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query

Matching and Retreival
Documents, Images, Videos,… Database



Typical Procedure

1. Convert the database items as well as query into vectors in an appropriate  
feature space

2. Define a distance or similarity measure for a pair of vectors

3. Find nearest neighbors by explicit search over entire database 
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Approximate !

Matching and Retreival

* Vector space not necessary if similarity can be defined for items directly
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Kernel Density Estimation

Given an unlabeled training set,               learn a nonparametric density 
function
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- Too expensive for large n
- Many kernels have rapid (exponential) fall off
- Nearest Neighbors sufficient but expensive for large n

Large-scale Approximate NN search

- Similar arguments for training parametric models e.g., Gaussian Mixture Models 
with large number of components! 



Commonly used by many machine learning techniques
– Spectral clustering, manifold learning, semi-supervised learning, …

Graph-based methods 
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Pairwise NN search problem – O(n2) !



Nearest Neighbor Search 
Formal Definition

Given a database                                        and a query
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Nearest Neighbor Search 
Formal Definition

Given a database                                        and a query

Speed-up possible
– Distance-preserving dimensionality reduction e.g., randomized 

projections ! usually not sufficient for large databases
– Fast distance evaluation or reduce the search space

What about storage?

Sanjiv

 

Kumar            10/5/2010 EECS6898 – Large Scale Machine Learning 8

niixX ...1}{ == d
ix ℜ∈

Nearest Neighbor            such that Xxxqdxqd ∈∀≤ ),()ˆ,(Xx∈ˆ !)(ndO
To find nearest neighbor of a query in n

 

= 1B database with d

 

= 10K: 15 hrs
To build graphs with n

 

= 10M, d

 

= 10K: 155 yrs

dq ℜ∈

ε-Neighbor            such thatXx∈ˆ εxqd ≤)ˆ,(



Nearest Neighbor Search 
Formal Definition

Given a database                                        and a query

Speed-up possible
– Distance-preserving dimensionality reduction e.g., randomized 

projections ! usually not sufficient for large databases
– Fast distance evaluation or reduce the search space

What about storage?

Sanjiv

 

Kumar            10/5/2010 EECS6898 – Large Scale Machine Learning 9

niixX ...1}{ == d
ix ℜ∈

Nearest Neighbor            such that Xxxqdxqd ∈∀≤ ),()ˆ,(Xx∈ˆ !)(ndO
To find nearest neighbor of a query in n

 

= 1B database with d

 

= 10K: 15 hrs
To build graphs with n

 

= 10M, d

 

= 10K: 155 yrs

dq ℜ∈

ε-Neighbor            such thatXx∈ˆ εxqd ≤)ˆ,(

For n

 

= 1B database with d

 

= 10K: 40 TB



Nearest Neighbor Search 
Formal Definition

Given a database                                        and a query

Speed-up possible
– Distance-preserving dimensionality reduction e.g., randomized 

projections ! usually not sufficient for large databases
– Fast distance evaluation or reduce the search space

What about storage?

Sanjiv

 

Kumar            10/5/2010 EECS6898 – Large Scale Machine Learning 10

niixX ...1}{ == d
ix ℜ∈

Nearest Neighbor            such that Xxxqdxqd ∈∀≤ ),()ˆ,(Xx∈ˆ !)(ndO
To find nearest neighbor of a query in n

 

= 1B database with d

 

= 10K: 15 hrs
To build graphs with n

 

= 10M, d

 

= 10K: 155 yrs

dq ℜ∈

ε-Neighbor            such thatXx∈ˆ εxqd ≤)ˆ,(

For n

 

= 1B database with d

 

= 10K: 40 TB

)ˆ,()1(),( xqdεyqd +≤
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Distance Metrics 

Conditions to be a metric

1. Non-negative:

2. Symmetric:

3. Triangle Inequality: 
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Distance Metrics 
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Example of a distance measure which is not a metric:

KL-divergence dx
xq
xpxpqpKL ∫= )(
)(log)(),(

• not symmetric
• does not satisfy triangle inequality

“distance” between 
two distributions

Conditions to be a metric

1. Non-negative:

2. Symmetric:

3. Triangle Inequality: 
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Distance Metrics 

Conditions to be a metric

1. Non-negative:

2. Symmetric:

3. Triangle Inequality: 
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Distance Metrics 

Conditions to be a metric

1. Non-negative:

2. Symmetric:

3. Triangle Inequality: 

cosine distance
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Distance Metrics 

Conditions to be a metric

1. Non-negative:

2. Symmetric:

3. Triangle Inequality: 

Mahalanobis distance
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Distance Metrics 
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Mahalanobis distance
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Equivalent to L2 distance in linearly transformed space 
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Learning Distance Metric

Given a large collection of items and associated 
features, learn a distance metric!

