_l)$

Expected number of leaves overlapping the hypercube around query = $\left[\left(kG(d) \right)^{1/d} + 1 \right]^d$

For L_{∞} , G(d) = 1, and suppose $k = 1 \implies 2^d$ upper bound !

Expected edge-length of hypercube containing the k-NN ball around query = $(kG(d)/(n+1)p(q))^{1/d}$

Assuming leaf hyper-rectangle to be a hypercube, its expected edge length $= (1/(n+1)p(x_l))^{1/d}$

Suppose, $p(q) \approx p(x_l)$

Expected number of leaves overlapping the hypercube around query = $\left[\left(kG(d) \right)^{1/d} + 1 \right]^d$

For L_{∞} , G(d) = 1, and suppose $k = 1 \implies 2^d$ upper bound !

- G(d) increases as p decreases \rightarrow above number is lower bound for other Lp metrics

- As d increases, the number of leaves to search grows exponentially
- Very conservative estimate, empirically one needs to test with given data
- As a rule-of-thumb, KD-trees work fine up to 15-20 dims, (have been shown to work well up to 100-150 dim))

Performance of a single KD-tree is usually low

Build several KD Trees

- Find top few dimensions of largest variance at each node
- Randomly select one dimension from these and split on median
- construct many trees, each built completely i.e., one point per leaf
- More memory
- Additional parameter to tune: number of trees

Search

- Descend through each tree until leaf is reached
- Maintain a single priority queue for all the trees
- For approximate search, stop after a certain number of nodes have been examined

Experiments: Randomized KD-Trees

Muja&Lowe[10]

EECS6898 – Large Scale Machine Learning

Vantage Point (VP)-Tree

Building VP-Tree

- Select a vantage point randomly (usually from data periphery)
- Compute distance from all other points and pick median distance
- Binary tree: split data using median distance from vantage point
- Split recursively until each node has only one point (leaves)

VP-Tree

KD-Tree

Yianilos[3]

VP-Tree: Properties

- Binary tree of depth log(n) and total nodes (2*n*-1)
- Construction time: $O(nd\log(n))$
- Memory: nonleaf node (vantage point, threshold), leaf node data id
- Need to store the original data also

Backtracking

- Compare against the vantage point at each node to decide whether to explore subtree rooted at that node
- Upper bound on number of nodes to be explored

 $M \left\lceil \log(n) + 1 \right\rceil$

VP-Tree: Properties

- Binary tree of depth log(n) and total nodes (2*n*-1)
- Construction time: $O(nd\log(n))$
- Memory: nonleaf node (vantage point, threshold), leaf node data id
- Need to store the original data also

Backtracking

- Compare against the vantage point at each node to decide whether to explore subtree rooted at that node
- Upper bound on number of nodes to be explored

$$M \left\lceil \log(n) + 1 \right\rceil$$

$$\eta^d \quad \eta > 1$$

Exponential in d !

vps: vp-tree with upper/lower bound caching

Yianilos[3]

Projection-Based Trees

Project data on a hyperplane and threshold

- Different types of projection directions
- Binary Tree: usually threshold at median
- Split recursively until each node has only one point (leaves)
- Ball-Tree, PCA-Tree, Random-Projection Tree,...

Freund et al.[11]

Ball-Tree

- Find the (approx) diameter of the given dataset
- Find the point farthest from mean and another farthest from it
- Threshold at median
- Another variation: split according to distance from two points (i.e., threshold at mid point of line joining two centers), need to store two vectors per node

Susceptible to outliers!

PCA-Tree

- Use top eigenvector of data covariance as projection direction
- Threshold at median
- More robust than ball tree in presence of outliers

Expensive, not enough data at lower levels to construct covariance!

- Randomly sample a projection direction from a fixed distribution
- Threshold at "adjusted" median
- Robust for high-dim data
- Can adapt to low-dimensional structure in the data well

Random-Projection tree

Theoretical Guarantees!

