
Approximate Nearest Neighbor
(ANN) Search -

I

Sanjiv

Kumar, Google Research, NY

EECS-6898, Columbia University -

Fall, 2010

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 1

query

Matching and Retreival
Documents, Images, Videos,… Database

Typical Procedure

1. Convert the database items as well as query into vectors in an appropriate
feature space

2. Define a distance or similarity measure for a pair of vectors

3. Find nearest neighbors by explicit search over entire database

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 3

Approximate !

Matching and Retreival

* Vector space not necessary if similarity can be defined for items directly

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 4

Kernel Density Estimation

Given an unlabeled training set, learn a nonparametric density
function

niix ...1}{ =
)(xp

∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

i

i
h

xxk
hn

xp
1

11)(

),(2IσxΝ i

- Too expensive for large n
- Many kernels have rapid (exponential) fall off
- Nearest Neighbors sufficient but expensive for large n

Large-scale Approximate NN search

- Similar arguments for training parametric models e.g., Gaussian Mixture Models
with large number of components!

Commonly used by many machine learning techniques
– Spectral clustering, manifold learning, semi-supervised learning, …

Graph-based methods

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 5

⎪⎩

⎪
⎨
⎧ −−=

otherwise0

~ if)/exp(22
jiσxxW ji

ijSimilarity/Weight Matrix

Pairwise NN search problem – O(n2) !

Nearest Neighbor Search
Formal Definition

Given a database and a query

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 6

niixX ...1}{ == d
ix ℜ∈

Nearest Neighbor such that Xxxqdxqd ∈∀≤),()ˆ,(Xx∈ˆ !)(ndO

dq ℜ∈

ε-Neighbor such thatXx∈ˆ εxqd ≤)ˆ,(

Nearest Neighbor Search
Formal Definition

Given a database and a query

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 7

niixX ...1}{ == d
ix ℜ∈

Nearest Neighbor such that Xxxqdxqd ∈∀≤),()ˆ,(Xx∈ˆ !)(ndO
To find nearest neighbor of a query in n

= 1B database with d

= 10K: 15 hrs
To build graphs with n

= 10M, d

= 10K: 155 yrs

dq ℜ∈

ε-Neighbor such thatXx∈ˆ εxqd ≤)ˆ,(

Nearest Neighbor Search
Formal Definition

Given a database and a query

Speed-up possible
– Distance-preserving dimensionality reduction e.g., randomized

projections ! usually not sufficient for large databases
– Fast distance evaluation or reduce the search space

What about storage?

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 8

niixX ...1}{ == d
ix ℜ∈

Nearest Neighbor such that Xxxqdxqd ∈∀≤),()ˆ,(Xx∈ˆ !)(ndO
To find nearest neighbor of a query in n

= 1B database with d

= 10K: 15 hrs
To build graphs with n

= 10M, d

= 10K: 155 yrs

dq ℜ∈

ε-Neighbor such thatXx∈ˆ εxqd ≤)ˆ,(

Nearest Neighbor Search
Formal Definition

Given a database and a query

Speed-up possible
– Distance-preserving dimensionality reduction e.g., randomized

projections ! usually not sufficient for large databases
– Fast distance evaluation or reduce the search space

What about storage?

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 9

niixX ...1}{ == d
ix ℜ∈

Nearest Neighbor such that Xxxqdxqd ∈∀≤),()ˆ,(Xx∈ˆ !)(ndO
To find nearest neighbor of a query in n

= 1B database with d

= 10K: 15 hrs
To build graphs with n

= 10M, d

= 10K: 155 yrs

dq ℜ∈

ε-Neighbor such thatXx∈ˆ εxqd ≤)ˆ,(

For n

= 1B database with d

= 10K: 40 TB

Nearest Neighbor Search
Formal Definition

Given a database and a query

Speed-up possible
– Distance-preserving dimensionality reduction e.g., randomized

projections ! usually not sufficient for large databases
– Fast distance evaluation or reduce the search space

What about storage?

