
A Statistical Perspective on Distillation

Aditya Krishna Menon 1 Ankit Singh Rawat 1 Sashank J. Reddi 1 Seungyeon Kim 1 Sanjiv Kumar 1

Abstract
Knowledge distillation is a technique for improv-
ing a “student” model by replacing its one-hot
training labels with a label distribution obtained
from a “teacher” model. Despite its broad suc-
cess, several basic questions — e.g., Why does
distillation help? Why do more accurate teachers
not necessarily distill better? — have received
limited formal study. In this paper, we present a
statistical perspective on distillation which sheds
light on these questions. Our core observation is
that a “Bayes teacher” providing the true class-
probabilities can lower the variance of the student
objective, and thus improve performance. We
then establish a bias-variance tradeoff that quan-
tifies the utility of teachers that approximate the
Bayes class-probabilities. This provides a formal
criterion as to what constitutes a “good” teacher,
namely, the quality of its probability estimates.
Finally, we illustrate how our statistical perspec-
tive facilitates novel applications of distillation to
bipartite ranking and multiclass retrieval.

1. Introduction
Distillation is the process of using a “teacher” model to
improve the performance of a “student” model (Bucilǎ et al.,
2006; Ba & Caruana, 2014; Hinton et al., 2015). In its sim-
plest form, one trains the student to fit the teacher’s soft
distribution over labels, rather than one-hot training labels.
While originally devised as a means of model compression,
distillation has proven successful in improving students
with the same architecture as the teacher (Rusu et al., 2016;
Furlanello et al., 2018), and found several broader uses (Pa-
pernot et al., 2016; Yim et al., 2017; Liu et al., 2019).

Given its empirical success, it is natural to ask: why does dis-
tillation help? Answering this requires confronting a num-
ber of puzzling empirical observations, e.g., that improving
teacher accuracy can harm distillation performance (Müller
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et al., 2019). One commonly accepted intuition from Hinton
et al. (2015) is that the teacher’s soft labels provide “dark
knowledge” via weights on the “wrong” labels y′ 6= y for an
example (x, y). But what are the formal statistical benefits
of using soft over one-hot labels, and what is the “ideal”
set of soft labels? While several works have studied vari-
ous aspects of distillation (Lopez-Paz et al., 2016; Phuong
& Lampert, 2019; Mobahi et al., 2020; Ji & Zhu, 2020;
Zhang & Sabuncu, 2020; Zhou et al., 2021; Hsu et al., 2021)
(cf. §2.2), precise answers to these questions remain elusive.

In this paper, we present a statistical perspective on dis-
tillation which sheds light on why it can aid performance,
explicate the statistical value of “dark knowledge”, and
provide a formal criterion as to what constitutes a “good”
teacher. Our key observation is that a teacher providing the
true (Bayes) class-probabilities can lower the variance of
the student objective, and thus improve performance. Fur-
ther, teachers that reliably approximate these probabilities —
for which merely being accurate does not suffice — possess
a bias-variance tradeoff quantifying how they may improve
generalisation. Beyond providing conceptual insight, this
perspective facilitates novel applications of distillation to
problems such as bipartite ranking and multiclass retrieval.

In sum, our contributions are:

(i) We present a statistical view of distillation, by establish-
ing that the student’s expected loss inherently smooths
labels with the Bayes class-probabilities (§3). We then
quantify the benefit of using these Bayes probabilities
in place of one-hot labels. This gives a statistical per-
spective on “dark knowledge”: for an example (x, y),
the logits on “wrong” labels y′ 6= y encode informa-
tion about the underlying class distribution. This helps
the student minimise a better approximation to the true
generalisation error, which can improve performance.

(ii) We quantify a bias-variance tradeoff for teachers pro-
viding an approximation to the Bayes probabilities (§4).
This gives a concrete criterion for assessing if a teacher
is “good”, i.e., the quality of its probability estimates as
estimated, e.g., by the log-loss. This does not necessar-
ily correspond to a more accurate teacher; see Figure 1.

(iii) We illustrate how our statistical perspective facilitates
novel practical applications of distillation, e.g., to bipar-
tite ranking and multiclass retrieval problems (§5).
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(a) Top-1 accuracy.
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(b) Log-loss.
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(c) Expected calibration error.

Figure 1. Illustration of how teachers with better test set class-probability estimates generally yield better students, in keeping with our
bias-variance bound (Proposition 3). On CIFAR-100, we train teachers that are ResNets of varying depths, and distill these to a student
ResNet of fixed depth 8. Figure 1(a) reveals that as its depth increases, the teacher gets increasingly more accurate on the test set. However,
the teacher’s probability estimates on the test set become progressively poorer approximations of the Bayes class-probabilities p∗(x)
beyond depth 14: the teacher’s test set log-loss and calibration error (Guo et al., 2017) (both measures of the quality of the probability
estimates) increase beyond this depth (Figure 1(b) and 1(c)). Intuitively, the depth 14 provides an optimal balance between the bias and
variance in the teacher’s predictions. In line with Proposition 3, the depth 14 teacher with the best probability estimates produces the most
accurate student (Figure 1(a)). See §4.3 for more details, and §4.1 for the formal bias-variance tradeoff.

Our findings are verified for linear models, neural networks,
and decision trees, on both controlled synthetic and real-
world datasets. This illustrates a broader point of our statis-
tical perspective: distillation can be understood as a basic
tool which has utility not just limited to neural networks.

More broadly, our simple measure of a teacher’s utility for
distillation — the quality of its probability estimates, which
may be estimated by the test set log-loss, square-loss, or
calibration error — gives one means of reasoning about vari-
ous empirical findings; e.g., temperature scaling can be seen
as improving the teacher’s probability calibration (cf. §4.2),
while teachers that are merely accurate but provide poor
probability estimates may distill poorly (Figure 1, 3).

2. Background and Notation
2.1. Multiclass Classification

In multiclass classification, we are given a training sample
S

.
= {(xn, yn)}Nn=1 ∼ PN , for distribution P over instances

X and labels Y = [L]
.
= {1, 2, . . . , L}. Our goal is to learn

a predictor f : X→ RL with minimal risk:

R(f)
.
= E

(x,y)∼P

[
`(y, f(x))

]
. (1)

Here, `(y, f(x)) is the loss of predicting f(x) ∈ RL when
the true label is y ∈ [L]. A canonical example is the softmax
cross-entropy, or the log-loss with softmax activation:

`(y, f(x)) = −fy(x) + log
[∑

y′∈[L]
efy′ (x)

]
. (2)

We may approximate the risk R(f) via the empirical risk

R̂(f ;S)
.
=

1

N

∑
n∈[N ]

e>yn`(f(xn)), (3)

for one-hot encoding ey ∈ {0, 1}L of a given label y ∈
[L], and vector of losses for each possible label `(f(x))

.
=(

`(1, f(x)), . . . , `(L, f(x))
)
∈ RL+.

