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Abstract.
In this research we address the problem of classification and labeling of regions given a

single static natural image. Natural images exhibit strong spatial dependencies, and modeling
these dependencies in a principled manner is crucial to achieve good classification accuracy.
In this work, we present Discriminative Random Fields (DRFs) to model spatial interactions
in images in a discriminative framework based on the concept of Conditional Random Fields
proposed by Lafferty et al (Lafferty et al., 2001). The DRFs classify image regions by incor-
porating neighborhood spatial interactions in the labels as well as the observed data. The
DRF framework offers several advantages over the conventional Markov Random Field (MRF)
framework. First, the DRFs allow to relax the strong assumption of conditional independence
of the observed data generally used in the MRF framework for tractability. This assumption
is too restrictive for a large number of applications in computer vision. Second, the DRFs
derive their classification power by exploiting the probabilistic discriminative models instead
of the generative models used for modeling observations in the MRF framework. Third, the
interaction in labels in DRFs is based on the idea of pairwise discrimination of the observed
data making it data-adaptive instead of being fixed a priori as in MRFs. Finally, all the
parameters in the DRF model are estimated simultaneously from the training data unlike
the MRF framework where the likelihood parameters are usually learned separately from the
field parameters. We present preliminary experiments with man-made structure detection and
binary image restoration tasks, and compare the DRF results with the MRF results.

Keywords: Image Classification, Spatial Interactions, Markov Random Field, Discriminative
Random Field, Discriminative Classifiers, Graphical Models

1. Introduction

One of the fundamental problems in computer vision is that of image understand-
ing or semantic scene interpretation i.e., to interpret the scene contained in an
image in meaningful entities. For instance, one might be interested in knowing
either the general class of a scene e.g., the scene is an office or a beach, or the
event summarizing a scene e.g., the scene is from a birthday party. To solve these
complex problems, it is important to classify various regions and objects in a
scene in meaningful categories. For example, if we can recognize that the scene
contains water and sand, there is high probability that the scene is a beach.
Similarly, presence of a birthday cake is a strong indication of the scene being
from a birthday party.
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In this research we address the problem of classification or labeling of regions
in natural images where the term region may denote an image pixel, a block of
a regular grid, an irregular patch in the image or an object itself. Following the
convention, by natural images we mean the non-contrived scenes that are en-
countered commonly in our surroundings i.e., regular indoor and outdoor scenes.
These images contain both man-made and other regions or objects occurring in
nature. In this research we will deal with the problems where only a single
static image of the scene is given, and no 3D geometric or motion information is
available. This makes the classification task more challenging.

It is well known that natural images are not a random collection of indepen-
dent pixels or blocks. It is important to use the contextual information in the
form of spatial dependencies in images for the analysis of natural images. In
fact, one would like to have total freedom in modeling long range complex data
interactions in an image without restricting oneself to small local neighborhoods.
This idea forms the core of the research presented in this paper. The spatial
dependencies may vary from being local to global and the challenge is how to
maintain global spatial consistency using models that only need to consider
relatively local dependencies.

1.1. The Nature of Spatial Interactions

There are typically two types of spatial interactions one would like to model for
the purpose of classification and labeling. First is the notion of spatial smooth-
ness of labels in natural images. According to this, neighboring sites tend to have
similar labels (except at the discontinuities). For example if a pixel in Fig. 1(a)
has label sky, there is a high probability that the neighboring pixels also have
the same label except at the boundaries. In fact, this underlying smoothness
of image labels is the reason that one can hope to recover the true image from
its corrupted version in image denoising tasks (Fig. 1(c)), which is otherwise
an ill-posed problem. In addition to spatial interaction in labels, there are also
complex interactions in the observed data that might be required for the task
of classification. Consider a task of detecting structured textures (e.g., man-
made structures such as buildings) in a given image. The data belonging to
this type of textures is highly dependent on its neighbors. This is because, in
man-made structures, the lines or edges at spatially adjoining sites follow some
underlying organization rules rather than being random (See Fig.1(b)). The task
of labeling image regions encompasses a wide range of applications in computer
vision including (semantic) segmentation, image denoising, texture recognition
etc. (Fig. 1). Ideally one would like to find a computational model that can
learn relevant dependencies of different types automatically in a single consistent
framework using the training data. In this paper we address the challenge of how
to model arbitrarily complex dependencies in the observed image data as well
as the labels in a principled manner.
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(a)

(b)

(c)

Figure 1. Various tasks in computer vision that require explicit consideration of spatial de-
pendencies for the purpose of region labeling. (a) Segmentation and labeling of input image in
meaningful regions. (b) Detection of structured textures such as buildings. (c) Image denoising
to restore images corrupted by noise.

1.2. Modeling Spatial Interactions

While modeling spatial interactions in images, it is important to take into con-
sideration statistical variations in data within each class and other uncertainties
due to image noise etc. This naturally leads toward probabilistic modeling of
classification problems including the spatial dependencies. In probabilistic mod-
els, the final classification task can be seen as inference over these models with
respect to some cost function. As discussed before, natural images exhibit long
range dependencies and manipulating these global interactions is of fundamental
interest in classification. However, direct modeling of global interactions becomes
computationally intractable even for a small image. On the contrary, usually one
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can encode the structure of local dependencies in an image easily from which
one would like to make globally consistent predictions. This paradox can be
resolved to a large extent by graphical models. Graphical models combine two
areas viz. graph theory and probability theory, and provide a powerful yet flexible
framework for representing and manipulating global probability distributions
defined by relatively local constraints.

This paper is organized as follows. In Section 2 we discuss the background
research in modeling spatial interactions in computer vision. Specifically we men-
tion commonly used causal and noncausal models, and highlight their limitations
when applied to vision tasks. In Section 3 we present a noncausal Discriminative
Random Field (DRF) model along with parameter learning and inference over
these models. Experiments with man-made structure detection task are also
presented. Section 4 describes modifications in the original DRF framework and
further experiments with binary image denoising task. Finally, we highlight the
contributions of this paper in Section 5, and also discuss further extensions of
the proposed DRF framework as the future work.

2. Background

The issue of incorporating spatial dependencies in various image analysis tasks
has been of continuous interest in vision community. In the vision literature,
broadly two different categories of approaches have been used to address this
issue: non-probabilistic and probabilistic. We categorize a framework as non-
probabilistic if the overall labeling objective is not given by a consistent prob-
abilistic formulation even if the framework utilizes probabilistic methods to
address parts of it.

Among the non-probabilistic approaches, other than the weak measures of
capturing spatial smoothness of natural images using filters with local neighbor-
hood supports (Guo et al., 2003)(Kumar et al., 2003), perhaps the most popular
one is (Relaxation Labeling RL) proposed by Rosenfeld et al. (Rosenfeld et al.,
1976). This work was inspired by the work of Waltz (Waltz, 1975) concerned
with discrete relaxation on how to impose a global consistency on the labelings of
idealized line drawings where the object and object primitives were assumed to be
given. Since the introduction of RL, several probabilistic relaxation approaches
have been suggested to provide a better explanation of the original heuristic
updates of the label responsibilities (Kittler and Pairman, 1985)(Kittler and
Hancock, 1989)(Christmas et al., 1995). In spite of successes of probabilistic
RL in several applications, there are many ad-hoc assumptions in various RL
frameworks (Kittler, 1997). For example, either the labels are assumed to be
independent given the relational measurements at two or more sites (Christmas
et al., 1995) or conditionally independent in local neighborhood of a site given its
label (Kittler and Hancock, 1989). Probably the most important problem with
RL is that the model parameters, i.e., the compatibility coefficients are chosen
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on a heuristic basis. In fact, it is not even clear how to interpret these coefficients
(Kittler and Illingworth, 1985). The probabilistic versions of RL do allow viewing
compatibilities as conditional probabilities. However, even these interpretations
are valid only for the first iteration. The meaning of the probabilities yielded by
subsequent iterations is increasingly speculative (Kittler and Illingworth, 1985).

In the probabilistic schemes, two types of graphical models, i.e. causal and
noncausal models have been used to incorporate spatial contextual constraints
in vision problems.

2.1. Causal Models

Causal models are global probability distributions defined on directed graphs
using local transition probabilities. If a causal graph is acyclic1. If we denote the
set of labels on image sites by x,

P (x) =
∏

i

P (xi|pai),

where pai is the parent of node i. The causal models assume that the observed
image is produced by a latent causal hierarchical process. A particular form of
such models is a causal tree in which each node has only one parent. These
models have been used with some success in various segmentation and labeling
problems (Bouman and Shapiro, 1994)(Cheng and Bouman, 2001)(Feng et al.,
2002)(Wilson and Li, 2003)(Kumar and Hebert, 2003c).