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 10

niixX ...1}{ == d
ix ℜ∈

Nearest Neighbor such that Xxxqdxqd ∈∀≤),()ˆ,(Xx∈ˆ !)(ndO
To find nearest neighbor of a query in n

= 1B database with d

= 10K: 15 hrs
To build graphs with n

= 10M, d

= 10K: 155 yrs

dq ℜ∈

ε-Neighbor such thatXx∈ˆ εxqd ≤)ˆ,(

For n

= 1B database with d

= 10K: 40 TB

)ˆ,()1(),(xqdεyqd +≤
Approximate Nearest Neighbor such that Xy∈

Distance Metrics

Conditions to be a metric

1. Non-negative:

2. Symmetric:

3. Triangle Inequality:

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 11

0),(,0),(=≥ xxdyxd

),(),(xydyxd =

),(),(),(zxdzydyxd ≥+

Distance Metrics

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 12

0),(,0),(=≥ xxdyxd

),(),(xydyxd =

),(),(),(zxdzydyxd ≥+

Example of a distance measure which is not a metric:

KL-divergence dx
xq
xpxpqpKL ∫=)(
)(log)(),(

• not symmetric
• does not satisfy triangle inequality

“distance” between
two distributions

Conditions to be a metric

1. Non-negative:

2. Symmetric:

3. Triangle Inequality:

Distance Metrics

Conditions to be a metric

1. Non-negative:

2. Symmetric:

3. Triangle Inequality:

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 13

0),(,0),(=≥ xxdyxd

),(),(xydyxd =

),(),(),(zxdzydyxd ≥+

metric−pL
p

d
j

p
jj yxyxd

/1

1),(⎟
⎠
⎞⎜

⎝
⎛ −= ∑ =

Distance Metrics

Conditions to be a metric

1. Non-negative:

2. Symmetric:

3. Triangle Inequality:

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 14

0),(,0),(=≥ xxdyxd

),(),(xydyxd =

),(),(),(zxdzydyxd ≥+

metric−pL What is ?,0 ∞LL
p

d
j

p
jj yxyxd

/1

1),(⎟
⎠
⎞⎜

⎝
⎛ −= ∑ =

Distance Metrics

Conditions to be a metric

1. Non-negative:

2. Symmetric:

3. Triangle Inequality:

cosine distance

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 15

0),(,0),(=≥ xxdyxd

),(),(xydyxd =

),(),(),(zxdzydyxd ≥+

metric−pL What is ?,0 ∞LL

yxyxyx T=),cos(

If vectors are unit L2 -norm),cos(22),(2 yxyxL −=

p
d
j

p
jj yxyxd

/1

1),(⎟
⎠
⎞⎜

⎝
⎛ −= ∑ =

Distance Metrics

Conditions to be a metric

1. Non-negative:

2. Symmetric:

3. Triangle Inequality:

Mahalanobis distance

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 16

0),(,0),(=≥ xxdyxd

),(),(xydyxd =

),(),(),(zxdzydyxd ≥+

)()(),(yxAyxyxd T −−=

symmetric positive semi-definite matrix

Distance Metrics

Conditions to be a metric

1. Non-negative:

2. Symmetric:

3. Triangle Inequality:

Mahalanobis distance

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 17

0),(,0),(=≥ xxdyxd

),(),(xydyxd =

),(),(),(zxdzydyxd ≥+

)()(),(yxAyxyxd T −−=

symmetric positive semi-definite matrix

TTT BBUUUUA =ΣΣ=Σ=))((2/12/1

xBx T=~)~~()~~(),(yxyxyxd T −−=

Equivalent to L2 distance in linearly transformed space

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 18

Learning Distance Metric

Given a large collection of items and associated
features, learn a distance metric!

×

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 19

Learning Distance Metric
Many applications

– kNN-classification, clustering, density estimation, graph construction

[Weinberger K. et al.]

niix ...1}{ =

)(min),(jiSxx A xxd
ji

−∑ ∈

1)()(≥−−− jiAkiA xxdxxd),,(kji∀

0fA

Now onwards, focus on ANN techniques

Tree approaches
– Recursively partition the data: Divide and Conquer
– Expected query time: O(log n)
– Many variants: KD tree, Ball tree, PCA-tree, Vantage Point tree…
– Shown to perform very well in relatively low-dim data

Hashing approaches
– Each image in database represented as a code
– Significant reduction in storage
– Expected query time: O(1) or O(n)
– Compact codes preferred

Two popular ANN approaches

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 20

KD-Tree

Building K-Dimensional Tree
– Axis-parallel splits
– Find the dimension of largest variance (remove outliers)
– Binary partitioning: Split the data along median balanced partitioning
– Split recursively until each node has only one point (leaves)