2.2. Knowledge Distillation

Distillation involves using a “teacher” model to improve a
“student” model. Classically, this may be done via matching
the two models’ logits (Bucilǎ et al., 2006). We follow the
generalisation in Hinton et al. (2015), wherein one computes
teacher class-probability estimates pt(x)

.
= [pt(y|x)]y∈[L],

where pt(y|x) estimates how likely x is to be classified as
y. These are used by a student model which replaces the
empirical risk (3) with the distilled risk

R̃(f ;S) =
1

N

∑
n∈[N ]

pt(xn)>`(f(xn)), (4)

so that the one-hot encoding of labels is replaced with the
teacher’s distribution over labels. To construct (4), we sim-
ply require pt be a valid label distribution. For a neural net-
work teacher trained to minimise the softmax cross-entropy,
pt can be the softmax of the temperature scaled teacher
logits (Hinton et al., 2015, Equation 2). This recovers logit
matching as a special case (Hinton et al., 2015). Extensions
of this setup, such as matching intermediate layers, have
also been considered (Romero et al., 2015; Zagoruyko &
Komodakis, 2017; Kim et al., 2018; Jain et al., 2020).

2.3. Why Does Distillation Help?

While it is well-accepted that distillation is empirically valu-
able, there is less consensus as to why this is the case. Hinton
et al. (2015) attributed its success to the encoding of “dark
knowledge” in the probabilities the teacher assigns to the
“wrong” labels y′ 6= y for example (x, y). This plausibly
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aids the student by weighting samples differently (Furlanello
et al., 2018; Tang et al., 2020). However, formalisations of
this intuition are limited. One elegant exception is Lopez-
Paz et al. (2016), who showed that distillation can be helpful
assuming soft labels speed up learning; however, this does
not establish when and why this can be the case.

The impact of distillation on the optimisation of the student
model has been explored for specific model classes (Phuong
& Lampert, 2019; Rahbar et al., 2020; Ji & Zhu, 2020). Dis-
tillation may also be seen as a data-dependent regulariser
on the student model (Dong et al., 2019; Yuan et al., 2020),
as explicated by Mobahi et al. (2020); Zhang & Sabuncu
(2020) for self-distillation (wherein the student and teacher
have the same model architecture). Foster et al. (2019) pro-
vided a generalisation bound for students constrained to
learn a model close to the teacher. Such works do not expli-
cate what constitutes an “ideal” teacher, nor quantify how
an approximation to this ideal teacher affects generalisation.

Recently, Zhou et al. (2021) provided a bias-variance per-
spective on distillation, which is similar in spirit to the
analysis of §4. However, they did not quantify the variance-
reduction benefits of employing the Bayes probabilities
(cf. Lemma 1), formalise how these benefits translate to
approximate Bayes probabilities (cf. Proposition 4), nor pro-
vide broader examples of the value of distillation (cf. §5 and
Appendix B) that exploit this view.

3. Distillation: a Class-Probability View
We now present a statistical perspective on distillation,
which gives insight into why it can aid generalisation. Cen-
tral to our perspective are two observations:
(i) the risk in (1) we seek to minimise inherently smooths

labels by the class-probabilities P(y | x); and,
(ii) such smoothing yields a lower variance objective com-

pared to using one-hot labels ey .

3.1. Bayes Knows Best: Distilling Class-Probabilities

We begin with the following elementary observation: the
population risk R(f) for f : X→ RL is

R(f) = E
x

[
E
y|x

[
`(y, f(x))

]]
= E

x

[
p∗(x)>`(f(x))

]
, (5)

where p∗(x)
.
=

[
P(y|x)

]
y∈[L] is the Bayes class-

probability distribution over the labels. Intuitively, P(y|x)
is the suitability of y for x: when p∗(x) is not concentrated
on a single label, there is an inherent confusion amongst the
labels. The risk involves drawing x ∼ P(x), and averaging
the loss of f(x) over all y ∈ [L], weighted by P(y | x).

Given an (xn, yn) ∼ P, the empirical risk (3) approximates
p∗(xn) with the one-hot eyn , which is only supported on
one label. While eyn is an unbiased estimate of p∗(xn), it is

a significant reduction in granularity. By contrast, consider
the following Bayes-distilled risk on a sample S ∼ PN :

R̂∗(f ;S)
.
=

1

N

∑N

n=1
p∗(xn)>`(f(xn)). (6)

This is a distillation objective (cf. (4)) using a Bayes
teacher, which provides the student with the true class-
probabilities. Rather than fitting to a single label realisation
yn ∼ Discrete(p∗(xn)), a student minimising (6) consid-
ers all alternate label realisations, weighted by their likeli-
hood. When ` is the log-loss of (2), (6) is the KL divergence
between p∗ and softmax(f(xn)) plus a constant.

Both the standard empirical risk R̂(f ;S) in (3) and Bayes-
distilled risk R̂∗(f ;S) in (6) are unbiased estimates of the
population risk R(f) in (1). Intuitively, however, we expect
that a student minimising (6) ought to generalise better. We
can make this intuition precise in the following.

Lemma 1. Let V denote the variance of a random variable.
For any fixed predictor f : X→ RL,

VS∼PN

[
R̂∗(f ;S)

]
≤ VS∼PN

[
R̂(f ;S)

]
,

where equality holds iff ∀x ∈ X, the loss values `(f(x)) are
constant on the support of p∗(x), i.e.,

(∀x ∈ X) (∀y, y′ ∈ supp(p∗(x))) `(y, f(x)) = `(y′, f(x)).

Proof of Lemma 1. By definition,

LHS =
1

N
· V
[
p∗(x)>`(f(x))

]
=

1

N
· V
[
E
y|x

[
`(y, f(x))

]]
=

1

N
· E
x

[
E
y|x

[
`(y, f(x))

]]2
− 1

N
·
[
E
x
E
y|x

[
`(y, f(x))

]]2
.

RHS =
1

N
· V [`(y, f(x))]

=
1

N
· E
x
E
y|x

[
`(y, f(x))2

]
− 1

N
·
[
E
x
E
y|x

[
`(y, f(x))

]]2
.

In both cases, the second term simply equals R(f)2 since
both estimates are unbiased. For fixed x ∈ X, the result fol-
lows by Jensen’s inequality applied to the random variable
Z(x)

.
= `(y, f(x)). Equality occurs iff each Z(x) is con-

stant, which requires ` to be constant on supp(p∗(x)).

The condition on equality of variance is intuitive: the two
risks trivially agree when, ∀x, f is non-discriminative (at-
taining equal loss on all labels), or when a label is inherently
deterministic (p∗(x) is concentrated on one label). For
discriminative predictors and non-deterministic labels, how-
ever, the Bayes-distilled risk can have much lower variance.
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The reward of reducing variance is better generalisation:
a student minimising (6) better minimises the population
risk (1) compared to using one-hot labels. Leveraging Mau-
rer & Pontil (2009), we may quantify how the Bayes-
distilled loss’ empirical variance influences generalisation.

Proposition 2. Pick any bounded loss `. 1 Fix a hypothesis
class F of predictors f : X→ RL, with induced class H∗ ⊂
[0, 1]X of functions h(x)

.
= p∗(x)>`(f(x)). Suppose H∗

has uniform covering number N∞. Then, for any δ ∈ (0, 1),
with probability at least 1− δ over S ∼ PN ,

R(f) ≤ R̂∗(f ;S) + O
(√

V∗N (f)/N ·
√

log
(
M∗N/δ

)
+

log
(
M∗N/δ

)
/N
)
,

where M∗N
.
= N∞( 1

N ,H
∗, 2N) and V∗N (f) is the empirical

variance of {p∗(xn)>`(f(xn))}Nn=1.