There are several advantages of causal trees. These models can encode long
range interactions in images explicitly through the latent hierarchical process.
Also, the causal trees contain no cycles and hence allow the use of very effi-
cient techniques for exact parameter learning and inference. In spite of these
advantages, there are several problems associated with these models. The main
problem with the tree-structured models is that they suffer from the nonsta-
tionarity of the induced random field, leading to ’blocky’ smoothing of the
image labels (Feng et al., 2002). According to this, there exists an imposed
difference in the behavior of interactions between neighboring nodes at different
locations in the image, purely dictated by the tree structure even though there
is no a-priori reason for such a difference. This problem exists in all the tree-
structured models whether causal or noncausal. One way to solve this problem
is to dynamically adapt the tree-structure to a given input image. This idea
was explored in dynamic trees (Williams and Adams, 1999) but the inference
over tree-structure still remains an intractable problem. Other possibility is to
use more complex causal structures instead of simple trees. But this makes the
problem of parameter learning and inference hard.

The second important drawback is that, when trained discriminatively, the
causal models sometimes suffer from the label bias problem which unfairly favors

1 The directed acyclic graphs are popularly known as Bayesian Networks.
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labels with fewer successors due to the need of normalizing each link to be a
proper transition probability (Bottou, 1991)(Lafferty et al., 2001). On the other
hand, in noncausal models this problem does not arise as one needs to define
potential functions for each clique (which are not required to sum to one) and
there is a universal normalizing constant for the whole distribution known as
the partition function. Finally, since causal models are developed in a generative
framework, some crude approximations are required to make data generative
model computationally tractable while retaining some expressive power of the
model. This problem exists with conventional noncausal models also and we will
discuss this in detail in Section 2.2. To avoid the problems associated with the
causal models, in this paper we will focus on noncausal or undirected graphical
models.

2.2. Noncausal Models

Noncausal models are global probability distributions defined on undirected
graphs using local clique potentials, i.e.,

P (x) ∝
∏
c∈C

ψc(xc),

where C is the set of all the cliques2 in the graph, and ψc(xc) are clique potentials,
i.e. positive functions of clique variables xc. Noncausal graphs are more suited
to handle interactions over image lattices since usually there exists no natural
causal relationships among image components. Even though computationally
tractable, the tree-structured noncausal models suffer from similar problems as
the causal trees described in Section 2.1 except the label-bias problem. So, in
the following discussion we will explore arbitrary undirected graphs with cycles.
Undirected graphical models are sometimes popularly referred to as random
fields in computer vision, statistical physics and several other areas.

Markov Random Fields (MRFs) are the most popular undirected graphical
models in vision, which allow one to incorporate local contextual constraints in
labeling problems in a principled manner (Li, 2001). MRFs were made popular in
vision by early work of Geman and Geman (Geman and Geman, 1984), and Besag
(Besag, 1986). MRFs are generally used in a probabilistic generative framework
that models the joint probability of the observed data and the corresponding
labels. In other words, let y be the observed data from an input image, where
y = {yi}i∈S, yi is the data from the ith site, and S is the set of sites. Let the
corresponding labels at the image sites be given by x = {xi}i∈S. In the MRF
framework, the posterior over the labels given the data is expressed using the
Bayes’ rule as,

P (x|y) ∝ p(x,y) = P (x)p(y|x)

2 A clique is a fully connected subgraph of the original graph
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where the prior over labels, P (x) is modeled as a MRF. For computational
tractability, the observation or likelihood model, p(y|x) is assumed to have a
factorized form, i.e. p(y|x) =

∏
i∈S p(yi|xi) (Besag, 1986)(Li, 2001)(Feng et al.,

2002)(Xiao et al., 2002). However, as noted by several researchers (Bouman
and Shapiro, 1994)(Pieczynski and Tebbache, 2000)(Wilson and Li, 2003)(Ku-
mar and Hebert, 2003c), this assumption is too restrictive for several natural
image analysis applications. For example, consider a class that contains man-
made structures (e.g. buildings). The data belonging to such a class is highly
dependent on its neighbors. This is because, in man-made structures, the lines
or edges at spatially adjoining sites follow some underlying organization rules
rather than being random (See Figure 1(b)). This is also true for a large number
of texture classes that are made of structured patterns and other object detection
applications where geometric (and possibly appearance) relationships between
different parts of the object are crucial for its detection in cluttered scenes (Weber
et al., 2000)(Fergus et al., 2003)(Felzenszwalb and Huttenlocher, 2000).

Some efforts have been made in the past to model the dependencies in the
observed image data. In (Kittler and Pairman, 1985), a technique was presented
that assumes the noise in the data at neighboring sites to be correlated, which
is modeled using an auto-normal model. However, the authors do not specify a
field over the labels, and classify a site by maximizing the local posterior over
labels given the data and the neighborhood labels. In the context of hierarchical
texture segmentation, Won and Derin (Won and Derin, 1992) model the local
joint distribution of the data contained in the neighborhood of a site assuming
all the neighbors from the same class. They further approximate the overall
likelihood to be factored over the local joint distributions. Wilson and Li (Wilson
and Li, 2003) assume the difference between observations from the neighboring
sites to be conditionally independent given the label field. In the context of
multiscale random field, Cheng and Bouman (Cheng and Bouman, 2001) make
a more general assumption. They assume the difference between the data at a
given site and the linear combination of the data from that site’s parents to be
conditionally independent given the label at the current scale.

All the above techniques make simplifying assumptions to get some sort of
factored approximation of the likelihood for tractability. This precludes captur-
ing stronger relationships in the observations in the form of arbitrarily complex
features that might be desired to discriminate between different classes. A novel
pairwise MRF model is suggested in (Pieczynski and Tebbache, 2000) to avoid
the problem of explicit modeling of the likelihood, p(y|x). They model the joint
p(x, y) as a MRF in which the label field P (x) is not necessarily a MRF. But this
shifts the problem to the modeling of pairs (x,y). The authors model the pair
by assuming the observations to be the true underlying binary field corrupted
by correlated noise. However, for most of the real-world applications, this as-
sumption is too simplistic. In our previous work (Kumar and Hebert, 2003c),
we modeled the data dependencies using a pseudolikelihood approximation of
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a conditional MRF for computational tractability. In this paper, we explore
alternative ways of modeling data dependencies which allow elimination of these
approximations in a principled manner.

Another thing to note is that the interaction among labels in MRFs is modeled
by the term P (x), which is seen as a prior in the Bayesian view. The main
drawback of this view is that the label interactions do not depend on the ob-
served data y. This prohibits one from modeling data-dependent interactions in
labels that are necessary for a variety of tasks. For example, while implementing
local smoothness of labels in image segmentation, it may be desirable to use
observed data to modulate the smoothness according to the image intensity
gradients (Boykov and Jolly, 2001)(Blake et al., 2004). Further, in parts based
object detection, to model interactions among object parts, we need observed
data to enforce geometric (and possibly photometric) constraints. This is also
the case for modeling higher level interactions between objects or regions in an
image. In this paper, we present models which allow interactions among labels
based on unrestricted use of observations as necessary. This step is crucial to
develop models that can incorporate interactions of different types within the
same framework.

In related work, taking the non-probabilistic view of energy-based graphical
model, Boykov and Jolly (Boykov and Jolly, 2001) have proposed an energy
form that uses observed data to model pairwise interaction between labels. In
this work, the smoothness parameter of the Ising model was modulated by
a Gaussian over the intensity difference between a pair of pixels. Using such
contrast-sensitive interactions, they have shown interesting results in the area
of interactive image segmentation. However, their approach has two main draw-
backs. Firstly, there is no direct probabilistic interpretation of their energy. As
the authors themselves state, the choice of modulating the smoothing para-
meter by using image observations is rather ’ad-hoc’. Being non-probabilistic,
parameter learning is hard in these models. The authors tune the smoothing
and the modulation parameters by hand. Secondly, the non-probabilistic energy-
based view eliminates the possibility of computing labels that are optimal for
minimizing sitewise errors (i.e., sitewise zero-one loss function). This is due to
the fact that there is no concept of marginals in energy-based view, which are
required for minimizing the sitewise errors.