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 21

KD-Tree: Properties

– Binary tree of depth O(log(n))
– Total nodes: (2n-1) (n-1 internal and n

leaves)
– Construction time: O(ndlog(n))
– Memory: nonleaf node – (dim, threshold), leaf node – data id
– Need to store the original data also

root

leaves

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 22

KD-Tree: Search

– Given a query q, push down the tree to a leaf: O(log(n))
– Backtracking: search all potential leaves that may contain NN of q
– Maintain the nearest neighbor and min distance seen so far
– Branch-and-bound to check if leaves under a node may have smaller

distance than seen so far

q

q

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 23

xl

q

KD-Tree: Branch-and-Bound Verification

– In the beginning, best guess of NN: xl

and ρ* = d(q, xl

), x* = xl

– Draw a ball of radius ρ* around q and see which hyper-rectangles are
intersected by the ball

– If during search, ρt

= d(q, xt

) < ρ*, ρ* = ρt ,

x* = xt

– Easy to modify search for k-nearest neighbors

q

q

q

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 24

xl

ρ*

Order in which nodes are searched: Last-Bin-First or Best-Bin-First?
How many nodes do we need to look at during backtracking?

KD-Tree: Search complexity

– Suppose

– Let q

be a query, and be the smallest ball centered at q

containing

exactly k nearest neighbors

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 25

niixX ...1}{ == ...),(~ diixpxi

),(kqS

Want to find expected number of leaves intersected by ball

q

KD-Tree: Search complexity

– Suppose

– Let q

be a query, and be the smallest ball centered at q

containing

exactly k nearest neighbors

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 26

niixX ...1}{ == ...),(~ diixpxi

),(kqS

Volume of the ball ∫=),()(kqsk dxqv

Volume of hypercube
containing the ball

)()()(qvdGqV kk =

)(qVk

)(qvk

Want to find expected number of leaves intersected by ball

q

KD-Tree: Search complexity

– Suppose

– Let q

be a query, and be the smallest ball centered at q

containing

exactly k nearest neighbors

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 27

niixX ...1}{ == ...),(~ diixpxi

),(kqS

Volume of the ball ∫=),()(kqsk dxqv

increases with d

Volume of hypercube
containing the ball

)()()(qvdGqV kk =

)(qVk

)(qvk

Want to find expected number of leaves intersected by ball

q

KD-Tree: Search complexity

– Suppose

– Let q

be a query, and be the smallest ball centered at q

containing

exactly k nearest neighbors

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 28

niixX ...1}{ == ...),(~ diixpxi

),(kqS

Volume of the ball ∫=),()(kqsk dxqv

increases with d

Volume of hypercube
containing the ball

)()()(qvdGqV kk =

)(qVk

)(qvk

)]([)()]([qvEdGqVE kk =Expected Volume

Want to find expected number of leaves intersected by ball

)()1/()(qpndkG +=

Probability mass in ball

)1/()]([+= nkqπE k

Assuming constant
density in ball, and

q

KD-Tree: Search complexity

– Suppose

– Let q

be a query, and be the smallest ball centered at q

containing

exactly k nearest neighbors

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 29

niixX ...1}{ == ...),(~ diixpxi

),(kqS

Volume of the ball ∫=),()(kqsk dxqv

increases with d

Volume of hypercube
containing the ball

)()()(qvdGqV kk =

)(qVk

)(qvk

)]([)()]([qvEdGqVE kk =Expected Volume

Want to find expected number of leaves intersected by ball

)()1/()(qpndkG +=

Probability mass in ball

)1/()]([+= nkqπE k

Assuming constant
density in ball, and

Expected edge-length () dqpndkG 1)()1/()(+=

q

KD-Tree: Search complexity

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 30

Expected edge-length of hypercube containing the k-NN ball around query

() dqpndkG 1)()1/()(+=

Assuming leaf hyper-rectangle to be a hypercube, its expected edge length

() d
lxpn 1)()1/(1 +=

KD-Tree: Search complexity

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 31

Expected edge-length of hypercube containing the k-NN ball around query

() dqpndkG 1)()1/()(+=

Assuming leaf hyper-rectangle to be a hypercube, its expected edge length

() d
lxpn 1)()1/(1 +=

Suppose,)()(lxpqp ≈

Expected number of leaves overlapping the hypercube around query

()[]dddkG 1)(/1 +=

KD-Tree: Search complexity

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 32

Expected edge-length of hypercube containing the k-NN ball around query

() dqpndkG 1)()1/()(+=

Assuming leaf hyper-rectangle to be a hypercube, its expected edge length

() d
lxpn 1)()1/(1 +=

Suppose,)()(lxpqp ≈

Expected number of leaves overlapping the hypercube around query

()[]dddkG 1)(/1 +=

For L∞

, G(d) = 1, and suppose k

= 1 d2⇒ upper bound !