Proof of Proposition 2. This a simple consequence of Mau-
rer & Pontil (2009, Theorem 6), which is a uniform conver-
gence version of Bennet’s inequality (Bennett, 1962).

By contrast, the bound achievable for the standard empirical
risk using one-hot labels will depend on the variance of the
one-hot loss values (Maurer & Pontil, 2009, Theorem 6).
Combined with Lemma 1, the Bayes-distilled empirical risk
results in a lower variance penalty. Thus, the Bayes-distilled
risk yields a generalisation bound with a more favourable
rate of convergence with increased sample size N . For a
more refined generalisation analysis accounting for teacher
under- and over-fitting, see Dao et al. (2021) which builds
on an earlier version of this work.

To summarise the above, a student should ideally have ac-
cess to the underlying class-probabilities p∗(x), rather than
a single realisation y ∼ Discrete(p∗(x)): these probabili-
ties result in a lower-variance student objective, which aids
generalisation. This provides a statistical perspective on
the value of “dark knowledge”: for the “Bayes teacher” p∗,
the logits on alternate labels y′ 6= y for an example (x, y)
provide information about the Bayes class-probabilities.

3.2. Illustration: the Value of a Bayes Teacher

We illustrate our statistical perspective in a controlled setting
where the Bayes p∗(x) is known, and show that distilling
with such a “Bayes teacher” benefits learning. We generate
a (binary) labelled training sample S = {(xn, yn)}Ni=1 from
a distribution P comprising 10-dimensional isotropic Gaus-
sian class-conditionals with means ±(0.25, 0.25, . . . , 0.25).
We may explicitly compute the Bayes p∗(x) = (P(y =

1Note that the boundedness assumption on the loss is stan-
dard (Boucheron et al., 2005, Theorem 4.1), and may be enforced
in practice with some form of regularisation (e.g., weight decay).
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Figure 2. Illustration that distilling from a “Bayes teacher” aids
generalisation. We consider learning a linear model student on a
synthetic problem with known Bayes probabilities p∗. Distilling
using these probabilities significantly improves accuracy over train-
ing with one-hot labels, particularly in the small-sample regime.

0 | x),P(y = 1 | x)) as P(y = 1 | x) = σ((θ∗)>x), for
θ∗

.
= (0.5, 0.5, . . . , 0.5) and sigmoid function σ(·).

We compare standard logistic regression on S and Bayes-
distilled logistic regression using p∗(xn) per (6). Figure 2
compares these approaches for varying training set sizes
N , where for each N we perform 100 independent trials
and measure accuracy on a test set of 104 samples. For
small N , Bayes-distillation offers a noticeable gain over
one-hot training, in line with our theory of the former en-
suring lower variance (Lemma 1). Both methods see im-
proved performance with largerN , but one-hot encoding has
greater gains: thus, the variance reduction offered by Bayes-
distillation can compensate for having only a few student
samples. For additional experiments, see Appendix C.3.

4. Distilling from an Imperfect Teacher
The previous section explicates how an idealised “Bayes
teacher” can benefit a student. We now study how this
translates to the more realistic setting of using an imperfect,
“approximate Bayes teacher” learned from data.

4.1. A Bias-Variance Bound for Distillation

Our first observation is that a teacher’s predictor pt is typ-
ically an imperfect estimate of the true p∗. For exam-
ple, a teacher minimising softmax cross-entropy effectively
minimises E[KL(p∗(x)‖pt(x))]. Of course, in practice a
teacher is unlikely to learn pt = p∗, as its model class may
not be rich enough to capture the true p∗. Further, even if
the teacher can represent p∗, it may not be able to learn this
perfectly given a finite sample, owing to both statistical (e.g.,
overfitting) and optimisation (e.g., non-convexity) issues.

Will such an imperfect estimate of p∗ still improve gen-
eralisation? To answer this, we establish a bias-variance
tradeoff for distillation. Specifically, we show the difference
between the distilled risk R̃(f ;S) (cf. (4)) and population
risk R(f) (cf. (5)) depends on how well the teacher esti-
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mates the Bayes class-probability distribution p∗ in a mean
squared-error (MSE) sense. This, in turn, admits a classic
bias-variance decomposition for the teacher estimates. (In
the following, for simplicity we assume that the student and
teacher are trained on separate samples.)

Proposition 3. Pick any bounded loss `. Suppose we have
a teacher model pt with corresponding distilled empirical
risk in (4). For any predictor f : X→ RL,

E
[
(R̃(f ;S)−R(f))2

]
≤ 1

N
· V
[
pt(x)>`(f(x))

]
+

O
(
E
[
‖pt(x)− p∗(x)‖2

])2
.

(7)

Proof of Proposition 3. Let ∆
.
= R̃(f ;S)−R(f). Then,

E
[
(R̃(f ;S)−R(f))2

]
= E

[
∆2
]

= V[∆] + E
[
∆
]2
.

Observe that

E
[
∆
]

= E
x

[
(pt(x)− p∗(x))>`(f(x))

]
≤ E

x

[
‖pt(x)− p∗(x)‖2 · ‖`(f(x))‖2

]
≤ E

x

[
‖pt(x)− p∗(x)‖2 · c · ‖`(f(x))‖∞

]
≤ c · E

x

[
‖pt(x)− p∗(x)‖2

]
,

where the second line is by the Cauchy-Schwartz inequality,
and the third line by the equivalence of norms with a con-
stant c. Now, (7) follows since R(f) is a constant, implying

V[∆] = V[R̃(f ;S)] =
1

N
· V
[
pt(x)>`(f(x))

]
.

Unpacking the Proposition 3, the fidelity of the distilled risk
depends on two factors: how variable the expected loss is
for a random instance; and how well the teacher estimates
pt approximates the true p∗ in an MSE sense. The latter
dominates in the large N regime, and admits a classic bias-
variance tradeoff: per Appendix A.2, we may write (7) as

E
[
(R̃(f ;S)−R(f))2

]
≤ 1

N
· V
[
pt(x)>`(f(x))

]
+ O

(
‖E
[
pt(x)

]
− p∗(x)‖22 + V

[
pt(x)

])
.

(8)

The final two terms reflect a classic phenomena: increasing
the teacher complexity can lower bias (yield better approxi-
mations of p∗), but this is traded off with higher variance
(more unstable predictions). Balancing the delicate tradeoff
between these quantities yields a teacher with low MSE
against p∗. Proposition 3 establishes that such a teacher
yields improved bounds on the student’s generalisation er-
ror. Indeed, per the previous section, we may deduce that

R(f) ≤ R̃(f ;S) + C(F, N) + O
(
E‖pt(x)− p∗(x)‖2

)
, (9)

where C is the penalty term for the hypothesis class F from
Proposition 2. As is intuitive, using an imperfect teacher
invokes an additional penalty depending on how far the
predictions are from the Bayes, in a squared-error sense.
See Proposition 4 (Appendix A) for a formal statement
of (9), and a comparison to existing bounds.