Analysis: Show that every O(D) levels, data diameter reduced by half

- Suppose *D* is the intrinsic dimensionality of the data at any cell, i.e.,

$$\sum_{i=1}^{D} \sigma_i^2 \ge (1 - \varepsilon) \sum_{i=1}^{d} \sigma_i^2$$

$$\sigma_i^2 = eval(\Sigma_{X_C})$$
covariance of data in cell *C*

Analysis: Show that every O(D) levels, data diameter reduced by half

- Suppose D is the intrinsic dimensionality of the data at any cell, i.e.,

$$\sum_{i=1}^{D} \sigma_i^2 \ge (1-\varepsilon) \sum_{i=1}^{d} \sigma_i^2 \qquad \sigma_i^2 = eval(\Sigma_{X_C})$$

covariance of data in cell *C*

Let Δ_{X_C} be the diameter of points in cell *C* (i.e. largest distance between any pair in *C*), and $\Delta_{X_C}^A$ be the average diameter of *C*:

$$\left(\Delta_{X_C}^{A}\right)^{2} = \frac{1}{|X_C|^{2}} \sum_{(x,y)\in X_C} ||x-y||^{2} = \frac{2}{|X_C|} \sum_{x\in X_C} ||x-\mu_C||^{2}$$

Analysis: Show that every O(D) levels, data diameter reduced by half

- Suppose D is the intrinsic dimensionality of the data at any cell, i.e.,

$$\sum_{i=1}^{D} \sigma_i^2 \ge (1-\varepsilon) \sum_{i=1}^{d} \sigma_i^2 \qquad \sigma_i^2 = eval(\Sigma_{X_C})$$

covariance of data in cell *C*

Let Δ_{X_C} be the diameter of points in cell *C* (i.e. largest distance between any pair in *C*), and $\Delta_{X_C}^A$ be the average diameter of *C*:

$$\left(\Delta_{X_C}^{A}\right)^{2} = \frac{1}{|X_C|^{2}} \sum_{(x,y)\in X_C} ||x-y||^{2} = \frac{2}{|X_C|} \sum_{x\in X_C} ||x-\mu_C||^{2}$$

$$\sum_{i=1}^{d} \sigma_i^2 = 1/2 \left(\Delta_{X_C}^A \right)^2$$

Analysis: Show that every O(D) levels, data diameter reduced by half

- How to compute threshold?

Threshold $t = \arg \max_{i} c_{i}$

Maximally decreases average squared inter-point distance !

Analysis: Show that every O(D) levels, data diameter reduced by half

Theorem: Suppose data subset X_C in any cell *C* has intrinsic dimension *D* (for a given $0 < \varepsilon < 1$). Pick a point $x \in X_C$ at random and let *C*' be the cell that contains it in the next level down. Then,

$$E\left[\left(\Delta_{X_{C'}}^{A}\right)^{2}\right] \leq \left(1 - \frac{c}{D}\right)\left(\Delta_{X_{C}}^{A}\right)^{2} \qquad 0 < c < 1$$

Analysis: Show that every O(D) levels, data diameter reduced by half

Theorem: Suppose data subset X_C in any cell *C* has intrinsic dimension *D* (for a given $0 < \varepsilon < 1$). Pick a point $x \in X_C$ at random and let *C*' be the cell that contains it in the next level down. Then,

$$E\left[\left(\Delta_{X_{C'}}^{A}\right)^{2}\right] \leq \left(1 - \frac{c}{D}\right)\left(\Delta_{X_{C}}^{A}\right)^{2} \qquad 0 < c < 1$$

After D levels, reduction in expected average data diameter

$$\left(1-\frac{c}{D}\right)^{D/2}$$

For moderate to large D, average diameter is halved every O(D) levels !

K-Means Tree

- Many real-world datasets contain clusters
- Find the two end-points by iteratively finding centers using k-means
- Points are split based on closer center
- Unbalanced partitioning, more construction time

K-means tree

Number of K-means Iterations

d = 128, *n* = 100K

disjoint partitioning of data \rightarrow boundary errors \rightarrow backtracking

Muja&Lowe[10]

EECS6898 – Large Scale Machine Learning

Spilling in Trees

Overlapped partitioning reduces boundary errors

- no backtracking necessary

- Increases tree depth more memory, slower to build
- Better when split passes through sparse regions (k-means)
- Lower nodes may spill too much \rightarrow hybrid of spill and non-spill nodes
- Designing a good spill factor hard

Effect of spilling

EECS6898 - Large Scale Machine Learning

54

Liu et al.[7]