KD-Tree: Search complexity

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 33

Expected edge-length of hypercube containing the k-NN ball around query

() dqpndkG 1)()1/()(+=

Assuming leaf hyper-rectangle to be a hypercube, its expected edge length

() d
lxpn 1)()1/(1 +=

Suppose,)()(lxpqp ≈

Expected number of leaves overlapping the hypercube around query

()[]dddkG 1)(/1 +=

For L∞

, G(d) = 1, and suppose k

= 1 d2⇒

– G(d) increases as p

decreases above number is lower bound for other Lp metrics
– As d

increases, the number of leaves to search grows exponentially
– Very conservative estimate, empirically one needs to test with given data
– As a rule-of-thumb, KD-trees work fine up to 15-20 dims, (have been shown to work well
up to 100-150 dim))

upper bound !

Randomized KD-Trees

Build several KD Trees
– Find top few dimensions of largest variance at each node
– Randomly select one dimension from these and split on median
– construct many trees, each built completely i.e., one point per leaf
– More memory
– Additional parameter to tune: number of trees

Search
– Descend through each tree until leaf is reached
– Maintain a single priority queue for all the trees
– For approximate search, stop after a certain number of nodes have been

examined

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 34

Performance of a single KD-tree is usually low

Experiments: Randomized KD-Trees

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 35

d

= 128, n

= 100K
Muja&Lowe[10]

Vantage Point (VP)-Tree

Building VP-Tree
– Select a vantage point randomly (usually from data periphery)
– Compute distance from all other points and pick median distance
– Binary tree: split data using median distance from vantage point
– Split recursively until each node has only one point (leaves)

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 36

left right

median distance

VP-Tree vs KD-Tree

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 37

VP-Tree KD-Tree

Yianilos[3]

VP-Tree: Properties

– Binary tree of depth log(n) and total nodes (2n-1)
– Construction time: O(ndlog(n))
– Memory: nonleaf node – (vantage point, threshold), leaf node – data id
– Need to store the original data also

Backtracking
– Compare against the vantage point at each node to decide whether to

explore subtree rooted at that node
– Upper bound on number of nodes to be explored

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 38

⎡ ⎤1)log(+nM

VP-Tree: Properties

– Binary tree of depth log(n) and total nodes (2n-1)
– Construction time: O(ndlog(n))
– Memory: nonleaf node – (vantage point, threshold), leaf node – data id
– Need to store the original data also

Backtracking
– Compare against the vantage point at each node to decide whether to

explore subtree rooted at that node
– Upper bound on number of nodes to be explored

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 39

⎡ ⎤1)log(+nM

1>ηηd

Exponential in d !

VP-Tree vs KD-Tree

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 40

n

= ~8K

Yianilos[3]

d

= 8

vps:

vp-tree with upper/lower
bound caching

Projection-Based Trees

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 41

Project data on a hyperplane and threshold
– Different types of projection directions
– Binary Tree: usually threshold at median
– Split recursively until each node has only one point (leaves)
– Ball-Tree, PCA-Tree, Random-Projection Tree,…

KD-Tree Projection-Tree
Freund et al.[11]

Ball-Tree

left
right

Ball tree

Susceptible to outliers!

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 42

– Find the (approx) diameter of the given dataset
– Find the point farthest from mean and another farthest from it
– Threshold at median
– Another variation: split according to distance from two points (i.e.,

threshold at mid point of line joining two centers), need to store two
vectors per node

PCA-Tree

left right

PCA tree

Expensive, not enough data at lower levels to construct covariance!

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 43

– Use top eigenvector of data covariance as projection direction
– Threshold at median
– More robust than ball tree in presence of outliers

top eigenvector

Random-Projection (RP) Tree

Random-
Projection tree

Theoretical Guarantees!