4.2. Discussion and Implications

We have provided a statistical perspective on distillation,
resting on the observation that a “Bayes teacher” can re-
duce variance in the student objective, and that a teacher
approximating the Bayes probabilities offers a bias-variance
tradeoff. Our results follow readily from this perspective,
but the resulting implications and conceptual insights into
distillation are subtle, and merit discussion.

What makes a teacher “good”? The above specifies a
concrete means of assessing the quality of a teacher’s soft
labels: it is beneficial for them to be “good” probability
estimates, in the sense of having low squared error against
the Bayes probabilities p∗. Indeed, Proposition 3 establishes
that in such cases, the resulting student can generalise better.

We make three qualifying remarks. First, in practice, exactly
assessing the squared error to p∗ is infeasible (since p∗ is
often unknown), but one may estimate the quality of the
teacher probabilities on a holdout set, e.g. by computing the
log-loss, square-loss, or calibration error (Guo et al., 2017)
on the one-hot labels. While such estimates are necessarily
imperfect, they can detect poor teacher probabilities.

Second, Proposition 3 may be loose, and further is not a
lower bound. A comprehensive theory of distillation would
require specifying such necessary conditions. Nonetheless,
the qualitative trend of our bounds can still hold in practice.
For example, Figure 1 (see also §4.3) illustrates how increas-
ing the depth of a ResNet model may increase accuracy, but
degrade quality of probability estimates.

Third, the focus on approximating the Bayes probabilities
p∗ suggests that the teacher’s predictions ought to primarily
reflect aleatoric, rather than epistemic, uncertainty (Senge
et al., 2014; Hüllermeier & Waegeman, 2021).

Why can more accurate teachers distill worse? A curi-
ous empirical observation is that more accurate teachers
may lead to worse students (Müller et al., 2019). Our sta-
tistical view offers one possible insight on this behaviour:
recall that we show that good probability modelling can aid
student generalisation. However, while models producing
good probabilities will also be accurate, models that are ac-
curate do not necessarily offer good probabilities (Devroye
et al., 1996, Section 6.7). Indeed, despite being accurate,
deep networks often make over-confident, poorly calibrated
predictions (Guo et al., 2017; Rothfuss et al., 2019).
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Figure 3. Illustration that teacher accuracy is insufficient to predict
distillation performance. On a synthetic problem, we construct a
family of teachers (parameterised by α) with the same accuracy
(red dashed line), but differing probability estimate quality (blue
line), as measured by MSE against the Bayes p∗. Distilling each
teacher to linear student models yields notably different accuracies
(red solid line), with best performance for the teacher with best
probability estimates (i.e., α = 1.0).
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Figure 4. Illustration that suitable temperature scaling can im-
prove the quality of teacher probabilities. Distilling from a
ResNet-32 to ResNet-14 on CIFAR-100, when the temperature T
is too high or too low, the teacher distribution is too flat or spiky
respectively, and thus a poor reflection of the true p∗. Tuning
T improves the teacher probability quality, as measured by the
square-loss on the test set. This also tracks the student accuracy,
particularly at the extremes, consistent with our perspective.

Why does temperature scaling help? Temperature scal-
ing (Hinton et al., 2015) is a common trick wherein one
smooths overly confident teacher logits f t(x) via pt(y |
x) ∝ exp(f ty(x)/T ) for T > 0. In line with our statistical
view, such scaling can help the student target be closer to
the true label distribution p∗ (and thus aid generalisation),
rather than just conveying the most accurate label.

Trading off bias for variance: model complexity. Follow-
ing (8), to obtain a tighter bound on student generalisation,
one may favour a higher-bias teacher (i.e., pt is a poorer
approximation to p∗) if it has lower variance (i.e., pt varies
less across samples). Such a bias-variance tradeoff can be
obtained, e.g., by tuning the teacher complexity.

In the context of neural networks, recent works have chal-
lenged the conventional wisdom (Geman et al., 1992) of
increased model complexity (e.g., increased network width
and/or depth) implying a higher variance (Neal et al., 2018;
Yang et al., 2020). Note that Proposition 3 does not assume
or impose a particular bias-variance tradeoff; it specifies
how a given tradeoff affects student generalisation. In par-
ticular, it suggests that models simultaneously achieving
low bias and variance ought to distill well.

Trading off bias for variance: label smoothing. Label
smoothing (Szegedy et al., 2016) mixes the student labels
with uniform predictions, i.e., uses pt(x) = (1− α) · ey +
α
L · 1 for α ∈ (0, 1]. From the perspective of modelling
p∗(x), this introduces a bias over using the observed labels,
but lowers variance owing to the (1− α) scaling. Provided
the bias is not too large, smoothing can thus aid generalisa-
tion. Recent work has also studied how smoothing induces
variance-reduction in optimisation (Xu et al., 2020).

On training sample re-use. Our analysis requires that the
teacher and student employ distinct training samples. This
holds in the common setting where the teacher labels a large

unlabelled pool (Radosavovic et al., 2018; Yalniz et al.,
2019). Recently, Dao et al. (2021) showed how the teacher
and student can use the sample training sample with a more
careful “cross-fitting” procedure. This reduces the risk of
overfitting in the teacher’s probability estimates, at the ex-
pense of a slightly increased computational cost.

4.3. Illustration: the Value of Teacher Probabilities

We illustrate the above points with empirical results on both
controlled synthetic as well as real-world problems, using
linear models, neural networks, and decision trees. These
highlight that statistical reasoning about distillation is not
necessarily limited to their use in deep neural networks.

Teacher accuracy does not suffice (Figure 3). We first
illustrate that teacher accuracy does not always translate to
good student performance. For the Gaussian data of §3.2
with Bayes probabilities p∗, we construct teacher probabili-
ties p̄(x) = Ψα(p∗(x)). Here, Ψα is such that changing α
does not affect accuracy, but makes p∗ more concentrated,
and thus degrades their probabilistic quality (e.g., MSE).
Concretely, we let Ψα(u) = 1

2 + 1
2 · (2u−1)α · sgn(2u−1)

for α ∈ {2−3, 2−2, . . . , 23}. (See Appendix C.2 for a plot.)

Figure 3 confirms that despite the teacher accuracy being
the same for all α, the student accuracy is systematically
harmed when α 6= 1. Further, the student’s accuracy closely
tracks the quality of the teacher’s probability estimates, as
measured by MSE ‖p̄− p∗‖22. This is in keeping with our
analysis on the value of good probability estimates.

Temperature scaling and probability quality (Figure 4).
We verify that temperature scaling improves the quality of
the teacher probabilities, and that this tracks the distilled
student performance. We perform distillation from a ResNet-
32 to ResNet-14 on CIFAR-100, and apply temperature
scaling with T ∈ {1.0, 1.5, 2.0, . . . , 5.0}. For each T , we
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measure the test set MSE of the teacher probabilities (against
the one-hot labels), as well as the accuracy of the student
model. Note that, unlike the synthetic setting where we had
access to p∗, the former is necessarily an estimate of the
actual quality of the teacher probabilities.

Figure 4 shows that as T is varied, the MSE of the teacher
probabilities varies smoothly, with optimal temperature
T ∗ = 2. The optimal student accuracy is achieved with
a slightly higher temperature T ∗ = 3 — reflecting that we
have provided upper bounds on the student risk — but as
the probability quality degrades beyond this point, student
accuracy rapidly declines, consistent with our perspective.