Recently, Blake et al. (Blake et al., 2004) have given a probabilistic inter-
pretation of the contrast-sensitive image segmentation formulation suggested
by Boykov and Jolly (Boykov and Jolly, 2001). They have proposed to learn
the observation model parameters along with the modulation parameters using
pseudo-likelihood. This alleviates one of the main problems with the original non-
probabilistic formulation of (Boykov and Jolly, 2001). However, the parameters
of the foreground and background models are learned separately. This forces one
to use ’post-hoc’ averaging schemes to estimate the modulation and the inter-
action parameters. Another limitation of this approach is that the interactions
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among observed data are restricted to site pairs. On the contrary, the model pre-
sented in this paper allows arbitrary interactions among data from multiple sites,
potentially from the whole image, without any added computational complexity.

In MRF formulations of binary classification problems, the label interac-
tion field P (x) is commonly assumed to be a homogeneous and isotropic Ising
model (or Potts model for multiclass labeling problems) with only pairwise
nonzero potentials. If the data likelihood p(y|x) is approximated by assuming
that the observed data is conditionally independent given the labels, the posterior
distribution3 over labels can be written as,

P (x|y)=
1

Zm

exp

(∑
i∈S

log p(si(yi)|xi)+
∑
i∈S

∑
j∈Ni

βmxixj

)
, (1)

where βm is the interaction parameter of the MRF, and si(yi) is a single-site
feature vector, which uses data only from a single site i, i.e., yi. Note that even
though only the label prior, P (x) was assumed to be a MRF, the assumption
of conditional independence of data implies that the posterior given in (1) is
also a MRF. This allows one to reap the benefits of readily available tools of
inference over a MRF. If the conditional independence assumption is not used,
the posterior will usually not be a MRF making the inference difficult.

Now, if we turn our attention again toward the original aim of this work,
we are interested in classification of image sites. For classification purposes, we
want to estimate the posterior over labels given the observations, i.e., P (x|y).
In a generative framework, one expends efforts to model the joint distribution
p(x, y), which involves implicit modeling of the observations. In a discriminative
framework, one models the distribution P (x|y) directly. This saves one from
making simplistic assumptions about the data. This view forms the core theme
of the model we present in this paper as discussed in the following sections.

As noted in (Feng et al., 2002), a potential advantage of using the discrim-
inative approach is that the true underlying generative model may be quite
complex even though the class posterior is simple. This means that the generative
approach may spend a lot of resources on modeling the generative models which
are not particularly relevant to the task of inferring the class labels. Moreover,
learning the class density models may become even harder when the training data
is limited (Rubinstein and Hastie, 1997). A more complete comparison between
the discriminative and the generative models for the linear family of classifiers
has been presented in (Rubinstein and Hastie, 1997)(Ng and Jordan, 2002).

3 With a slight abuse of notation, we will use the term ’MRF model’ to indicate this posterior
in the rest of the paper.
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3. Discriminative Random Field (DRF)

In this paper, we present a noncausal model called Discriminative Random Field
4 based on the concept of Conditional Random Field (CRF) proposed by Lafferty
et al. (Lafferty et al., 2001) in the context of segmentation and labeling of 1-D
text sequences. The CRFs directly model the posterior distribution P (x|y) as a
Gibbs field. This approach allows one to capture arbitrary dependencies among
the observations without resorting to any model approximations. CRFs have
been shown to outperform the traditional Hidden Markov Model based labeling
of text sequences (Lafferty et al., 2001). Our model further enhances the 1-D
CRFs by proposing the use of local discriminative models to capture the class
associations at individual sites as well as the interactions on the neighboring sites
on 2-D regular as well as irregular lattices. The proposed DRF model permits
interactions in both the observed data and the labels in a principled manner.

We first restate in our notations the definition of CRFs as given by Lafferty et
al. (Lafferty et al., 2001). Let the observed data from an input image be given by
y = {yi}i∈S where yi is the data from ith site and yi ∈ <c. The corresponding
labels at the image sites are given by x = {xi}i∈S. In this work we will be
concerned with binary classification, i.e. xi ∈ {−1, 1}. The random variables x
and y are jointly distributed, but in a discriminative framework, a conditional
model P (x|y) is constructed from the observations and labels, and the marginal
p(y) is not modeled explicitly.

CRF Definition: Let G = (S, E) be a graph such that x is indexed by the
vertices of G. Then (x,y) is said to be a conditional random field if, when
conditioned on y, the random variables xi obey the Markov property with respect
to the graph: P (xi|y, xS−{i}) = P (xi|y,xNi

), where S−{i} is the set of all nodes
in the graph except the node i, Ni is the set of neighbors of the node i in G, and
xΩ represents the set of labels at the nodes in set Ω.

Thus, a CRF is a random field globally conditioned on the observations y.
The condition of positivity requiring P (x|y)> 0 ∀ x has been assumed implic-
itly. Now, using the Hammersley-Clifford theorem (Hammersley and Clifford,
) and assuming only up to pairwise clique potentials to be nonzero, the joint
distribution over the labels x given the observations y can be written as,

P (x|y)=
1

Z
exp

(∑
i∈S

Ai(xi, y)+
∑
i∈S

∑
j∈Ni

Iij(xi, xj,y)

)
(2)

where Z is a normalizing constant known as the partition function, and -Ai and
-Iij are the unary and pairwise potentials respectively. With a slight abuse of

4 An earlier version of this work appeared in International Conference on Computer Vision
(ICCV 03)(Kumar and Hebert, 2003b).
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notations, in the rest of the paper we will call Ai the association potential and
Iij the interaction potential.

There are two main differences between the conditional model given in (2)
and the original MRF framework given in (1). First, in the conditional fields,
association potential at any site is a function of all the observations y while
in MRFs (with the assumption of conditional independence of the data), the
association potential is a function of data only at that site, yi. Second, the
interaction potential for each pair of nodes in MRFs is a function of only labels,
while in the conditional models it is a function of labels as well as all the
observations y. As will be shown later, these differences play crucial roles in
modeling arbitrary interactions in natural images in a principled manner.

The DRF model we present in this paper is a specific type of CRF defined in
(2), and thus inherits all its advantages over the traditional MRF as described
above. In the DRF model, we extend the specific 1-D sequential CRF form pro-
posed in (Lafferty et al., 2001). There are two main extensions: First, the unary
and pairwise potentials in DRFs are designed using arbitrary local discriminative
classifiers. This allows one to use domain-specific discriminative classifiers for
structured data rather than restricting the potentials to a specific form. Taking
a similar view, several researchers have recently demonstrated good results using
different classifiers such as probit (Qi et al., 2005), boosting (Torralba et al.,
2005) and even neural network (He et al., 2004). This view is consistent with one
of the key motivations behind this work in which we wanted to develop models
that allow one to leverage the power of discriminative classifiers in problems
where data has interactions rather than being independent.

Second, instead of being 1-D sequential models, the DRFs are defined over
2-D image lattices which generally induce graphs with loops. This makes the
problem of parameter learning and inference significantly harder. To the best
of our knowledge, ours is the first work that introduced CRF-based models
in computer vision for image analysis. Recently, a number of researchers have
demonstrated the utility of such models in various computer vision applications
(Murphy et al., 2003)(He et al., 2004)(Quattoni et al., 2004)(Weinman et al.,
2004)(Szummer and Qi, 2004)(Torralba et al., 2005)(Qi et al., 2005)(Wang and
Ji, 2005). The discriminative fields make it possible to tie different computer
vision applications in a single framework in a seamless fashion. In the rest of
this paper we assume the random field given in (2) to be homogeneous and
isotropic, i.e. the functional forms of Ai and Iij are independent of the locations
i and j. Henceforth we will leave the subscripts and simply use the notations A
and I. Note that the assumption of isotropy can be easily relaxed at the cost of
a few additional parameters.