×
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Learning Distance Metric
Many applications

– kNN-classification, clustering, density estimation, graph construction

[Weinberger K. et al.]
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Now onwards, focus on ANN techniques



Tree approaches
– Recursively partition the data: Divide and Conquer
– Expected query time: O(log n)
– Many variants: KD tree, Ball tree, PCA-tree, Vantage Point tree…
– Shown to perform very well in relatively low-dim data

Hashing approaches
– Each image in database represented as a code
– Significant reduction in storage
– Expected query time: O(1) or O(n)
– Compact codes preferred

Two popular ANN approaches
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KD-Tree

Building K-Dimensional Tree 
– Axis-parallel splits
– Find the dimension of largest variance (remove outliers)
– Binary partitioning: Split the data along median balanced partitioning
– Split recursively until each node has only one point (leaves)
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KD-Tree: Properties

– Binary tree of depth O(log(n))
– Total nodes: (2n-1) (n-1 internal and n

 

leaves)
– Construction time: O(ndlog(n))
– Memory: nonleaf node – (dim, threshold), leaf node – data id  
– Need to store the original data also

root

leaves
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KD-Tree: Search

– Given a query q, push down the tree to a leaf: O(log(n))
– Backtracking: search all potential leaves that may contain NN of q
– Maintain the nearest neighbor and min distance seen so far
– Branch-and-bound to check if leaves under a node may have smaller 

distance than seen so far

q

q
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xl

q



KD-Tree: Branch-and-Bound Verification

– In the beginning, best guess of NN: xl

 

and ρ* = d(q, xl

 

), x* = xl

– Draw a ball of radius ρ* around q and see which hyper-rectangles are 
intersected by the ball 

– If during search, ρt

 

= d(q, xt

 

) < ρ*,  ρ* = ρt ,

 

x* = xt

– Easy to modify search for k-nearest neighbors

q

q

q
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xl

ρ* 

Order in which nodes are searched: Last-Bin-First or Best-Bin-First?
How many nodes do we need to look at during backtracking?



KD-Tree: Search complexity

– Suppose  

– Let q

 

be a query, and            be the smallest ball centered at q

 

containing 

exactly k nearest neighbors
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density in ball, and 

Expected edge-length ( ) dqpndkG 1)()1/()( +=

q



KD-Tree: Search complexity
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Expected edge-length of hypercube containing the k-NN ball around query 
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KD-Tree: Search complexity
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KD-Tree: Search complexity
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Expected edge-length of hypercube containing the k-NN ball around query 
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For L∞

 

, G(d) = 1, and suppose k

 

= 1 d2⇒ upper bound !



KD-Tree: Search complexity
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Expected edge-length of hypercube containing the k-NN ball around query 
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For L∞

 

, G(d) = 1, and suppose k

 

= 1 d2⇒

– G(d) increases as p

 

decreases above number is lower bound for other Lp metrics
– As d

 

increases, the number of leaves to search grows exponentially
– Very conservative estimate, empirically one needs to test with given data
– As a rule-of-thumb, KD-trees work fine up to 15-20 dims, (have been shown to work well 
up to 100-150 dim))

upper bound !



Randomized KD-Trees

Build several KD Trees 
– Find top few dimensions of largest variance at each node
– Randomly select one dimension from these and split on median
– construct many trees, each built completely i.e., one point per leaf
– More memory
– Additional parameter to tune: number of trees

Search
– Descend through each tree until leaf is reached
– Maintain a single priority queue for all the trees
– For approximate search, stop after a certain number of nodes have been 

examined

Sanjiv

 

Kumar            10/5/2010 EECS6898 – Large Scale Machine Learning 34

Performance of a single KD-tree is usually low 



Experiments: Randomized KD-Trees
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d

 

= 128, n

 

= 100K
Muja&Lowe[10]



Vantage Point (VP)-Tree

Building VP-Tree 
– Select a vantage point randomly (usually from data periphery)
– Compute distance from all other points and pick median distance
– Binary tree: split data using median distance from vantage point
– Split recursively until each node has only one point (leaves)
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left right

median distance



VP-Tree vs KD-Tree
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VP-Tree KD-Tree

Yianilos[3]



VP-Tree: Properties

– Binary tree of depth log(n) and total nodes (2n-1)
– Construction time: O(ndlog(n))
– Memory: nonleaf node – (vantage point, threshold), leaf node – data id  
– Need to store the original data also

Backtracking
– Compare against the vantage point at each node to decide whether to 

explore subtree rooted at that node
– Upper bound on number of nodes to be explored
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Exponential in d !