Trading off bias for variance: decision trees (Figure 5).
We illustrate that in choosing amongst different teachers,
one may favour a higher-bias teacher — i.e., one with worse
probability estimates — if it has lower variance. We show
this in a controlled setting, wherein we train a series of
increasingly complex teacher models on a synthetic prob-
lem. Here, the data is sampled from a marginal P(x) which
is uniform on [0, 1]2, and P(y = 1 | x) has a “checker-
board” pattern, so that positives and negatives are sprinkled
in alternating squares; see Appendix C.1 for an illustration.

We consider decision tree teachers of depth d ∈
{4, 5, 6, 7, 8}. Increasing d reduces teacher bias, but in-
creases variance (since deeper trees can better approximate
p∗, but are more complex). For fixed d, we train a teacher
on a training sample S (with N = 5000). We distill its
predictions to a depth 4 student tree, and compute the test
set teacher MSE and student AUC-ROC over 100 trials.

Figure 5 shows that at depth d = 6, the teacher achieves
the best MSE approximation of p∗. In keeping with our
analysis, this also corresponds to the teacher whose resulting
student generalises the best. Note that at d > 6, the teacher
has lower bias, but higher variance; the higher-bias d = 6
teacher achieves a better tradeoff in terms of MSE. See
Appendix C.4 for additional results on a distinct problem.

Trading off bias for variance: ResNet (Figure 1). Recall
that in Figure 1, we train teacher ResNets of varying depths
on CIFAR-100, and distill these to a student ResNet of fixed
depth 8. We see that teachers with better probabilities (in
an MSE sense) generally yield better students. Further, even
though the teacher model gets increasingly more accurate as
its depth increases, improved accuracy does not correspond
to improved MSE. Prior work has observed that mismatch
between the sizes of the student and teacher can also affect
distillation (Cho & Hariharan, 2019; Mirzadeh et al., 2020).
To mitigate such confounders, in Figure 10 (Appendix), we
extend Figure 1 to include students with depth 14 and 20,
and find the general trends for depth 8 hold.
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Figure 5. Illustration of bias-variance tradeoff in a controlled set-
ting: one may favour a higher-bias teacher — i.e., one with compar-
atively worse probability estimates — if it has lower variance. On
a synthetic problem, we consider a family of decision tree teachers
of various depths, which are distilled to a depth 4 student. Increas-
ing the teacher depth reduces the teacher bias, at the expense of
increased variance. There is an optimal teacher depth d = 6 that
balances these terms, and minimises the teacher MSE. This teacher
MSE closely tracks student performance, per our analysis.

5. Applications of the Statistical View
Our statistical view has given conceptual insight into how
distillation can improve classification. We now show a
potential practical benefit of this view: it gives a simple,
generic way to apply distillation to settings beyond classi-
fication. Specifically, by expressing objectives in terms of
the Bayes class-probabilities, one may derive empirical esti-
mates based on teacher model outputs. The results diverge
from a naïve application of distillation, as we now illustrate.

5.1. Distillation for Bipartite Ranking

Given a distribution P over X × {±1}, the bipartite rank-
ing problem (Agarwal & Niyogi, 2009) involves learning a
scorer f : X→ R that minimises the pairwise disagreement,

PD(f)
.
= E
x|y=+1

E
x′|y=−1

Jf(x) < f(x′)K,

i.e., the probability that a randomly drawn positive scores
lower than a randomly drawn negative. This is equivalently
one minus the area under the ROC curve of f (Agarwal
et al., 2005), and measures how well f distinguishes the
positive from negative samples. Given a training sample
S = {(xn, yn)}Nn=1 ∼ PN , an empirical estimate of PD is

P̂D(f) ∝
∑
i∈S+

∑
j∈S−

Jf(xi) < f(xj)K, (10)

where S+, S− are the subset of positive and negative sam-
ples. Intuitively, we consider pairs of samples with positive
and negative labels, and assess the difference in their scores.

In a distillation context, given a powerful teacher model,
one can construct a tighter approximation to the original
risk. Indeed, since P(x | y) ∝ P(y | x) ·P(x) we may write

PD(f) ∝ E
x∼µ

E
x′∼µ

[
p∗(x) · (1−p∗(x′)) ·Jf(x) < f(x′)K

]
,
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where µ is the marginal distribution over instances, and
p∗(x)

.
= P(y = +1 | x). Per the previous section, given a

teacher model, we may use its probabilities pt in place of
p∗ to obtained the distilled bipartite risk,

P̃D(f) ∝
∑

i∈S,j∈S−{i}

pt(xi)·(1−pt(xj))·Jf(xi) < f(xj)K.

Observe that we consider all pairs of samples, as opposed to
partitioning them into groups of “positives” and “negatives”
in (10). Further, each term involves two applications of
smoothing with the teacher probabilities, as opposed to the
standard single application in classification (cf. (4)). This
point also arises in the following.

5.2. Distillation for Multiclass Retrieval

Given a distribution P over X× [L], the multiclass retrieval
problem (Lapin et al., 2018; Reddi et al., 2019) involves
learning a predictor f : X → RL such that for an example
(x, y), the top-ranked labels in f(x) ∈ RL contain the true
label y. One popular choice of loss for this task is the family
of binary decoupled losses (Reddi et al., 2019),

`(y, f(x)) = φ(fy(x)) +
∑

y′ 6=y
φ(−fy′(x)), (11)

where φ : R→ R+ is a margin loss for binary classification,
e.g., the hinge loss φ(z) = [1 − z]+. Intuitively, the first
term encourages high score for the “positive” label y, while
the second encourages low score for the “negatives” y′ 6= y.

For fixed x ∈ X, the expected loss over draws of y is:

p∗(x)>`(f(x)) = p∗(x)>(φ(f(x))− φ(−f(x))) + 1>φ(−f(x))

= p∗(x)>φ(f(x)) + (1− p∗(x))>φ(−f(x))

=
∑

y∈[L]
P(y | x) · φ(fy(x)) +∑

y′∈[L]
(1− P(y′ | x)) · φ(−fy′(x)), (12)

for all-ones vector 1 ∈ RL, and p∗(x) is the vector of P(y |
x) as before. Compared to (11), the first term considers all
labels y ∈ [L] as “smoothed positives”, akin to the standard
application of distillation. Interestingly, the second term
considers all labels y′ ∈ [L] as “smoothed negatives”, with
variable weights depending on P(y′ | x). Intuitively, the
loss pays more attention to those negatives y′ which are
plausible alternate explanations for x.

Following our statistical perspective, on a finite sample S =
{(xn, yn)}Nn=1, one may replace these Bayes probabilities
with teacher model estimates pt, yielding:

R̃(f ;S) =
1

N

∑
n∈[N ]

∑
y∈[L]

pt(y | xn) ·
[
φ(fy(xn)) + z(xn)

]
z(xn)

.
=
∑

y′∈[L]
αy′(xn) · φ(−fy′(xn))

αy′(xn)
.
= 1− pt(y′ | xn). (13)

Akin to the standard classification case, applying such differ-
ential weighting on the positive and negative labels can lead
to a lower-variance estimate of the expected loss. We may
extend this to the popular softmax cross-entropy (cf. (2)),

`(y, f(x)) = −fy(x) + log

[ ∑
y′∈[L]

efy′ (x)
]
.