3.1. Association Potential

In the DRF framework, the association potential, A(xi,y), can be seen as a
measure of how likely a site i will take label xi given image y, ignoring the effects
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of other sites in the image. Suppose, f(.) is a function that maps an arbitrary
patch in an image to a feature vector such that f : Yp → <l. Here Yp is the set of
all possible patches in all possible images. Let ωi(y) be an arbitrary patch in the
neighborhood of site i in image y from which we want to extract a feature vector
f(ωi(y)). Note that the neighborhood used for the patch ωi(y) need not be the
same as the label neighborhood Ni. Indeed, ωi(y) can potentially be the whole
image itself. For clarity, with slight abuse of notation, we will denote the feature
vector f(ωi(y)) at each site i by f i(y). The subscript i indicates the difference
just in the feature vectors at different sites, not in the functional form of f(.).
Then, A(xi,y) is modeled using a local discriminative model that outputs the
association of the site i with class xi as,

A(xi, y) = log P ′(xi|f i(y)), (3)

where P ′(xi|f i(y)) is the local class conditional at site i. This form allows one to
use an arbitrary domain-specific probabilistic discriminative classifier for a given
task. This can be seen as a parallel to the traditional MRF models where one
can use arbitrary local generative classifier to model the unary potential. One
possible choice of P ′(.) can be Generalized Linear Models (GLM), which are
used extensively in statistics to model the class posteriors given the observations
(McCullagh and Nelder, 1987). In this work we used the logistic function5 as a
link in the GLM. Thus, the local class conditional can be written as,

P ′(xi=1|f i(y))=
1

1+e−(w0+wT
1 f i(y))

=σ(w0+wT
1 f i(y)), (4)

where w = {w0, w1} are the model parameters. This form of P ′(.) will yield
a linear decision boundary in the feature space spanned by vectors f i(y). To
extend the logistic model to induce a nonlinear decision boundary, a transformed
feature vector at each site i is defined as hi(y) = [1, φ1(f i(y)), . . . , φR(f i(y))]T

where φk(.) are arbitrary nonlinear functions. These functions can be seen as
kernel mapping of the original feature vector into a high dimensional space.
The first element of the transformed vector is kept as 1 to accommodate the
bias parameter w0. Further, since xi ∈ {−1, 1}, the probability in (4) can be
compactly expressed as,

P ′(xi|y) = σ(xiw
T hi(y)). (5)

Finally, for this choice of P ′(.), the association potential can be written as,

A(xi, y) = log(σ(xiw
T hi(y))) (6)

This transformation ensures that the DRF is equivalent to a logistic classifier if
the interaction potential in (2) is set to zero. Note that the use of logistic function

5 One can use other choices of link such as probit link.
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to model the discriminative classifier yields A(.) that is linear in features. This is
similar to the original form of the 1-D sequential CRFs of (Lafferty et al., 2001)
with the difference that we use kernels to define this potential. Parallel to our
work, researchers have proposed the use of kernels in CRF-type of models (Taskar
et al., 2003)(Lafferty et al., 2004). Moreover, while designing graph potentials,
recently other researchers have explored the use of different classifiers such as
probit classifier (Qi et al., 2005)(Szummer and Qi, 2004) which will not yield
a linear form of Ai(.). Similarly, in Boosted Random Fields (BRFs) proposed
by Torralba et at. (Torralba et al., 2005), the authors design unary potential
using boosting. They show good results on the application of contextual object
detection using BRFs.

Note that in (6), the transformed feature vector at each site i i.e., hi(y) is a
function of the whole set of observations y. This allows one to pool arbitrarily
complex dependencies in the observed data for the purpose of classification. On
the contrary, the assumption of conditional independence of the data in the
traditional MRF framework allows one to use the data only from a particular
site, i.e., yi to get the log-likelihood, which acts as the association potential as
shown in (1).

In related work, a neural network based discriminative classifier was used
by Feng et al. (Feng et al., 2002) to model the observations in a generative
tree-structured belief network model. Since the model required generative data
likelihood, the discriminative output of the neural network was used to approx-
imate the actual likelihood of the data in an ad-hoc fashion. On the contrary,
in the DRF model, the discriminative class posterior is an integral part of
the full conditional model in (2), and all the models parameters are learned
simultaneously.

3.2. Interaction Potential

In the DRF framework, the interaction potential can be seen as a measure of how
the labels at neighboring sites i and j should interact given the observed image y.
To model the interaction potential, I, we first analyze the form commonly used in
the MRF framework. For the isotropic, homogeneous Ising model, the interaction
potential is given as I = βxixj, which penalizes every dissimilar pair of labels
by the cost β (Ising, 1925). This form of interaction favors piecewise constant
smoothing of the labels without considering the discontinuities in the observed
data explicitly. Geman and Geman (Geman and Geman, 1984) have proposed a
line-process model which allows discontinuities in the labels through piecewise
continuous smoothing. Other discontinuity models have also been proposed for
adaptive smoothing (Li, 2001), but all of them require the labels to be either
continuous or ordered. On the contrary, in the classification task there is no
natural ordering in the labels. Also, these discontinuity adaptive models do not
use the observed data to model the discontinuities.
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In contrast, in the DRF formulation, the interaction potential is a function of
all the observations y. We propose to model I in DRFs using a data-dependent
term along with the constant smoothing term of the Ising model. In addition
to modeling arbitrary pairwise relational information between sites, the data-
dependent smoothing can compensate for the errors in modeling the association
potential. To model the data-dependent term, the aim is to have similar labels
at a pair of sites for which the observed data supports such a hypothesis. In
other words, we are interested in learning a pairwise discriminative model.

Suppose, ψ(.) is a function that maps an arbitrary patch in an image to a
feature vector such that ψ : Yp → <γ. Let Ωi(y) be an arbitrary patch in the
neighborhood of site i in image y from which we want to extract a feature vector
ψ(Ωi(y)). Note that the neighborhood used for the patch Ωi(y) need not be the
same as the label neighborhood Ni. For clarity, with slight abuse of notation,
we will denote the feature vector ψ(Ωi(y)) at each site i by ψi(y). Similarly, we
define a feature vector ψj(y) for site j. Again, to emphasize, the subscripts i
and j indicate the difference just in the feature vectors at different sites, not in
the functional form of ψ(.). Given the features at two different sites, we want
to learn a pairwise discriminative model P ′′(xi = xj|ψi(y),ψj(y)) . Note that
by choosing the function ψi to be different from f i, used in (4), information
different from f i can be used to model the relations between pairs of sites.

Let tij be an auxiliary variable defined as

tij = xixj,

and let µ(ψi(y),ψj(y)) be a new feature vector such that µ :<γ × <γ → <q.
Denoting this feature vector as µij(y) for simplification, we model the pairwise
discriminatory term similar to the one defined in (5) as,

P ′′(tij|ψi(y), ψj(y)) = σ(tijv
T µij(y)), (7)

where v are the model parameters. Note that the first component of µij(y) is
fixed to be 1 to accommodate the bias parameter. Now, the interaction potential
in DRFs is modeled as a convex combination of two terms, i.e.

I(xi, xj,y) = β
(
Kxixj + (1−K)(2σ(tijv

T µij(y))− 1)
)

(8)

where 0 ≤ K ≤ 1. The first term is a data-independent smoothing term, similar
to the Ising model. The second term is a [−1, 1] mapping of the pairwise logistic
function defined in (7). This mapping ensures that both terms have the same
range. Ideally, the data-dependent term will act as a discontinuity adaptive
model that will moderate smoothing when the data from two sites is ’differ-
ent’. The parameter K gives flexibility to the model by allowing the learning
algorithm to adjust the relative contributions of these two terms according to
the training data. Finally, β is the interaction coefficient that controls the degree
of smoothing. Large values of β encourage smoother solutions. Note that even



15

though the model seems to have some resemblance to the line process suggested
in (Geman and Geman, 1984), K in (8) is a global weighting parameter unlike
the line process where a discrete parameter is introduced for each pair of sites to
facilitate discontinuities in smoothing. Anisotropy can be easily included in the
DRF model by parameterizing the interaction potentials of different directional
pairwise cliques with different sets of parameters {β, K, v}.

To summarize the roles of the two potentials in DRFs, the association poten-
tial acts as a complex nonlinear classifier for individual sites, while the interaction
potential can be seen as a data-dependent discriminative label interaction.

3.3. Parameter Estimation

Let θ be the set of parameters of the DRF model where θ = {w,v, β, K}. The
form of the DRF model resembles the posterior for the MRF framework given
in (1). However, in the MRF framework, the parameters of the class generative
models, p(s(yi)|xi) and the parameters of the prior random field on labels, P (x)
are generally assumed to be independent and are learned separately (Li, 2001).
In contrast, we make no such assumption and learn all the parameters of the
DRF model simultaneously. Nevertheless, the similarity of the forms allows for
most of the techniques used for learning the MRF parameters to be utilized for
learning the DRF parameters with a few modifications.