Tricks for Trees

- For high dimensional data, use randomized projections or PCA to do dimensionality reduction
- While backtracking, use Best-Bin-First (BBF) search instead of Last-Bin-First (LBF)
- BBF Search: make a priority queue of all the unexplored nodes and visit them in order of their "closeness" to the query
- In KD-trees, closeness is defined by distance to a cell boundary, while in k-means tree, it is distance to the center of a cell
- Space permitting, keep extra statistics on lower and upper bound for each cell and use triangle inequality to prune space
- Use spilling to avoid backtracking
- use lookup tables for fast distance computation, if possible

Two Main problems

- Memory needed is usually quite big (sometimes more than original data)
- Original data is always needed at search-time (may not be feasible for very large databases)

Experiments - Exact Search

Method	Leaf Size	Split	Cons. Cost	ε-NN Search Speed	k-NN Search Speed	Method	Leaf Size	Split	Cons. Cost	ε-NN Search Speed	k -NN Search Speed
Ball Tree	2	2	76.52	14.23	0.50	k d-Tree	2	1	0.00	4.45	1.88
		3	65.81	14.74	0.62		16	1	0.00	14.69	6.23
		4	65.20	14.19	0.68		128	1	0.00	15.82	6.31
	16	2	69.80	46.23	15.84	vp -Tree (k)	2	2	16.28	38.54	1.69
		3	56.61	45.37	15.41			4	9.07	38.48	1.89
		4	56.26	44.17	15.42			8	7.49	34.83	1.57
	128	2	53.30	44.77	15.37			16	6.28	31.55	1.50
		3	46.44	44.31	14.87		16	2	13.97	44.66	15.84
		4	46.33	44.64	15.14			4	7.13	46.07	16.49
k -Means	2	2	303.92	4.47	0.50			8	5.00	48.95	17.61
		4	289.93	6.17	0.69			16	4.02	41.95	19.12
	16	2	271.60	19.20	7.62		128	2	11.05	33.80	11.85
		4	270.40	20.98	8.36			4	5.95	36.75	12.72
	128	2	221.37	35.09	12.69			8	4.00	37.50	12.53
		4	228.73	38.90	13.89			16	3.00	38.13	12.28
		8	298.72	42.70	15.20	vp -Tree (δ)	2	2	5.71	45.29	10.27
PCA Tree	2	2	6.59	22.10	10.26			4	9.30	42.09	16.36
		4	8.25	25.50	9.81			8	9.60	36.96	16.94
		8	7.79	17.70	4.42		16	2	4.36	50.45	18.27
	16	2	5.50	26.60	10.13			4	7.94	49.36	18.21
		4	7.55	27.72	9.63			8	8.78	39.85	15.72
		8	7.61	17.41	4.24		128	2	3.01	44.25	13.05
	128	2	4.32	25.11	8.00			4	5.85	42.55	13.32
		4	6.24	25.80	8.37			8	6.64	36.23	12.31
		8	6.99	17.69	4.34						

d = 49, n = O(M)

N. Kumar et al. [12]

Experiments - Exact Search

N. Kumar et al. [12]

Experiments - Approximate Search

d = 128

Muja&Lowe[10]

EECS6898 - Large Scale Machine Learning

References

- 1. J. L. Bentley. Multidimensional binary search trees used for associative searching. Comm. ACM, 18(9), 1975.
- 2. Freidman, J. H., Bentley, J. L., and Finkel, R. A. An algorithm for finding best matches in logarithmic expected time. *ACM Trans. Math. Softw.*, 3:209–226, 1977.
- 3. S. M. Omohundro. Five balltree construction algorithms. Technical report, Int. Computer Science Inst., 1989.
- 4. Sproull, R.F.: Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica 6(4) (1991) 579–589
- 5. P. N. Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces. In SODA, 1993.
- 6. Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. *Journal of the ACM*, 45:891–923, 1998.
- 7. T. Liu, A. Moore, A. Gray, and K. Yang. An investigation of practical approximate nearest neighbor algorithms. In NIPS 2004, 12 2004.
- 8. S. Dasgupta and Y. Freund. Random projection trees and low-dimensional manifolds. UCSD Technical Report CS2007-0890, 2007.
- 9. C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast image descriptor matching. In CVPR, 2008.
- 10. M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In VISAPP, 2009.
- 11. Y. Freund, S. Dasgupta, M. Kabra, and N. Verma. Learning the structure of manifolds using random projections. *NIPS*, 2007.
- 12. N. Kumar, L. Zhang, and S. Nayar. What is a good nearest neighbors algorithm for finding similar patches in images? In ECCV, 2008.