Here, the inner summation may be regarded as penalising
high scores for “negative” labels y′ 6= y. Inspired by (12)
we may differentially weight the negatives, yielding the loss:

R̃(f ;S) =
1

N

∑
n∈[N ]

∑
y∈[L]

pt(y | xn) · [−fy(xn) + z(xn)]

z(xn)
.
= log

(∑
y′∈[L]

αy′(xn) · efy′ (xn)
)

(14)

αy′(xn)
.
= 1− Jy′ 6= ynK · pt(y′ | xn).

Note here that αyn(xn) = 1, unlike in (13); this choice
ensures the non-negativity of `(y, f(x)), since the loss can
be seen as log-loss under a weighted softmax distribution.

We reiterate that the above uses the teacher in two ways: the
first is the standard use of distillation to smooth the positive
labels. The second is a novel use of distillation to smooth
the negative labels. Compared to the standard loss, for any
candidate label y, we apply (instance- and label-dependent)
weights to negative labels y′ 6= y when computing the loss.
We thus term this objective negative-aware distillation.

Empirically, we have found superior performance by weight-
ing negatives using “unnormalised” teacher probabilities,
rather than pt directly. Specifically, one may use 1− σ(a ·
sty′(x)), where sty′(x) is the teacher logit, σ(·) is the sig-
moid function, and a > 0 is a scaling parameter which may
be tuned. Intuitively, compared to using pt, such a weight-
ing allows for multiple y′ to have high (or low) weights
simultaneously. This is useful in retrieval scenarios, where
there may be multiple relevant labels for a given x ∈ X.

5.3. Empirical Illustration

We defer an empirical analysis of our bipartite ranking for-
mulation to Appendix C.6. We now assess the negative-
aware distillation objective on benchmark datasets for mul-
ticlass retrieval, AMAZONCAT-13K and AMAZONCAT-
670K (McAuley & Leskovec, 2013; Bhatia et al., 2015).
We use a feedforward “teacher” model with a single (linear)
hidden layer of width 512, trained to minimise the softmax
cross-entropy. For the “student”, we make the hidden layer
width 8 for AMAZONCAT-13K and 64 for AMAZONCAT-
670K (since the latter has many more labels).

We compare training the student with one-hot labels, teacher
logits (distillation), and teacher logits with additional neg-
ative smoothing in the softmax per (14). Our aim in doing
so is to confirm that the core idea of negative-aware distilla-
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AMAZONCAT-13K AMAZONCAT-670K

Method P@1 P@3 P@5 P@1 P@3 P@5
Teacher 0.8495 0.7412 0.6109 0.3983 0.3598 0.3298

Student 0.7913 0.6156 0.4774 0.3307 0.3004 0.2753
Student + SD 0.8131 0.6363 0.4918 0.3461 0.3151 0.2892
Student + NAD 0.8560 0.7148 0.5715 0.3480 0.3161 0.2865

Table 1. Precision@k of negative-aware distillation (NAD), stan-
dard distillation (SD) and student baseline on multiclass retrieval
task. NAD improves performance over both techniques.

tion (14) – using a teacher to smooth negatives in addition
to positives – can improve upon standard distillation.

We compare all methods based on the precision@k for
k ∈ {1, 3, 5}, averaged over multiple runs. Table 1 sum-
marises our findings. Distillation offers a small but consis-
tent performance bump over the student baseline. Negative-
aware distillation further improves upon this, especially for
k = 1 and 3, confirming the value of weighing negatives
differently. The gains are significant on AMAZONCAT-13K,
where negative-aware distillation even improves upon the
teacher model. Finally, we note that our use of (negative-
aware) distillation here is subject to the same principles
as the previous sections: e.g., temperature scaling on our
teacher models improves their probabilistic calibration, and
this tracks the student performance; see Appendix C.7.

5.4. Discussion and Implications

The above are two examples of how the statistical view of
distillation facilitates its applications to problems beyond
multi-class classification. The key ingredient in each ap-
plication is expressing the true expected loss in terms of
the Bayes class-probabilities. The resulting objectives in-
volve non-standard uses of the teacher compared to classic
distillation, e.g., to weight both positive and negative labels.

More broadly, one may involve a similar procedure for other
problems with complex objectives; see Appendix B for
additional examples, including robustness to label noise.

6. Concluding Remarks
Our statistical perspective on distillation builds on a simple
observation: distilling with the Bayes class-probabilities
yields a better estimate of the population risk. This pro-
vides conceptual insight into why distillation can help, and
provides a simple, principled means of using distillation in
settings beyond classification.

There are several potential directions for future study. For
example, combining our analysis with study of the other
effects of distillation (e.g., on optimisation (Phuong & Lam-
pert, 2019)) would be of interest. It is also of interest to study
more fine-grained notions of bias and variance, e.g., the no-
tion of “regularisation samples” in Zhou et al. (2021).
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Supplementary material for “A statistical perspective on distillation”

A. Theory: discussion and additional results
A.1. Comparison to existing bounds

Our bound in Proposition 3 is not directly comparable to prior work; e.g., Phuong & Lampert (2019) bound the probability
that the student and teacher disagree, not the generalisation error. Foster et al. (2019) assume the student is constrained to be
close to a teacher, not trained with soft-labels. We remark that, unlike the latter, we assume the teacher is trained on an
independent sample from the student; the more challenging case of sample reuse on teacher and student is an interesting
topic of future study.

A.2. Proof of the claim in (8)

Note that by Jensen’s inequality, and the definition of variance,(
E
x

[
‖pt(x)− p∗(x)‖2

])2
≤ E

x

[
‖pt(x)− p∗(x)‖22

]
= ‖E

[
pt(x)

]
− p∗(x)‖22 + V

[
pt(x)

]
.

Thus, we further have

R(f) ≤ 1

N
· V
[
pt(x)>`(f(x))

]
+ c2 ·

(
‖E
[
pt(x)

]
− p∗(x)‖22 + V

[
pt(x)

])
. (15)

A.3. Additional results

We now explicate how to convert Proposition 3 into a generalisation bound for the student’s performance, mirroring
Proposition 2 for the case of a Bayes teacher.

Proposition 4. Pick any bounded loss `. Fix a hypothesis class F of predictors f : X→ RL, with induced class H ⊂ [0, 1]X

of functions h(x)
.
= pt(x)>`(f(x)). Suppose H has uniform covering number N∞. Then, for any δ ∈ (0, 1), with

probability at least 1− δ over S ∼ PN ,

R(f) ≤ R̃(f ;S) + O

√ṼN (f) ·
log MN

δ

N
+

log MN

δ

N

+ O
(
E‖pt(x)− p∗(x)‖2

)
,

where MN
.
= N∞( 1

N ,H, 2N) and ṼN (f) is the empirical variance of the loss values.