VP-Tree vs KD-Tree
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n

 

= ~8K

Yianilos[3]

d

 

= 8

vps:

 

vp-tree with upper/lower 
bound caching



Projection-Based Trees
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Project data on a hyperplane and threshold
– Different types of projection directions
– Binary Tree: usually threshold at median 
– Split recursively until each node has only one point (leaves)
– Ball-Tree, PCA-Tree, Random-Projection Tree,…

KD-Tree Projection-Tree
Freund et al.[11]



Ball-Tree

left
right

Ball tree

Susceptible to outliers!
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– Find the (approx) diameter of the given dataset
– Find the point farthest from mean and another farthest from it
– Threshold at median
– Another variation: split according to distance from two points (i.e., 

threshold at mid point of line joining two centers), need to store two 
vectors per node 



PCA-Tree

left right

PCA tree

Expensive, not enough data at lower levels to construct covariance!
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– Use top eigenvector of data covariance as projection direction
– Threshold at median
– More robust than ball tree in presence of outliers

top eigenvector



Random-Projection (RP) Tree

Random- 
Projection  tree

Theoretical Guarantees!

Sanjiv Kumar            10/5/2010 EECS6898 – Large Scale Machine Learning 44

– Randomly sample a projection direction from a fixed distribution
– Threshold at “adjusted” median
– Robust for high-dim data
– Can adapt to low-dimensional structure in the data well

left
right

Random direction



Random-Projection (RP) Tree
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Analysis: Show that every O(D) levels, data diameter reduced by half

– Suppose D

 

is the intrinsic dimensionality of the data at any cell, i.e.,
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Random-Projection (RP) Tree
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Analysis: Show that every O(D) levels, data diameter reduced by half
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Random-Projection (RP) Tree
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Random-Projection (RP) Tree
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Analysis: Show that every O(D) levels, data diameter reduced by half

– How to compute threshold?

2
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Random-Projection (RP) Tree
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Analysis: Show that every O(D) levels, data diameter reduced by half

Theorem: Suppose data subset XC

 

in any cell C

 

has intrinsic dimension D

 

(for a 
given 0 < ε

 

< 1). Pick a point x ∈
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Random-Projection (RP) Tree
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Analysis: Show that every O(D) levels, data diameter reduced by half

Theorem: Suppose data subset XC

 

in any cell C

 

has intrinsic dimension D

 

(for a 
given 0 < ε

 

< 1). Pick a point x

 

∈

 

XC

 

at random and let C′

 

be the cell that 
contains it in the next level down. Then,

After D

 

levels, reduction in expected average data diameter
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For moderate to large D, average diameter is halved every O(D) levels !



K-Means Tree

left right

K-means tree

Split through sparse region
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– Many real-world datasets contain clusters
– Find the two end-points by iteratively finding centers using k-means
– Points are split based on closer center
– Unbalanced partitioning, more construction time



Number of K-means Iterations
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Spilling in Trees
Overlapped partitioning reduces boundary errors

– no backtracking necessary

right

left

– Increases tree depth - more memory, slower to build
– Better when split passes through sparse regions (k-means)
– Lower nodes may spill too much hybrid of spill and non-spill nodes
– Designing a good spill factor hard 

εε
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Effect of spilling
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Liu et al.[7]



Tricks for Trees
– For high dimensional data, use randomized projections or PCA to do 

dimensionality reduction
– While backtracking, use Best-Bin-First (BBF) search instead of Last-Bin- 

First (LBF)
– BBF Search: make a priority queue of all the unexplored nodes and visit 

them in order of their “closeness” to the query
– In KD-trees, closeness is defined by distance to a cell boundary, while in 

k-means tree, it is distance to the center of a cell
– Space permitting, keep extra statistics on lower and upper bound for 

each cell and use triangle inequality to prune space
– Use spilling to avoid backtracking
– use lookup tables for fast distance computation, if possible

Two Main problems
– Memory needed is usually quite big (sometimes more than original data)
– Original data is always needed at search-time (may not be feasible for 

very large databases)
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Experiments –
 

Exact Search
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d

 

= 49, n

 

= O(M)
N. Kumar et al. [12]



Experiments –
 

Exact Search
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N. Kumar et al. [12]



Experiments –
 

Approximate Search
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Muja&Lowe[10]
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