We take the standard maximum-likelihood approach to learn the DRF para-
meters which, similar to the conventional MRF learning, involves the evaluation
of the partition function Z. The evaluation of Z is, in general, a NP-hard
problem. One could use either sampling techniques or resort to some approxima-
tions e.g. mean-field or pseudolikelihood to estimate the parameters (Li, 2001).
As a preliminary choice, we used the pseudolikelihood formulation due to its
simplicity. According to this,

θ̂ML ≈ arg max
θ

M∏
m=1

∏
i∈S

P (xm
i |xm

Ni
,ym, θ) (9)

Subject to 0 ≤ K ≤ 1

where m indexes over the training images and M is the total number of training
images, and

P (xi|xNi
,y, θ) =

1

zi

exp{A(xi,y)+
∑
j∈Ni

I(xi, xj, y)},

zi =
∑

xi∈{−1,1}
exp

(
A(xi,y) +

∑
j∈Ni

I(xi, xj,y)

)

The pseudolikelihood given in (9) can be maximized by using line search
methods for constrained maximization with bounds (Gill et al., 1981). Since
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the pseudolikelihood in (9) is not a convex function of the parameters, good
initialization of the parameters is important to avoid bad local maxima. To
initialize the parameters w in A(xi,y), we first learn these parameters using
standard maximum likelihood logistic regression assuming all the labels xm

i to
be independent given the data ym for each image m (Minka, 2001). Using (5),
the log-likelihood can be expressed as,

L(w) =
M∑

m=1

∑
i∈S

log(σ(xm
i wT hi(y

m))) (10)

The Hessian of the log-likelihood is given as,

∇2
wL(w) = −

M∑
m=1

∑
i∈S

{
σ(wT hi(y

m))(1− σ(wT hi(y
m)))

}
hi(y

m)hT
i (ym)

Note that the Hessian does not depend on how the data is labeled and is non-
positive definite. Hence the log-likelihood in (10) is convex (convex downward
or concave), and any local maximum is the global maximum. Newton’s method
was used for maximization which has been shown to be much faster than other
techniques for correlated features (Minka, 2001). The initial estimates of the
parameters v in data-dependent term in I(xi, xj,y) were also obtained similarly.

3.4. Inference

Given a new test image y, our aim is to find the optimal label configuration x
over the image sites where optimality is defined with respect to a cost function.
Maximum A Posteriori (MAP) solution is a widely used estimate that is optimal
with respect to the zero-one cost function defined as C(x, x∗) = 1− δ(x− x∗),
where x∗ is the true label configuration, and δ(x − x∗) is 1 if x = x∗, and 0
otherwise. For binary classifications, MAP estimate can be computed exactly
for an undirected graph using the max-flow/min-cut type of algorithms if the
probability distribution meets certain conditions (Greig et al., 1989)(Kolmogorov
and Zabih, 2002). For the DRF model, exact MAP solution can be computed
if K ≥ 0.5 and β ≥ 0. However, in the context of MRFs, the MAP solution
has been shown to perform poorly for the Ising model when the interaction
parameter, β takes large values (Greig et al., 1989)(Fox and Nicholls, 2000). Our
results in Section 3.5.3 corroborate this observation for the DRFs too.

An alternative to the MAP solution is the Maximum Posterior Marginal
(MPM) solution for which the cost function is defined as C(x,x∗) =

∑
i∈S(1−

δ(xi − x∗i )), where x∗i is the true label at the ith site. The MPM computation
requires marginalization over a large number of variables which is generally NP-
hard. One can use either sampling procedures (Fox and Nicholls, 2000) or use
Belief Propagation to obtain an estimate of the MPM solution. On the other
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hand, one can obtain local MAP estimates using the algorithm Iterated Con-
ditional Modes (ICM), proposed by Besag (Besag, 1986) which is equivalent to
zero-temperature simulated annealing. Given an initial label configuration, ICM
maximizes the local conditional probabilities iteratively, i.e.

xi ← arg max
xi

P (xi|xNi
,y)

ICM yields local maximum of the posterior and has been shown to give reason-
ably good results even when exact MAP performs poorly for large values of β
(Greig et al., 1989)(Fox and Nicholls, 2000). In the first set of experiments, we
primarily used ICM to get local MAP estimates of the labels and also compared
the ICM results with the MAP results (Section 3.5.3). In our ICM implemen-
tation, the image sites were divided into coding sets to speed up the sequential
updating procedure (Besag, 1986). A coding sets is a set of image pixels such
that each pixel in this set is a non-neighbor of any other pixel in the set. This
type of update provides a useful compromise between the synchronous and the
asynchronous schemes (Besag, 1986).

3.5. Man-made Structure Detection Task

The proposed DRF model was applied to the task of detecting man-made struc-
tures in natural scenes. Automatic detection of man-made structures in ground-
level images is useful for scene understanding, robotic navigation, surveillance,
image indexing and retrieval etc. This section focuses on the detection of man-
made structures, which can be characterized primarily by the presence of linear
structures. A detailed account of the main issues related to this application and
comparison with other approaches is given in (Kumar and Hebert, 2003c).

The training and the test set contained 108 and 129 images respectively,
each of size 256×384 pixels, from the Corel image database. Each image was
divided in nonoverlapping 16×16 pixels blocks, and we call each such block an
image site. The ground truth was generated by hand-labeling every site in each
image as a structured or nonstructured block. The whole training set contained
36, 269 blocks from the nonstructured class, and 3, 004 blocks from the structured
class. The detailed explanation of the features used for the structure detection
application is given in our previous work (Kumar and Hebert, 2003c). Here we
briefly describe the features to set the notations.

For each image we compute two different types of feature vectors at each site.
Using the same notations as introduced in Section 3, first a single-site feature
vector at the site i, si(yi) is computed using the histogram from the data yi at
that site (i.e., 16×16 block) such that si : yi → <d. Obviously, this vector does
not take into account influence of the data in the neighborhood of that site. Next,
a multiscale feature vector at the site i, f i(y) is computed which explicitly takes
into account the dependencies in the data contained in the neighboring sites. It
should be noted that the neighborhood for the data interaction need not be the
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same as for the label interaction. In the following section we describe the details
of feature extraction at each image site.

3.5.1. Feature Set Description
In this section, first we describe multiscale feature vector that captures the
general statistical properties of the man-made structures by combining observed
data at multiple adjoining sites. For each site in the image, we compute the
features at different scales, which capture intrascale as well as interscale depen-
dencies. The multiscale feature vector at site i is then given as: f i =

[{fλ
i }Λ

λ=1,

{fρ
i }R

ρ=1

]
, where fλ

i is λth intrascale feature and fρ
i is ρth interscale feature.

A. Intrascale Features
As mentioned earlier, here we focus on those man-made structures which are
primarily characterized by straight lines and edges. To capture these charac-
teristics, at first, the input image is convolved with the derivative of Gaussian
filters to yield the gradient magnitude and orientation at each pixel. Then, for an
image site i, the gradients contained in a window Wc at scale c (c=1, . . . , C) are
combined to yield a histogram over gradient orientations. However, instead of
incrementing the counts in the histogram, we weight each count by the gradient
magnitude at that pixel as in (Barrett and Petersen, 2001). It should be noted
that the weighted histogram is made using the raw gradient information at every
pixel in Wc without any thresholding. Let Eδ be the magnitude of the histogram
at the δth bin, and ∆ be the total number of bins in the histogram. To alleviate
the problem of hard binning of the data, we smoothed the histogram using kernel
smoothing. The smoothed histogram is given as,

E ′
δ =

∑∆
i=1 K((δ − i)/h)Ei∑∆

i=1 K((δ − i)/h)
(11)

where K is a kernel function with bandwidth h. The kernel K is generally chosen
to be a non-negative, symmetric function.

If the window Wc contains a smooth patch, the gradients will be very small
and the mean magnitude of the histogram over all the bins will also be small.
On the other hand, if Wc contains a textured region, the histogram will have
approximately uniformly distributed bin magnitudes. Finally, if Wc contains a
few straight lines and/or edges embedded in smooth background, as is the case
for the structured class, a few bins will have significant peaks in the histogram
in comparison to the other bins. Let ν0 be the mean magnitude of the histogram
such that ν0 = 1

∆

∑∆
δ=1 E ′

δ. We aim to capture the average spikeness, of the
smoothed histogram as an indicator of the structuredness of the patch. For this,
we propose heaved central-shift moments for which pth order moment νp is given
as,
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νp =

∑∆
δ=1(E

′
δ − ν0)

p+1H(E ′
δ − ν0)∑∆

δ=1(E
′
δ − ν0)H(E ′

δ − ν0)
(12)

where H(x) is the unit step function such that H(x) = 1 for x > 0, and 0,
otherwise. The moment computation in (12) considers the contribution only
from the bins having magnitude above the mean ν0. Further, each bin value
above the mean is linearly weighted by its distance from the mean so that the
peaks far away from the mean contribute more. The moments ν0 and νp at each
scale c form the gradient magnitude based intrascale features in the multiscale
feature vector.