Proof of Proposition 4. Let R̃(f) = E
[
R̃(f ;S)

]
and ∆

.
= R̃(f ;S) − R(f). Following the proof of Proposition 2, we get

that with probability 1− δ,

R̃(f) ≤ R̃(f ;S) + O

√ṼN (f) ·
log MN

δ

N
+

log MN

δ

N

 , (16)

where MN
.
= N∞( 1

N ,H, 2N) and ṼN (f) is the empirical variance of the loss values. Furthermore, the following holds

|R̃(f)−R(f)| =
∣∣∣E[R̃(f ;S)

]
− E

[
R̂∗(f ;S)

]∣∣∣
≤ E

[
‖pt(x)− p∗(x)‖2 · ‖`(f(x))‖2

]
.

Thus, we have

R(f) ≤ R̃(f) + C · E
[
‖pt(x)− p∗(x)‖2

]
. (17)

for some constant C > 0. The result follows by combining (16) and (17).
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B. Additional applications of the statistical framework
The statistical framework espoused above gives a simple yet generic way to understand and use distillation: for population
objectives that make complex use of the Bayes class-probabilities, one may derive empirical versions that are based on the
outputs of a teacher model. We present here some additional potential applications of the framework.

B.1. Robustness to label noise

Our statistical perspective gives a way to interpret the viability of distillation under label noise. Given samples from a
distribution P̄ that is subject to class-conditional label noise (Scott et al., 2013; Natarajan et al., 2013) — i.e., P̄(y | x) =
Ty, : P(· | x) for noise transition matrix T — a common family of loss-correction techniques involve learning with the loss
T−1`. This can be interpreted as constructing a plug-in estimate of P(y | x) via P(· | x) = T−1P̄(y | x).

Given a teacher model that is trained on noisy data — and thus produces estimates of the noisy P̄(y | x) — we may thus
compute a tighter estimate to T−1P̄(y | x), and use this to weigh the loss. In fact, such a procedure was recently explored
in Lukasik et al. (2020), but with a purely empirical motivation. Our statistical framework gives a means of justifying this
procedure.

B.2. Ranking with a push-loss

Motivated by the bipartite ranking problem in § 5.1, consider now a multiclass classification problem over X× [L]. We may
consider a contextual version of the bipartite ranking loss,

R(f) = E
x

E
y∼P+(x)

E
y′∼P−(x)

Jfy(x) < fy′(x)K,

where P+, P− ∈ ∆L are distributions over “positive” and “negative” labels respectively. For the positives, the natural choice
is P+ = P(y | x). For the negatives, one possible choice is P− ∝ C − P(y′ | x) for C = maxy′′ P(y′′ | x), so that the
labels with the lowest probability under P(·) are most likely to be negative. We may rewrite the risk as

R(f) = E
x

[∑
y,y′

P(y | x) · (C − P(y′ | x)) · Jfy(x) < fy′(x)K
]
.

As before, we may replace P(· | x) with the estimates from a teacher model.

One may generalise the above to use a push loss (Rudin, 2009) as follows: for increasing g : R→ R, define

Rpush(f) = E
x

E
y∼P+(x)

g

(
E

y′∼P−(x)
Jfy(x) < fy′(x)K

)
,

so that one penalises false negatives more strongly. As an example, when g(z) = zp, as p → +∞ we have a contextual
analogue of the p-norm push loss of Rudin (2009):

Rpush(f) = E
x

E
y∼P+(x)

max
y′∈supp(P−(x))

Jfy(x) < fy′(x)K,

where the inner quantity may be understood as the rank of the highest scoring negative sample. As before, we may rewrite
the risk as

Rpush(f) = E
x

∑
y

P(y | x) · g

∑
y′

(C − P(y′ | x)) · Jfy(x) < fy′(x)K

 .
For example, when g(z) = log(1 + z), replacing the indicator function with an exponential surrogate yields

R̄push(f) = E
x

∑
y

P(y | x) · log

1 +
∑
y′

(C − P(y′ | x)) · efy′ (x)−fy(x)
 ,

which is similar to the negative-aware distillation objective (14).
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B.3. Robustness to covariate shift

The covariate shift problem involves a test distribution whose marginal distribution over instances differs from that observed
during training. One means of guarding against such problem is to adopt a distributionally robust optimisation objective,
such as

Rdro(f) = sup
µ′∈B(µ,ε)

E
x∼µ′

E
y|x
`(y, f(x)),

where µ is the observed training distribution over instances, and B(·, ε) denotes a suitable ball of size ε. As observed
in Duchi et al. (2020), when B is a CVaR-ball,

Rdro(f) = inf
λ

[
1

ε
· E
x∼µ

(
E
y|x
`(y, f(x))− λ

)
+

+ λ

]
.

Intuitively, we only retain those samples whose expected losses exceed some threshold λ∗, which in turn is some distribution-
dependent quantity.

Typically, given a sample S = {(xn, yn)}Nn=1 ∼ PN , estimating E
y|x

[
`(y, f(x))

]
reliably is infeasible, since we often have

only one observation for a given x. This motivated a procedure in Duchi et al. (2020) that constructs a different bound to
Rdro(f). However, in a distillation setting, we may estimate E

y|x

[
`(y, f(x))

]
using the scores of a teacher model. This gives

a significantly simpler means of approximately minimising Rdro, albeit at the expense of increased bias.
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C. Additional experiments
We present additional experiments to complement those in the main body. We illustrate the following:

(i) we visualise the checkerboard data used to illustrate the bias-variance tradeoff for decision trees (§C.1)

(ii) we visualise the distortion function Ψα used to show that teacher accuracy can be wholly at odds with student
generalisation (§C.2)

(iii) distilling with a Bayes teacher becomes increasing useful as the underlying problem becomes noisier (§C.3)

(iv) the bias-variance tradeoff can be illustrated by explicitly distortion the Bayes class-probability function (§C.4)

(v) the bias-variance tradeoff can be illustrated on ResNets with varying depth (§C.5)

(vi) the distilled bipartite ranking objective can benefit over standard one-hot training (§C.6)

(vii) we show that on synthetic Gaussian data as well as the AMAZONCAT-13K data, temperature scaling of the teacher
probabilities can improve their calibration and student performance.

C.1. Checkerboard data

Figure 6 shows the checkerboard data used in §4. Here, our samples are drawn from a marginal that is uniform on [0, 1]2.
We choose the class-probability function to be

P(y = +1 | x) =

(B+1)/2∑
i=0

(B+1)/2∑
j=0

σ(40 · s2i,2j(x))+

(B−1)/2∑
i=1

(B−1)/2∑
j=1

σ(40 · s2i,2j(x))σ(40 · s2i+1,2j+1(x))

si,j(x) =
1

2 ·B
− ‖x− µi,j‖∞

for B2 equally spaced squares with centroids µi,j , and B = 3.
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Figure 6. Checkerboard data used for decision tree.

C.2. Teacher probability distortion function

Figure 7 plots the result of applying the distortion function Ψα to the teacher probabilities. When α = 1, we obtain the
standard sigmoid function. When α� 1, the probabilities become nearly uninformative, as they are strongly concentrated
around 0.5; this makes the student’s learning problem significantly noisier, and thus more challenging. When α� 1, the
probabilities becomes overly concentrated near the extremes; this becomes tantamount to training on the original labels
itself.
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Figure 7. As tuning parameter α is increased, the teacher probabilities p̄(x) = Ψα(p∗(x)) increasingly deviate from the Bayes
probabilities p∗(x).