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 44

– Randomly sample a projection direction from a fixed distribution
– Threshold at “adjusted” median
– Robust for high-dim data
– Can adapt to low-dimensional structure in the data well

left
right

Random direction

Random-Projection (RP) Tree

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 45

Analysis: Show that every O(D) levels, data diameter reduced by half

– Suppose D

is the intrinsic dimensionality of the data at any cell, i.e.,

∑∑ == −≥ d
i i

D
i i σεσ 1

2
1

2)1(

covariance of data in cell C

)(2
CXi evalσ Σ=

Random-Projection (RP) Tree

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 46

Analysis: Show that every O(D) levels, data diameter reduced by half

– Suppose D

is the intrinsic dimensionality of the data at any cell, i.e.,

Let be the diameter of points in cell C (i.e. largest distance between any
pair in C), and be the average diameter of C:

∑∑ == −≥ d
i i

D
i i σεσ 1

2
1

2)1()(2
CXi evalσ Σ=

covariance of data in cell C

CXΔ A
XC

Δ

() ∑∑
∈∈

−=−=Δ
CC

C Xx
C

CXyxC

A
X μx

X
yx

X
2

),(

2
2

2 21

Random-Projection (RP) Tree

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 47

Analysis: Show that every O(D) levels, data diameter reduced by half

– Suppose D

is the intrinsic dimensionality of the data at any cell, i.e.,

Let be the diameter of points in cell C (i.e. largest distance between any
pair in C), and be the average diameter of C:

∑∑ == −≥ d
i i

D
i i σεσ 1

2
1

2)1()(2
CXi evalσ Σ=

covariance of data in cell C

CXΔ A
XC

Δ

()21
2 21 A

X
d
i i

C
σ Δ=∑ =

() ∑∑
∈∈

−=−=Δ
CC

C Xx
C

CXyxC

A
X μx

X
yx

X
2

),(

2
2

2 21

Random-Projection (RP) Tree

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 48

Analysis: Show that every O(D) levels, data diameter reduced by half

– How to compute threshold?

2
21

2
11)()(μaμac n

ij j
i
j ji −+−= ∑∑ +==

i
T

i xwa =

1μ 2μi

Maximally decreases average squared inter-point distance !

Threshold i
i

ct maxarg=

Random-Projection (RP) Tree

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 49

Analysis: Show that every O(D) levels, data diameter reduced by half

Theorem: Suppose data subset XC

in any cell C

has intrinsic dimension D

(for a
given 0 < ε

< 1). Pick a point x ∈

XC

at random and let C′

be the cell that
contains it in the next level down. Then,

() ()22
1 A

X
A
X CC D

cE Δ⎟
⎠
⎞

⎜
⎝
⎛ −≤⎥⎦

⎤
⎢⎣
⎡ Δ

′
10 << c

Random-Projection (RP) Tree

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 50

Analysis: Show that every O(D) levels, data diameter reduced by half

Theorem: Suppose data subset XC

in any cell C

has intrinsic dimension D

(for a
given 0 < ε

< 1). Pick a point x

∈

XC

at random and let C′

be the cell that
contains it in the next level down. Then,

After D

levels, reduction in expected average data diameter

() ()22
1 A

X
A
X CC D

cE Δ⎟
⎠
⎞

⎜
⎝
⎛ −≤⎥⎦

⎤
⎢⎣
⎡ Δ

′
10 << c

2/
1

D

D
c
⎟
⎠
⎞

⎜
⎝
⎛ −

For moderate to large D, average diameter is halved every O(D) levels !

K-Means Tree

left right

K-means tree

Split through sparse region

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 51

– Many real-world datasets contain clusters
– Find the two end-points by iteratively finding centers using k-means
– Points are split based on closer center
– Unbalanced partitioning, more construction time

Number of K-means Iterations

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 52

d

= 128, n

= 100K

Muja&Lowe[10]

in
 c

om
pa

ris
on

 w
ith

 c
on

ve
rg

ed
 k

-m
ea

ns

disjoint partitioning of data boundary errors backtracking

Spilling in Trees
Overlapped partitioning reduces boundary errors

– no backtracking necessary

right

left

– Increases tree depth - more memory, slower to build
– Better when split passes through sparse regions (k-means)
– Lower nodes may spill too much hybrid of spill and non-spill nodes
– Designing a good spill factor hard

εε

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 53

Effect of spilling

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 54
Liu et al.[7]