Since the lines and edges belonging to the structured regions generally either
exhibit parallelism or combine to yield different junctions, the relation between
the peaks of the histograms must contain useful information. The peaks of the
histogram are obtained simply by finding the local maxima of the smoothed
histogram. Let δ1 and δ2 be the ordered orientations corresponding to the two
highest peaks such that E ′

δ1
≥ E ′

δ2
. Then, the orientation based intrascale feature

βc for each scale c is computed as βc = | sin(δ1 − δ2)|. This measure favors the
presence of near right-angle junctions. The sinusoidal nonlinearity was preferred
to the Gaussian function because sinusoids have much slower fall-off rate from the
mean. The sinusoids have been used earlier in the context of perceptual grouping
of prespecified image primitives (Krishnamachari and Chellappa, 1996). We used
only the first two peaks in the current work but one can compute more such
features using the remaining peaks of the histogram. In addition to the relative
locations of the peaks, the absolute location of the first peak from each scale
was also used to capture the predominance of the vertical features in the images
taken from upright cameras.

B. Interscale Features
We used only orientation based features as the interscale features. Let {δc

1, δ
c
2, . . . ,

δc
P} be the ordered set of peaks in the histogram at scale c, where the set

elements are ordered in the descending order of their corresponding magnitudes.
The features between scales i and j, βij

p were computed by comparing the pth

corresponding peaks of their respective histograms, i.e. βij
p = | cos 2(δi

p − δj
p)|,

where i, j = 1, . . . , C. This measure favors either a continuing edge/line or near
right-angle junctions at multiple scales.

For the multiscale feature vector, the number of scales, C was chosen to be 3,
with the scales changing in regular octaves. The lowest scale was fixed at 16×16
pixels, and the highest scale at 64×64 pixels. For each image block, a Gaussian
smoothing kernel was used to smooth the weighted orientation histogram at
each scale. The bandwidth of the kernel was chosen to be 0.7 to restrict the
smoothing to two neighboring bins on each side. The moment features for orders
p ≥ 1 were found to be correlated at all the scales. Thus, we chose only two
moment features, ν0 and ν2 at each scale. This yielded twelve intrascale features
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from the three scales including one orientation based feature for each scale. For
the interscale features, we used only the highest peaks of the histograms at each
scale, yielding two features. Hence, for each image block i, a 14 dimensional
multiscale feature vector f i was obtained. For the single-site feature vector,
si(yi), no interactions between data at multiple sites were allowed (i.e. C = 1).
This vector was composed of first three moments and two orientation based
intrascale features described above.

3.5.2. Learning
The parameters of the DRF model θ = {w, v, β,K} were learned from the
training data using the maximum pseudolikelihood method described in Sec-
tion 3.3. For the association potentials, a transformed feature vector hi(y) was
computed at each site i. In this work we used the quadratic transforms such
that the functions φk(f i(y)) include all the l components of the feature vector
f i(y), their squares and all the pairwise products yielding l + l(l + 1)/2 features
(Figueiredo and Jain, 2001). This is equivalent to the kernel mapping of the data
using a polynomial kernel of degree two. Any linear classifier in the transformed
feature space will induce a quadratic boundary in the original feature space.
Since l is 14, the quadratic mapping gives a 119 dimensional vector at each site.
In this work, the function ψi, defined in Section 3.2 was chosen to be the same
as f i. The pairwise data vector µij(y) can be obtained either by passing the two
vectors ψi(y) and ψj(y) through a distance function, e.g. absolute component
wise difference, or by concatenating the two vectors. We used the concatenated
vector in the present work which yielded slightly better results. This is possibly
due to wide within class variations in the nonstructured class. For the interaction
potential, first order neighborhood (i.e. four nearest neighbors) was considered
similar to the Ising model.

First, the parameters of the logistic functions, w and v, were estimated sepa-
rately to initialize the pseudolikelihood maximization scheme. Newton’s method
was used for logistic regression and the initial values for all the parameters were
set to 0. Since the logistic log-likelihood given in (10) is convex, initial values
are not a concern for the logistic regression. Approximately equal number of
data points were used from both classes. For the DRF learning, the interaction
parameter β was initialized to 0, i.e. no contextual interaction between the labels.
The weighting parameter K was initialized to 0.5 giving equal weights to both
the data-independent and the data-dependent terms in I(xi, xj,y). All the pa-
rameters θ were learned by using gradient descent for constrained maximization.
The final values of β and K were found to be 0.77, and 0.83 respectively. The
learning took 100 iterations to converge in 627 s on a 1.5 GHz Pentium class
machine.

To compare the results from the DRF model with those from the MRF
framework, we learned the MRF parameters using the pseudolikelihood formu-
lation. Each class conditional density was modeled as a mixture of Gaussian.
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(a) Input image (b) Logistic

(c) MRF (d) DRF

Figure 2. Structure detection results on a test example for different methods. For similar
detection rates, DRF reduces the false positives considerably.

The number of Gaussians in the mixture was selected to be 5 using cross-
validation. The mean vectors, full covariance matrices and the mixing parameters
were learned using the standard EM technique. The pseudolikelihood learning
algorithm yielded βm to be 0.68. The learning took 9.5 s to converge in 70
iterations.

3.5.3. Performance Evaluation
In this section we present a qualitative as well as a quantitative evaluation of
the proposed DRF model. First we compare the detection results on the test
images using three different methods: logistic classifier with MAP inference, and
MRF and DRF with ICM inference. The ICM algorithm was initialized from the
maximum likelihood solution for the MRF and from the MAP solution of the
logistic classifier for the DRF.

For an input test image given in Fig. 2(a), the structure detection results for
the three methods are shown in Fig. 2. The blocks identified as structured have
been shown enclosed within an artificial boundary. It can be noted that for simi-
lar detection rates, the number of false positives have significantly reduced for the
DRF based detection. The logistic classifier does not enforce smoothness in the
labels, which led to increased false positives. However, the MRF solution shows a
smoothed false positive region around the tree branches because it does not take
into account the neighborhood interaction of the data. Locally, different branches
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may yield features similar to those from the man-made structures. In addition,
the discriminative association potential and the data-dependent smoothing in
the interaction potential in the DRF also affect the detection results. Some more
examples comparing the detection results of the MRF and the DRF are given in
Fig. 3 and Fig. 4. The examples indicate that the data interaction is important
for both increasing the detection rate as well as reducing the false positives. The
ICM algorithm converged in less than 5 iterations for both the DRF and the
MRF. The average time taken in processing an image of size 256×384 pixels in
Matlab 6.5 on a 1.5 GHz Pentium class machine was 2.42 s for the DRF, 2.33 s for
the MRF and 2.18 s for the logistic classifier. As expected, the DRF takes more
time than the MRF due to the additional computation of the data-dependent
term in the interaction potential in the DRF.

To carry out the quantitative evaluation of our work, we compared the de-
tection rates, and the number of false positives per image for each technique.
To avoid the confusion due to different effects in the DRF model, the first set
of experiments was conducted using the single-site features for all the three
methods. Thus, no neighborhood data interaction was used for both the logis-
tic classifier and the DRF, i.e., f i(.) = si(.). The comparative results for the
three methods are given in Table I next to ’MRF’, ’Logistic−’ and ’DRF−’. For
comparison purposes, the false positive rate of the logistic classifier was fixed
to be the same as the DRF in all the experiments. It can be noted that for
similar false positives, the detection rates of the MRF and the DRF are higher
than the logistic classifier due to the label interaction. However, higher detection
rate of the DRF in comparison to the MRF indicates the gain due to the use of
discriminative models in the association and interaction potentials in the DRF.

In the next experiment, to take advantage of the power of the DRF frame-
work, data interaction was allowed for both the logistic classifier as well as
the DRF. Further, to decouple the effect of the data-dependent term from the
data-independent term in the interaction potential in the DRF, the weighting
parameter K was set to 0. Thus, only data-dependent smoothing was used for the
DRF. The DRF parameters were learned for this setting (Section 3.3) and β was
found to be 1.26. The DRF results (’DRF(K =0)’ in Table I) show significantly
higher detection rate than that from the logistic and the MRF classifiers. At the
same time, the DRF reduces false positives from the MRF by more than 48%.
Finally, allowing all the components of the DRF to act together, the detection
rate further increases with a marginal increase in false positives (’DRF’ in Table
I). However, observe that for the full DRF, the learned value of K(0.83) signifies
that the data-independent term dominates in the interaction potential. This
indicates that there is some redundancy in the smoothing effects produced by the
two different terms in the interaction potential. This is not surprising because
the data-dependent term in the interaction potential is based on a pairwise
discriminative model which partitions the space of pairwise features µij(y) such
that all the pairs that are hypothesized to have similar labels lie on one side of
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(a) MRF (b) DRF

Figure 3. Some more examples of structure detection from the test set. DRF has higher
detection rates and lower false positives in comparison to MRF.
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(a) MRF (b) DRF

Figure 4. Additional structure detection examples from the test set.
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Figure 5. Comparison of the detection rates per image for the DRF and the other two methods
for similar false positive rates. For most of the images in the test set, DRF detection rate is
higher than others.