C.3. Bayes distillation is valuable for non-separable problems

Figure 8 continues the exploration of the Gaussian setting in §3.1 forN = 100 samples. We now vary the distance r between
the means of each of the Gaussians. When r is small, the two distributions grow closer together, making the classification
problem more challenging. At the same time, smaller r makes the one-hot labels have higher variance compared to the
Bayes class-probabilities. Consequently, the gains of distillation over the one-hot encoding are greater for this setting, in
line with our guarantee on the lower-variance Bayes-distilled risk aiding generalisation (Proposition 2).
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Figure 8. Distillation versus one-hot encoding on a synthetic dataset comprising Gaussian class-conditionals with means r · (+1,+1)
and r · (−1, 1). We vary r so as to change the separation between the classes. Both methods see worse performance as r is smaller, but
the gains of distillation over the one-hot encoding are greater for this setting.

C.4. Bias-variance tradeoff: alternate distortion

We present an alternate verification of the bias-variance tradeoff, wherein we distort the Bayes probabilities in a different
manner. Continuing the same synthetic Gaussian data as in §3.2, we now consider a family of teachers of the form

pt(x) = (1− α) ·Ψ((θ∗)>x+ σ2 · ε) +
α

2
, (18)

where Ψ(z)
.
= (1 + e−z)−1 is the sigmoid, α ∈ [0, 1], σ > 0, and and ε ∼ N(0, 1) comprises independent Gaussian noise.

Increasing α induces a bias in the teacher’s estimate of p∗(x), while increasing σ induces a variance in the teacher over fresh
draws. Combined, these control the teacher’s mean squared error (MSE) E

[
‖p∗(x)− pt(x)‖22

]
, which by Proposition 3

bounds the gap between the population and distilled empirical risk.

For each such teacher, we compute its MSE, as well as the test set AUC of the corresponding distilled student. Figure 9(a)
shows the relationship between the the teacher’s MSE and the student’s AUC. In line with the theory, more accurate
estimates of p∗ result in better students. Figure 9(b) also shows how the teacher’s MSE depends on the choice of σ and α,
demonstrating that multiple such pairs can achieve a similar MSE. As before, we see that a teacher may trade-off bias for
variance in order to achieve a low MSE.
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(a) Relationship between teacher’s MSE against
true class-probability and student’s test set AUC.
In keeping with the theory, teachers which better
approximate p∗ yield better students.
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Figure 9. Bias-variance tradeoff on Gaussian data.

C.5. Trading off bias for variance: ResNet

Recall that in Figure 1, we train teacher ResNets of varying depths on CIFAR-100, and distill these to a student ResNet of
fixed depth 8. We see that teachers with better probabilities (in an MSE sense) generally yield better students. Further, even
though the teacher model gets increasingly more accurate as its depth increases, improved accuracy does not correspond
to improved MSE. Prior work has observed that mismatch between the sizes of the student and teacher can also affect
distillation (Cho & Hariharan, 2019; Mirzadeh et al., 2020). To mitigate such confounders, in Figure 10, we extend Figure 1
to include students with depth 14 and 20, and find the general trends for depth 8 hold.
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(a) Top-1 accuracy.
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(b) Log-loss.
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(c) Expected calibration error.

Figure 10. Illustration of bias-variance tradeoff on CIFAR-100: teachers with better probability estimates generally yield better students.
Results extend Figure 1 to include students of varying depth.

C.6. Distillation for bipartite ranking

Recall the following distillation objective for bipartite ranking problems (§5.1): given a training sample S = {(xn, yn)}Nn=1

where yn ∈ {±1}, we construct

P̃D(f) ∝
∑

i∈S,j∈S−{i}

pt(xi) · (1− pt(xj)) · Jf(xi) < f(xj)K

for teacher model pt. This may be contrast to the standard bipartite ranking objective, which effectively corresponds to a
“one-hot” teacher pt(xn) = (yn + 1)/2.

As in the classification setting, we show that learning with the distilled objective can significantly boost student performance.
We consider the same synthetic Gaussian problem as §3.2, and compare training with the “one-hot” versus “Bayes teacher”,
with the latter employing probabilities given by the true p∗(x) = (P(y = −1 | x),P(y = +1 | x)). To facilitate
gradient-based optimisation, we replace the indicator function with convex surrogate φ(z) = log(1 + e−z), yielding

P̃D(f) ∝
∑

i∈S,j∈S−{i}

pt(xi) · (1− pt(xj)) · φ(f(xi)− f(xj)).
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Figure 11(a) compares the student area under the ROC curve (AUC) on the test sample. Distilling with the Bayes teacher is
seen to significantly boost performance in the low-sample regime.

To further assess the efficacy of the formulation in a real-world setting, we consider the Fashion MNIST dataset. While the
data is inherently multi-class, we construct a binarised version suitable for bipartite ranking by focussing on samples with
the labels T-Shirt and Shirt only. We train a teacher LeNet-5 model, which is distilled into a student model that shares the
LeNet-5 architecture, but has all filter sizes reduced by half; such a setup has been considered in Lopes et al. (2017); Nayak
et al. (2019). When applying distillation, we do not use the raw teacher predictions pt(x), but rather the common trick of
mixing them with the training labels via (1− α) · ey + α · pt(x); following Nayak et al. (2019), we use α = 0.7. (This can
be understood as mitigating the bias of the target labels.)

Figure 11(b) compares the test set AUC for the teacher, student trained with one-hot labels, and student trained with
distillation; the results are presented for 100 independent trials. We see that distillation notably improves performance over
one-hot training, and in fact can sometimes exceed the performance of the teacher.
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(a) Synthetic dataset comprising Gaussian class-
conditionals. Here, we employ the “Bayes teacher”,
which uses the true p∗ to train the student, which
is a linear model.
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(b) Fashion MNIST dataset, binarised to classify
T-Shirt versus Shirt. Here, we use a LeNet-5
teacher, which is distilled to a LeNet-5 student
with all filter sizes reduced by half.

Figure 11. Bipartite ranking version of distillation versus one-hot encoding. Our distillation objective significantly improves over one-hot
training in terms of the student area under the ROC curve (AUC).

C.7. Temperature scaling and teacher calibration

We study the effect of temperature scaling on the student’s performance, as well as the teacher’s probability quality. In
Figure 12, we study this on the AMAZONCAT-13K data. From left-to-right, we increased the temperature making the model
generate less confident labels to the students. We see that the student’s performance has a very high anti-correlation with the
teacher’s log-loss (a proxy for the distance between the Bayes label probability and teacher’s prediction).
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Figure 12. Temperature scaling versus accuracy: AMAZONCAT-13K data.

As further verification, we show that similar trends hold for the synthetic Gaussian data of §3.1. Here, we take the Bayes
p∗ = σ((θ∗)Tx) and apply temperature scaling inside the sigmoid. Evidently, we expect that applying no scaling should
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give optimal student performance, as these offer the Bayes probabilities. Figure 13 confirms this, and also shows that as the
temperature is varied, the calibration of the resulting teacher in terms of both log-loss and MSE is significantly harmed. This
is a further corroboration of the quality of teacher probabilities playing an important role in distillation performance.
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Figure 13. Temperature scaling versus accuracy: Gaussian data.