Tricks for Trees
– For high dimensional data, use randomized projections or PCA to do

dimensionality reduction
– While backtracking, use Best-Bin-First (BBF) search instead of Last-Bin-

First (LBF)
– BBF Search: make a priority queue of all the unexplored nodes and visit

them in order of their “closeness” to the query
– In KD-trees, closeness is defined by distance to a cell boundary, while in

k-means tree, it is distance to the center of a cell
– Space permitting, keep extra statistics on lower and upper bound for

each cell and use triangle inequality to prune space
– Use spilling to avoid backtracking
– use lookup tables for fast distance computation, if possible

Two Main problems
– Memory needed is usually quite big (sometimes more than original data)
– Original data is always needed at search-time (may not be feasible for

very large databases)

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 55

Experiments –

Exact Search

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 56

d

= 49, n

= O(M)
N. Kumar et al. [12]

Experiments –

Exact Search

Sanjiv Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 57
N. Kumar et al. [12]

Experiments –

Approximate Search

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 58

d

= 128
Muja&Lowe[10]

1. J. L. Bentley. Multidimensional binary search trees used for associative searching. Comm. ACM, 18(9), 1975.
2. Freidman, J. H., Bentley, J. L., and Finkel, R. A. An algorithm for finding best matches in logarithmic

expected time. ACM Trans. Math. Softw., 3:209–226, 1977.
3. S. M. Omohundro. Five balltree construction algorithms. Technical report, Int. Computer Science Inst., 1989.
4. Sproull, R.F.: Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica 6(4) (1991)

579–589
5. P. N. Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces. In

SODA, 1993.
6. Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. An optimal algorithm for approximate

nearest neighbor searching in fixed dimensions. Journal of the ACM, 45:891–923, 1998.
7. T. Liu, A. Moore, A. Gray, and K. Yang. An investigation of practical approximate nearest neighbor

algorithms. In NIPS 2004, 12 2004.
8. S. Dasgupta and Y. Freund. Random projection trees and low-dimensional manifolds. UCSD Technical

Report CS2007-0890, 2007.
9. C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast image descriptor matching. In CVPR, 2008.
10. M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In

VISAPP, 2009.
11. Y. Freund, S. Dasgupta, M. Kabra, and N. Verma. Learning the structure of manifolds using random

projections. NIPS, 2007.
12. N. Kumar, L. Zhang, and S. Nayar. What is a good nearest neighbors algorithm for finding similar patches in

images? In ECCV, 2008.

References

Sanjiv

Kumar 10/5/2010 EECS6898 – Large Scale Machine Learning 59

	Approximate Nearest Neighbor (ANN) Search - I
	Slide Number 2
	Slide Number 3
	Kernel Density Estimation
	Graph-based methods
	Nearest Neighbor Search
	Nearest Neighbor Search
	Nearest Neighbor Search
	Nearest Neighbor Search
	Nearest Neighbor Search
	Distance Metrics
	Distance Metrics
	Distance Metrics
	Distance Metrics
	Distance Metrics
	Distance Metrics
	Distance Metrics
	Learning Distance Metric
	Learning Distance Metric
	Slide Number 20
	KD-Tree
	KD-Tree: Properties
	KD-Tree: Search
	KD-Tree: Branch-and-Bound Verification
	KD-Tree: Search complexity
	KD-Tree: Search complexity
	KD-Tree: Search complexity
	KD-Tree: Search complexity
	KD-Tree: Search complexity
	KD-Tree: Search complexity
	KD-Tree: Search complexity
	KD-Tree: Search complexity
	KD-Tree: Search complexity
	Randomized KD-Trees
	Experiments: Randomized KD-Trees
	Vantage Point (VP)-Tree
	VP-Tree vs KD-Tree
	VP-Tree: Properties
	VP-Tree: Properties
	VP-Tree vs KD-Tree
	Projection-Based Trees
	Ball-Tree
	PCA-Tree
	Random-Projection (RP) Tree
	Random-Projection (RP) Tree
	Random-Projection (RP) Tree
	Random-Projection (RP) Tree
	Random-Projection (RP) Tree
	Random-Projection (RP) Tree
	Random-Projection (RP) Tree
	K-Means Tree
	Number of K-means Iterations
	Spilling in Trees
	Effect of spilling
	Tricks for Trees
	Experiments – Exact Search
	Experiments – Exact Search
	Experiments – Approximate Search
	References