Table I. Detection Rates (DR) and False Positives (FP) for the test set containing
129 images. FP for logistic classifier were kept to be the same as for DRF for
DR comparison. Superscript ′−′ indicates no neighborhood data interaction was
used. K = 0 indicates the absence of the data-independent term in the interaction
potential in DRF.

MRF Logistic− DRF− Logistic DRF (K = 0) DRF

DR (%) 57.2 45.5 60.9 55.4 68.6 70.5
FP (per image) 2.36 2.24 2.24 1.37 1.21 1.37

the decision boundary. Hence, effectively this term is also implicitly modeling
the similarity of the labels at neighboring sites similar to the Ising model of
the data-independent term. In Section 4.1 we will describe a modified form of
the interaction potential that combines these two terms without duplicating their
smoothing effects. To compare per image performance of the DRF with the MRF
and the logistic classifier, scatter plots were obtained for the detection rates for
each image (Fig. 5). Each point on a plot is an image from the test set. These
plots indicate that for a majority of the images the DRF has higher detection
rate than the other two methods.

To analyze the performance of the MAP inference for the DRF, a MAP solu-
tion was obtained using the min-cut algorithm. The overall detection rate was
found to be 24.3% for 0.41 false positives per image. Very low detection rate along
with low false positives indicates that MAP is preferring oversmoothed solutions
in the present setting. This is because the pseudolikelihood approximation used
in this work for learning the parameters tends to overestimate the interaction
parameter β. Our MAP results match the observations made by Greig et al.
(Greig et al., 1989), and Fox and Nicholls (Fox and Nicholls, 2000) for large
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Table II. Results with linear classifiers (See text for
more).

Logistic(linear) DRF (linear)

DR (%) 55.0 62.3

FP (per image) 2.04 2.04

values of β in MRFs. In contrast, ICM is more resilient to the errors in parame-
ter estimation and performs well even for large β, which is consistent with the
results of (Greig et al., 1989), (Fox and Nicholls, 2000), and Besag (Besag, 1986).
For MAP to perform well, a better parameter learning procedure than using a
factored approximation of the likelihood will be helpful. In addition, one may
also need to impose a prior that favors small values of β. These observations lay
the foundation for improved parameter learning procedure explained in Section
4.2.

One additional aspect of the DRF model is the use of general kernel mappings
to increase the classification accuracy. To assess the sensitivity to the choice
of kernel, we changed the quadratic functions used in the DRF experiments
to compute hi(y) to one-to-one transform such that hi(y) = [1 f i(y)]. This
transform will induce a linear decision boundary in the feature space. The DRF
results with quadratic boundary (Table I) indicate higher detection rate and
lower false positives in comparison to the linear boundary (Table II). This shows
that with more complex decision boundaries one may hope to do better. However,
since the number of parameters for a general kernel mapping is of the order of
the number of data points, one will need some method to induce sparseness to
avoid overfitting (Tipping, 2000)(Figueiredo and Jain, 2001).

4. Modified Discriminative Random Field

As explained in the previous section, there were two main reasons that prompted
us to explore a modified form of the original DRF and a better parameter learning
procedure:

1. The form of the interaction potential given in (8) has redundancy in the
smoothing effects produced by the data-independent and the data-dependent
terms. Also, this form makes the parameter learning a non-convex problem.

2. The pseudolikelihood parameter learning tends to overestimate the interac-
tion coefficients which makes the global MAP estimates to be bad solutions.
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In the following sections we discuss the main components of the original DRF
formulation that have been modified.6

4.1. Interaction potential

For a pair of sites (i, j), let µij(ψi(y),ψj(y)) be a new feature vector such that
µij :<γ × <γ → <q, where ψk : y → <γ. Denoting this feature vector as µij(y)
for simplification, the interaction potential is modeled as,

I(xi, xj, y) = xixjv
T µij(y) (13)

where v are the model parameters. Note that the first component of µij(y) is
fixed to be 1 to accommodate the bias parameter. There are two interesting
properties of the interaction potential given in (13). First, if the association
potential at each site and the interaction potentials of all the pairwise cliques
except the pair (i, j) are set to zero in (2), the DRF acts as a logistic classifier
which yields the probability of the site pair to have the same labels given the
observed data. Of course, one can generalize the form in (13) as,

I(xi, xj,y) = log P ′′(xi, xj|ψi(.),ψj(.)), (14)

similar to the association potential in Section 3.1 and can use arbitrary pairwise
discriminative classifier to define this term. Recently, a similar idea has been
used by other researchers (Qi et al., 2005)(Torralba et al., 2005). The second
property of the interaction potential form given in (13) is that it generalizes
the Ising model. The original Ising form is recovered if all the components of
vector v other than the bias parameter are set to zero in (13). Thus, the form
of interaction potential given in (13) effectively combines both the terms of the
earlier model in (8). A geometric interpretation of interaction potential is that it
partitions the space induced by the relational features µij(y) between the pairs
that have the same labels and the ones that have different labels. Hence (13) acts
as a data-dependent discontinuity adaptive model that will moderate smoothing
when the data from the two sites is ’different’. The data-dependent smoothing
can especially be useful to absorb the errors in modeling the association poten-
tial. Anisotropy can be easily included in the DRF model by parametrizing the
interaction potentials of different directional pairwise cliques with different sets
of parameters v.

4.2. Parameter learning and inference

Let θ be the set of DRF parameters where θ = {w,v}. As shown in Section
3.5.3, pseudolikelihood tends to overestimate the interaction parameters causing
the MAP estimates of the field to be very poor solutions. Our experiments in

6 Early version of this work appeared in Advances in Neural Information Processing Systems
(NIPS 03) (Kumar and Hebert, 2003a).
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Section 4.3 verify these observations for the interaction parameters v in modified
DRFs too. To alleviate this problem, we take a Bayesian approach to get the
maximum a posteriori estimates of the parameters. Similar to the concept of
weight decay in neural learning literature, we assume a Gaussian prior over the
interaction parameters v such that p(v|τ) = N (v;0, τ 2I) where I is the identity
matrix. Using a prior over parameters w that leads to weight decay or shrinkage
might also be beneficial but we leave that for future exploration. The prior over
parameters w is assumed to be uniform. Thus, given M independent training
images,

θ̂=arg max
θ

M∑
m=1

∑
i∈S

{
log σ(xiw

T hi(y))+
∑
j∈Ni

xixjv
Tµij(y)−log zi

}
− 1

2τ 2
vT v

(15)

where zi =
∑

xi∈{−1,1}
exp

{
log σ(xiw

T hi(y)) +
∑
j∈Ni

xixjv
T µij(y)

}

If τ is given, the penalized log pseudolikelihood in (15) is convex with respect to
the model parameters and can be easily maximized using gradient descent.

In related work regarding the estimation of τ , Mackay (Mackay, 1996) has
suggested the use of type II marginal likelihood. But in the DRF formulation,
integrating the parameters v is a hard problem. Another choice is to integrate
out τ by choosing a non-informative hyperprior on τ as in (Williams, 1995)
(Figueiredo, 2001). However our experiments showed that these methods do not
yield good estimates of the parameters because of the use of pseudolikelihood
in our framework. In the present work we choose τ by cross-validation. Alter-
native ways of parameter estimation include the use of contrastive divergence
(Hinton, 2002) and saddle point approximations resembling perceptron learning
rules (Collins, 2002). We are currently exploring other possibilities of parameter
learning, as discussed in our recent work (Kumar et al., 2005).

To test the efficacy of the penalized pseudolikelihood procedure, we were in-
terested in obtaining the MAP estimates of labels x given an image y. Following
the discussion in Section 3.4, the MAP estimates for the modified DRFs can also
be obtained using graph min-cut algorithms. However, since these algorithms do
not allow negative interaction between the sites, the data-dependent smoothing
for each clique in (13) is set to be vTµij(y) = max{0,vTµij(y)}, yielding an
approximate MAP estimate. This is equivalent to switching the smoothing off
at the image discontinuities.



29

4.3. Man-made Structure Detection Revisited

The modified DRF model was applied to the task of detecting man-made struc-
tures in natural scenes. The features were fixed to be the same as used in the
tests with the original DRF in Section 3.5. The penalty coefficient τ was chosen
to be 0.001 for parameter learning. The detection results were obtained using
graph min-cuts for both the MRF and the DRF models.

For a quantitative evaluation, we compared the detection rates and the num-
ber of false positives per image for the MRF, the DRF and the logistic classifier.
Similar to the experimental procedure of Section 3.5.3, for the comparison of
detection rates in all the experiments, the decision threshold of the logistic
classifier was fixed such that it yields the same false positive rate as the DRF.
The first set of experiments was conducted using the single-site features for
all the three methods. Thus, no neighborhood data interaction was used for
both the logistic classifier and the DRF, i.e. f i(y) = si(yi). The comparative
results for the three methods are given in Table III under ’MRF’, ’Logistic−’
and ’DRF−’. The detection rates of the MRF and the DRF are higher than
the logistic classifier due to the label interaction. However, higher detection rate
and lower false positives for the DRF in comparison to the MRF indicate the
gains due to the use of discriminative models in the association and interaction
potentials in the DRF. In the next experiment, to take advantage of the power of
the DRF framework, data interaction was allowed for both the logistic classifier
as well as the DRF (’Logistic’ and ’DRF’ in Table III). The DRF detection rate
increases substantially and the false positives decrease further indicating the
importance of allowing the data interaction in addition to the label interaction.

Now we compare the results of the modified DRF formulation with those from
the original DRF. Comparing the results in table I with those in table III, we
find that the original DRF (with ICM inference) gave 70.5% correct detection
with 1.37 average false positive per image in comparison to 72.5% correction
detection and 1.76 false positives from the modified DRF (with MAP inference).
Even though the results seem to be comparable for this application, we have
achieved two main advantages in modified DRFs. In comparison to the original
DRF formulation, the modified DRF has a much simpler form of interaction
potential with comparatively better behaved parameter learning problem (a
convex problem). It also overcomes the criticism of the original DRFs that if
the global minimum of the energy (− log P (x|y)) is not an acceptable solution,
it probably implies that the DRFs are not appropriate models for the purpose
of classification. Clearly, the experiments in this section reveal that the bad
MAP solutions of DRFs were due to a particular parameter learning scheme
(pseudolikelihood) we chose in our earlier experiments. These results also point
toward another interesting observation regarding the compatibility of a parame-
ter learning procedure with the inference procedure. Local parameter learning
(pseudolikelihood) seems to be yielding acceptable, though usually not the best,
results when used with a local inference mechanism (ICM). On the other hand,
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Table III. Detection Rates (DR) and False Positives (FP) for the
test set containing 129 images (49, 536 sites). FP for logistic clas-
sifier were kept to be the same as for DRF for DR comparison.
Superscript ′−′ indicates no neighborhood data interaction was
used.

MRF Logistic− DRF− Logistic DRF

DR (%) 58.35 47.50 61.79 60.80 72.54
FP (per image) 2.44 2.28 2.28 1.76 1.76

to make a global inference scheme yield good solutions, it is inevitable to use
nonlocal learning procedures. We are currently exploring this duality between
parameter learning and inference in a more systematic manner (Kumar et al.,
2005).

4.4. Binary Image Denoising Task

The aim of these experiments was to obtain denoised images from corrupted
binary images. Four base images, 64 × 64 pixels each, were used in the experi-
ments (top row in Fig. 6). We compare the DRF and the MRF results for two
different noise models. For each noise model, 50 images were generated from
each base image. Each pixel was considered as an image site and the feature
vector si(yi) was simply chosen to be a scalar representing the intensity at ith

site. In experiments with the synthetic data, no neighborhood data interaction
was used for the DRFs (i.e., f i(y) = si(yi)) to observe the gains only due to
the use of discriminative models in the association and interaction potentials.
A linear discriminant was implemented in the association potential such that
hi(y) = [1,f i(y)]T . The pairwise data vector µij(y) was obtained by taking
the absolute difference of si(yi) and sj(yj). For the MRF model, each class-
conditional density, p(si(yi)|xi), was modeled as a Gaussian. The noisy data
from the left most base image in Fig. 6 was used for training while 150 noisy
images from the rest of the three base images were used for testing.

Three experiments were conducted for each noise model. (i) The interaction
parameters for the DRF (v) as well as for the MRF (βm) were set to zero.
This reduces the DRF model to a logistic classifier and MRF to a maximum
likelihood (ML) classifier. (ii) The parameters of the DRF i.e., [w,v], and the
MRF i.e., βm, were learned using pseudolikelihood approach without any penalty
i.e., τ = ∞. (iii) Finally, the DRF parameters were learned using penalized
pseudolikelihood and the best βm for the MRF was chosen from cross-validation.
The MAP estimates of the labels were obtained using graph-cuts for both models.

Under the first noise model, each image pixel was corrupted with independent
Gaussian noise of standard deviation 0.3. For the DRF parameter learning, τ
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Figure 6. Results of binary image denoising task. From top, first row:original images, second
row: images corrupted with ’bimodal’ noise, third row: Logistic Classifier results, fourth row:
MRF results, fifth row: DRF results.
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Table IV. Pixelwise classification errors (%) on 150 synthetic test images. For
the Gaussian noise MRF and DRF give similar error while for ’bimodal’ noise,
DRF performs better. Note that only label interaction (i.e., no data interaction)
was used for these tests. ’PL’: Pseudo-Likelihood parameter learning, ’PPL’:
Penalized Pseudo-Likelihood parameter learning.

Noise ML Logistic MRF (PL) DRF (PL) MRF DRF (PPL)

Gaussian 15.62 15.78 2.66 3.82 2.35 2.30
Bimodal 24.00 29.86 8.70 17.69 7.00 6.21

was chosen to be 0.01. The pixelwise classification error for this noise model is
given in the top row of Table IV. Since the form of noise is the same as the
likelihood model in the MRF, MRF is expected to give good results. The DRF
model does marginally better than MRF even for this case. Note that the DRF
with penalized pseudolikelihood parameter learning (suffix ’PPL’ in Table IV)
yields significantly better results than without penalizing the pseudolikelihood
(suffix ’PL’). Similarly, the MRF results are also worse when the parameters were
learned simply using the pseudolikelihood. With pseudolikelihood parameters,
MAP inference yields oversmoothed images. The DRF model is affected more
because all the parameters in DRFs are learned simultaneously unlike MRFs.

In the second noise model each pixel was corrupted with independent mixture
of Gaussian noise. For each class, a mixture of two Gaussians with equal mixing
weights was used yielding a ’bimodal’ class noise. The mixture model parameters
(mean, std) for the two classes were chosen to be [(0.08, 0.03), (0.46, 0.03)], and
[(0.55, 0.02), (0.42, 0.10)] inspired by (Rubinstein and Hastie, 1997). The classifi-
cation results are shown in the bottom row of Table IV. There was 11.3% relative
reduction in pixelwise classification error on the test set with the DRF model
over the MRF model. An interesting point to note is that DRF yields lower
error than MRF even when the logistic classifier has higher error than the ML
classifier on the test data. For a typical noisy version of the four base images, the
performance of different techniques in compared in Fig. 6. The logistic classifier
gives very poor results because it classifies each pixel independently. It ignores
the very basic theme of underlying smoothness of natural images due to which
one can hope for recovering the true image from its noisy version. The DRF
gives better performance than the MRF model.

5. Conclusion and Future Work

In this work we have introduced Discriminative Random Fields that combine
local discriminative classifiers for individual classification of image sites with
interaction between neighboring sites. These models allow capturing spatial de-
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pendencies in labels and observed data simultaneously in a principled manner on
2D lattices with cycles. The results on various synthetic and real-world images
validate the advantages of the DRF model. The proposed DRF framework is
general enough to encompass several computer vision tasks varying from low
level image denoising to high level object detection. However, there are several
extensions required to demonstrate the application of DRFs to high level classifi-
cation tasks. The first natural step is to extend the proposed binary DRF model
to accommodate multiclass classification problems. We have already developed
this framework and are presently conducting extended experiments. The most
important challenge in the DRF framework is robust and fast learning of the
model parameters. Currently we are exploring alternative ways of learning DRF
parameters using saddle point approximations which will also be applicable to
the conventional MRF models used in classification. Finally, one future aspect
of the DRF model is the use of general kernel mappings to increase the classifi-
cation accuracy. However, we will need some method to induce sparseness in the
parameter space to avoid overfitting in a very high dimensional kernel space.
Acknowledgments. We would like to thank John Lafferty, Jonas August and
Tom Minka for having several thoughtful discussions on various issues related to
random fields and classification problems. Graph min-cut code used in this work
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